1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
*DECK SYB002
SUBROUTINE SYB002 (NGEN,NPIJ,NPIS,SIGT2,SIGW2,IMPX,NCOUR,IWIGN,
1 IQUAD,XX,YY,NMC,RAYRE,MAIL,RZMAIL,PIJW,PISW,PSJW,PSSW)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the cellwise scattering-reduced collision, escape and
* transmission probabilities in a 2-D Cartesian or hexagonal assembly
* with Roth approximation.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NGEN total number of generating cells.
* NPIJ length of cellwise scattering-reduced collision probability
* matrices.
* NPIS length of cellwise scattering-reduced escape probability
* matrices (NPIS=NMC(NGEN+1)).
* SIGT2 total macroscopic cross sections.
* SIGW2 P0 within-group scattering macroscopic cross sections.
* IMPX print flag (equal to 0 for no print).
* NCOUR number of currents surrounding the cells (=4 Cartesian
* lattice; =6 hexagonal lattice).
* IWIGN type of cylinderization.
* IQUAD quadrature parameters.
* XX X-thickness of the generating cells.
* YY Y-thickness of the generating cells.
* NMC offset of the first volume in each generating cell.
* RAYRE radius of the tubes in each generating cell.
* MAIL offset of the first tracking information in each generating
* cell.
* RZMAIL real tracking information.
*
*Parameters: output
* PIJW cellwise scattering-reduced collision probability matrices.
* PISW cellwise scattering-reduced escape probability matrices.
* PSJW cellwise scattering-reduced collision probability matrices
* for incoming neutrons.
* PSSW cellwise scattering-reduced transmission probability
* matrices.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NGEN,NPIJ,NPIS,IMPX,NCOUR,IWIGN,IQUAD(4),NMC(NGEN+1),
1 MAIL(2,NGEN)
REAL SIGT2(NPIS),SIGW2(NPIS),XX(NGEN),YY(NGEN),RAYRE(NPIS),
1 RZMAIL(*),PIJW(NPIJ),PISW(NPIS),PSJW(NPIS),PSSW(NGEN)
*----
* LOCAL VARIABLES
*----
PARAMETER (PI=3.141592654)
LOGICAL LSKIP
REAL, ALLOCATABLE, DIMENSION(:) :: PIS,PSJ,RAYR2,WORK
REAL, ALLOCATABLE, DIMENSION(:,:) :: PP
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(PIS(NPIS),PSJ(NPIS))
*
MR=IQUAD(4)
IPIJ=0
DO 220 JKG=1,NGEN
J1=NMC(JKG)
J2=NMC(JKG+1)-J1
*----
* CYLINDERIZATION OPTIONS
*----
A=XX(JKG)
B=YY(JKG)
IB=MAIL(2,JKG)
RJ1=RAYRE(NMC(JKG+1))
SCALE1=1.0
SCALE2=1.0
ROUT=0.0
IF((NCOUR.EQ.4).AND.(IWIGN.EQ.1)) THEN
* ASKEW CYLINDERIZATION CARTESIAN.
RJ2=(A+B)/PI
SCALE1=(A*B-PI*RJ1**2)/(PI*RJ2**2-PI*RJ1**2)
ROUT=RJ2
ELSE IF((NCOUR.EQ.4).AND.(IWIGN.EQ.2)) THEN
* WIGNER CYLINDERIZATION CARTESIAN.
ROUT=SQRT(A*B/PI)
ELSE IF((NCOUR.EQ.4).AND.(IWIGN.EQ.3)) THEN
* SANCHEZ CYLINDERIZATION CARTESIAN.
SCALE2=SQRT(PI*A*B)/(A+B)
ROUT=SQRT(A*B/PI)
ELSE IF(IWIGN.EQ.1) THEN
* ASKEW CYLINDERIZATION HEXAGONAL.
RJ2=3.0*A/PI
SCALE1=(1.5*SQRT(3.0)*A*A-PI*RJ1**2)/(PI*RJ2**2-PI*RJ1**2)
ROUT=RJ2
ELSE IF(IWIGN.EQ.2) THEN
* WIGNER CYLINDERIZATION HEXAGONAL.
ROUT=SQRT(1.5*SQRT(3.0)/PI)*A
ELSE IF(IWIGN.EQ.3) THEN
* SANCHEZ CYLINDERIZATION HEXAGONAL.
SCALE2=SQRT(PI*SQRT(3.0)/6.0)
ROUT=SQRT(1.5*SQRT(3.0)/PI)*A
ENDIF
IF(ROUT.LE.RJ1) CALL XABORT('SYB002: CYLINDERIZATION ERROR.')
*----
* COMPUTE THE REDUCED COLLISION PROBABILITY MATRIX
*----
SURFA=0.5*PI*ROUT
ALLOCATE(PP(J2,J2),RAYR2(J2+1))
DO 10 I=1,J2
RAYR2(I)=RAYRE(J1+I)
10 CONTINUE
RAYR2(J2+1)=ROUT
SIGT2(J1+J2)=SIGT2(J1+J2)*SCALE1
CALL SYBALC(J2,J2,RAYR2,SIGT2(J1+1),MR,0.0,RZMAIL(IB),PP)
PSS=0.0
RJ1=0.0
DO 30 I=1,J2
PIS(I)=1.0
RJ2=RAYR2(I+1)**2
VV=PI*(RJ2-RJ1)
DO 20 J=1,J2
PIS(I)=PIS(I)-PP(I,J)*SIGT2(J1+J)
20 CONTINUE
PSS=PSS+PIS(I)*SIGT2(J1+I)*VV/SURFA
RJ1=RJ2
30 CONTINUE
DEALLOCATE(RAYR2)
PSS=1.0-SCALE2*PSS
*----
* COMPUTE THE REDUCED COLLISION PROBABILITY MATRIX FOR INCOMING
* NEUTRONS
*----
SURFA=(0.5*PI*ROUT)/SCALE2
RJ1=0.0
DO 40 I=1,J2-1
RJ2=PI*RAYRE(J1+I+1)**2
PSJ(I)=PIS(I)*(RJ2-RJ1)/SURFA
RJ1=RJ2
40 CONTINUE
RJ2=PI*ROUT**2
PSJ(J2)=PIS(J2)*(RJ2-RJ1)*SCALE1/SURFA
SIGT2(J1+J2)=SIGT2(J1+J2)/SCALE1
IF(IMPX.GE.8) THEN
CALL SYBPRX(1,1,J2,JKG,SIGT2(J1+1),SIGW2(J1+1),PP(1,1),PIS(1),
1 PSJ(1),PSS)
ENDIF
*----
* CHECK IF SCATTERING REDUCTION IS REQUIRED
*----
LSKIP=.TRUE.
DO 70 I=1,J2
LSKIP=LSKIP.AND.(SIGW2(J1+I).EQ.0.0)
70 CONTINUE
*----
* SCATTERING REDUCTION IF LSKIP=.FALSE.
*----
IF(LSKIP) THEN
* DO NOT PERFORM SCATTERING REDUCTION.
DO 90 I=1,J2
DO 80 J=1,J2-1
PIJW(IPIJ+(J-1)*J2+I)=PP(I,J)
80 CONTINUE
PIJW(IPIJ+(J2-1)*J2+I)=PP(I,J2)*SCALE1
90 CONTINUE
DO 100 I=1,J2
PISW(J1+I)=PIS(I)
PSJW(J1+I)=PSJ(I)
100 CONTINUE
PSSW(JKG)=PSS
ELSE
* COMPUTE THE SCATTERING-REDUCED COLLISION AND ESCAPE MATRICES.
DO 120 I=1,J2
DO 110 J=1,J2-1
PIJW(IPIJ+(J-1)*J2+I)=-PP(I,J)*SIGW2(J1+J)
110 CONTINUE
PIJW(IPIJ+(J2-1)*J2+I)=-PP(I,J2)*SIGW2(J1+J2)*SCALE1
PIJW(IPIJ+(I-1)*J2+I)=1.0+PIJW(IPIJ+(I-1)*J2+I)
120 CONTINUE
CALL ALINV(J2,PIJW(IPIJ+1),J2,IER)
IF(IER.NE.0) CALL XABORT('SYB002: SINGULAR MATRIX.')
ALLOCATE(WORK(J2))
DO 170 I=1,J2
DO 130 K=1,J2
WORK(K)=PIJW(IPIJ+(K-1)*J2+I)
130 CONTINUE
DO 150 J=1,J2-1
WGAR=0.0
DO 140 K=1,J2
WGAR=WGAR+WORK(K)*PP(K,J)
140 CONTINUE
PIJW(IPIJ+(J-1)*J2+I)=WGAR
150 CONTINUE
WGAR=0.0
DO 155 K=1,J2
WGAR=WGAR+WORK(K)*PP(K,J2)
155 CONTINUE
PIJW(IPIJ+(J2-1)*J2+I)=WGAR*SCALE1
WGAR=0.0
DO 160 K=1,J2
WGAR=WGAR+WORK(K)*PIS(K)
160 CONTINUE
PISW(J1+I)=WGAR
170 CONTINUE
DEALLOCATE(WORK)
*
* COMPUTE THE SCATTERING-REDUCED COLLISION PROBABILITY MATRIX
* FOR INCOMING NEUTRONS.
DO 190 J=1,J2
WGAR=PSJ(J)
DO 180 K=1,J2
WGAR=WGAR+PSJ(K)*SIGW2(J1+K)*PIJW(IPIJ+(J-1)*J2+K)
180 CONTINUE
PSJW(J1+J)=WGAR
190 CONTINUE
*
* COMPUTE THE SCATTERING-REDUCED TRANSMISSION PROBABILITY MATRIX.
WGAR=PSS
DO 200 K=1,J2
WGAR=WGAR+PSJ(K)*SIGW2(J1+K)*PISW(J1+K)
200 CONTINUE
PSSW(JKG)=WGAR
ENDIF
DEALLOCATE(PP)
IF(IMPX.GE.10) THEN
CALL SYBPRX(2,1,J2,JKG,SIGT2(J1+1),SIGW2(J1+1),PIJW(IPIJ+1),
1 PISW(J1+1),PSJW(J1+1),PSSW(JKG))
ENDIF
IPIJ=IPIJ+J2*J2
220 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(PSJ,PIS)
RETURN
END
|