1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
*DECK SPHTRA
SUBROUTINE SPHTRA(JPSYS,IEX,NPSYS,KSPH,NREG,NUN,NMERGE,NALBP,
1 NGCOND,SUNMER,FLXMER,NBMIX,MAT,VOL,KEY,MERG,SPH,SIGW,SIGT,
2 COURIN,FUNKNO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Transport calculation over the macro-geometry using the collision
* probability technique. Use the Bell factor acceleration strategy.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* JPSYS pointer to the 'GROUP' directory in the system LCM object.
* IEX iteration number.
* NPSYS group masks.
* KSPH type of SPH factor normalization:
* <0 asymptotic normalization;
* =1 average flux normalization;
* =2 Selengut normalization;
* =3 generalized Selengut normalization (EDF type);
* =4 Selengut normalization with surface leakage.
* NREG number of macro-regions (in the macro calculation).
* NUN number of unknowns per group in macro-calculation.
* NMERGE number of merged regions.
* NALBP number of physical albedos.
* NGCOND number of condensed groups.
* SUNMER incoming source (scattering+fission) cross sections.
* FLXMER flux estimate per mixture.
* NBMIX number of material mixtures.
* MAT mixture index per macro-region.
* VOL volume of macro-regions.
* KEY position of the flux components associated with each volume.
* MERG index of merged regions.
* SPH SPH factors.
* SIGW transport correction.
* SIGT macroscopic total cross section.
* COURIN averaged flux if KSPH=1. Equal to 4 times the incoming current
* per unit surface if KSPH=2 or 3.
*
*Parameters: output
* FUNKNO neutron flux.
*
*Reference(s):
* P. Blanc-Tranchant, A. Santamarina, G. Willermoz and A. Hebert,
* "Definition and Validation of a 2-D Transport Scheme for PWR Control
* Rod Clusters", paper presented at the Int. Conf. on Mathematics and
* Computation, Reactor Physics and Environmental Analysis in Nuclear
* Applications, Madrid, Spain, September 27-30, 1999.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) JPSYS
INTEGER IEX,NPSYS(NGCOND),KSPH,NREG,NUN,NMERGE,NALBP,NGCOND,NBMIX,
1 MAT(NREG),KEY(NREG),MERG(NBMIX)
REAL SUNMER(NMERGE,NGCOND,NGCOND),FLXMER(NMERGE,NGCOND),VOL(NREG),
1 SPH(NMERGE+NALBP,NGCOND),SIGW(NMERGE,NGCOND),SIGT(NMERGE,NGCOND),
2 COURIN(NGCOND),FUNKNO(NUN,NGCOND)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) KPSYS
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: SIGMA,SUNKNO
REAL, ALLOCATABLE, DIMENSION(:,:) :: PIJ
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: WORK2,WORK3
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(SIGMA(0:NBMIX),SUNKNO(NREG),PIJ(NREG,NREG))
ALLOCATE(WORK2(NREG+1,NREG+1),WORK3(NREG,NREG+1))
*----
* GLOBAL SOURCE FOR THE BELL FACTOR METHOD.
*----
DO 100 IGR=1,NGCOND
IF(NPSYS(IGR).EQ.0) GO TO 100
SUNKNO(:NREG)=0.0
IF(IEX.EQ.1) THEN
DO 20 IREG=1,NREG
IMAT=MAT(IREG)
IMERG=MERG(IMAT)
IF(IMAT.EQ.0) GO TO 20
IF(VOL(IREG).EQ.0.0) GO TO 20
SUM=-(SIGT(IMERG,IGR)-SIGW(IMERG,IGR))*FLXMER(IMERG,IGR)
DO 10 JGR=1,NGCOND
SUM=SUM+SUNMER(IMERG,JGR,IGR)*FLXMER(IMERG,JGR)
10 CONTINUE
SUNKNO(IREG)=SUM
20 CONTINUE
ELSE
DO 30 IREG=1,NREG
IMAT=MAT(IREG)
IMERG=MERG(IMAT)
IF(IMAT.EQ.0) GO TO 30
IF(VOL(IREG).EQ.0.0) GO TO 30
GARS=-(SIGT(IMERG,IGR)-SIGW(IMERG,IGR))*SPH(IMERG,IGR)
SUM=FUNKNO(KEY(IREG),IGR)*GARS
DO 25 JGR=1,NGCOND
GARS=SUNMER(IMERG,JGR,IGR)*SPH(IMERG,JGR)
SUM=SUM+FUNKNO(KEY(IREG),JGR)*GARS
25 CONTINUE
SUNKNO(IREG)=SUM
30 CONTINUE
ENDIF
*----
* COMPUTE THE WORK2 MATRIX.
*----
KPSYS=LCMGIL(JPSYS,IGR)
CALL LCMGET(KPSYS,'DRAGON-TXSC',SIGMA)
CALL LCMGET(KPSYS,'DRAGON-PCSCT',PIJ)
DO 45 I=1,NREG
WORK2(I,NREG+1)=0.0D0
DO 40 J=1,NREG
WORK2(I,NREG+1)=WORK2(I,NREG+1)+PIJ(I,J)*VOL(I)*SUNKNO(J)
WORK2(I,J)=PIJ(I,J)*VOL(I)
40 CONTINUE
45 CONTINUE
*----
* COMPUTE THE NEUTRON FLUXES.
*----
IF(KSPH.LT.0) THEN
* ASYMPTOTIC NORMALIZATION.
VOLTOT=0.0
DO 60 I=1,NREG
IF(MAT(I).EQ.-KSPH) THEN
VOLTOT=VOLTOT+VOL(I)
WORK2(NREG+1,I)=VOL(I)
ELSE
WORK2(NREG+1,I)=0.0D0
ENDIF
DO 50 J=1,NREG
JBM=MAT(J)
WORK2(I,J)=-SIGMA(JBM)*WORK2(I,J)
50 CONTINUE
WORK2(I,I)=WORK2(I,I)+VOL(I)
60 CONTINUE
WORK2(NREG+1,NREG+1)=COURIN(IGR)*VOLTOT
ELSE
* INTEGRATED FLUX OR SELENGUT NORMALIZATION.
VOLTOT=0.0
DO 80 I=1,NREG
VOLTOT=VOLTOT+VOL(I)
WORK2(NREG+1,I)=VOL(I)
DO 70 J=1,NREG
JBM=MAT(J)
WORK2(I,J)=-SIGMA(JBM)*WORK2(I,J)
70 CONTINUE
WORK2(I,I)=WORK2(I,I)+VOL(I)
80 CONTINUE
WORK2(NREG+1,NREG+1)=COURIN(IGR)*VOLTOT
ENDIF
CALL ALSVDF(WORK2,NREG+1,NREG,NREG+1,NREG,WORK3(1,NREG+1),
1 WORK3)
CALL ALSVDS(WORK2,WORK3(1,NREG+1),WORK3,NREG+1,NREG,NREG+1,
1 NREG,WORK2(1,NREG+1),WORK2(1,NREG+1))
FUNKNO(:NUN,IGR)=0.0
DO 90 I=1,NREG
FUNKNO(KEY(I),IGR)=REAL(WORK2(I,NREG+1))
90 CONTINUE
100 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(WORK3,WORK2)
DEALLOCATE(PIJ,SUNKNO,SIGMA)
RETURN
END
|