1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
*DECK SPHEQU
SUBROUTINE SPHEQU(NBMIX2,IPTRK2,IFTRAK,IPMACR,IPFLX,CDOOR,NSPH,
1 KSPH,MAXIT,MAXNBI,EPSPH,IPRINT,IMC,NGCOND,NMERGE,NALBP,ISCAT,
2 NREG2,NUN2,MAT2,VOL2,KEY2,MERG2,ILK,CTITRE,IGRMIN,IGRMAX,SPH)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the SPH factors for the homogenization of any geometry
* using a transport-transport or transport-diffusion equivalence
* technique. The macro-calculation can be performed using a standard
* solution door of Dragon.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NBMIX2 number of macro-mixtures. Equal to MAX(MAT2(IREG)) for
* (IREG .le. NREG2).
* IPTRK2 pointer to the tracking of the macro-geometry (L_TRACK
* signature).
* IFTRAK unit number of the sequential binary tracking file.
* IPMACR pointer to the reference macrolib (L_MACROLIB signature).
* IPFLX pointer towards an initialization flux (L_FLUX signature).
* CDOOR tracking operator used to track the macro-geometry.
* NSPH type of SPH algorithm:
* =2 homogeneous macro-calculation (non-iterative procedure
* or Hebert-Benoist SPH-5 procedure);
* =3 any type of pij macro-calculation;
* =4 any type of diffusion, SN, PN or SPN macro-calculation;
* KSPH type of SPH factor normalization:
* <0 asymptotic normatization with respect to mixture -KSPH;
* =1 average flux normalization;
* =2 Selengut normalization using ALBS information;
* =3 Selengut normalization using FD_B boundary fluxes;
* =4 generalized Selengut normalization (EDF type);
* =5 Selengut normalization with surface leakage;
* =6 Selengut with water gap normalization;
* =7 average flux normalization in fissile zones.
* The Hebert-Benoist procedure is used if NSPH=2 and KSPH=5.
* MAXIT maximum number of SPH iterations.
* MAXNBI acceptable number of SPH iterations with an increase in
* convergence error before aborting.
* EPSPH convergence criterion for stopping the SPH iterations.
* IPRINT print flag (equal to 0 for no print).
* IMC type of macro-calculation (=1 diffusion or SPN;
* =2 other options;
* =3 type PIJ with Bell acceleration).
* NGCOND number of condensed groups.
* NMERGE number of merged regions (equal to 1 or to the number of
* different flux components in the macro-calculation).
* NALBP number of physical albedos.
* ISCAT scattering anisotropy in the reference set of cross sections
* (=1 isotropic in LAB; =2 linearly-anisotropic in LAB).
* NREG2 number of macro-regions (in the macro-calculation).
* NUN2 number of unknowns in a one-group macro-calculation.
* MAT2 mixture index per macro-region.
* VOL2 volume of macro-regions.
* KEY2 pointer to flux values in unknown vector.
* MERG2 index of merged macro-regions per macro-mixture.
* ILK leakage switch.
* CTITRE title.
* IGRMIN first group to process.
* IGRMAX last group to process.
*
*Parameters: output
* SPH SPH homogenization factors.
*
*References(s):
* A. Hebert, 'A Consistent Technique for the Pin-by-Pin Homogenization
* of a Pressurized Water Reactor Assembly', Nucl. Sci. Eng., 113, 227
* (1993).
*
* A. Hebert and P. Benoist, 'A Consistent Technique for the Global
* Homogenization of a Pressurized Water Reactor Assembly', Nucl. Sci.
* Eng., 109, 360 (1991).
*
* A. Hebert and G. Mathonniere, 'Development of a Third-Generation
* Superhomogeneisation Method for the Homogenization of a
* Pressurized Water Reactor Assembly', Nucl. Sci. Eng., 115, 129
* (1993).
*
* T. Courau, M. Cometto, E. Girardi, D. Couyras and N. Schwartz,
* 'Elements of Validation of Pin-by-Pin Calculations with the Future
* EDF Calculation Scheme Based on APOLLO2 and COCAGNE Codes',
* Proceedings of ICAPP '08 Anaheim, CA USA, June 8-12, 2008.
*
*-----------------------------------------------------------------------
*
USE GANLIB
USE DOORS_MOD
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK2,IPMACR,IPFLX
INTEGER NBMIX2,IFTRAK,NSPH,KSPH,MAXIT,MAXNBI,IPRINT,IMC,NGCOND,
1 NMERGE,NALBP,ISCAT,NREG2,NUN2,MAT2(NREG2),KEY2(NREG2),
2 MERG2(NBMIX2),IGRMIN,IGRMAX
REAL VOL2(NREG2),SPH(NMERGE+NALBP,NGCOND)
LOGICAL ILK
CHARACTER CDOOR*12,CTITRE*72
*----
* LOCAL VARIABLES
*----
PARAMETER(NSTATE=40)
INTEGER IPAR(NSTATE)
LOGICAL LNORM,LEXAC,LDIFF,REBFLG
DOUBLE PRECISION FLXTOT,VOLTOT
CHARACTER TEXT12*12,HSMG*131
TYPE(C_PTR) IPADF,IPSYS2,JPSYS2,JPFLX,KPSYS2,IPSOU
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: NPSYS
REAL, ALLOCATABLE, DIMENSION(:) :: SIGMD,VOLMER,FACTOR,OUTG1,
1 OUTG2,COURIN,COUROW,SNORM,SPHNEW,SIGG
REAL, ALLOCATABLE, DIMENSION(:,:) :: SIGMA,SIGMS,DIFF,FUNKNO,
1 SUNKNO,FLXMER,ZLEAK,ALB1,ALB2,WORK
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: SIGT,SIGW
REAL, ALLOCATABLE, DIMENSION(:,:,:,:) :: SUNMER
LOGICAL, ALLOCATABLE, DIMENSION(:) :: LFISS
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(NPSYS(NGCOND))
ALLOCATE(SIGMA(0:NBMIX2,ISCAT+1),SIGMD(0:NBMIX2),COURIN(NGCOND),
1 COUROW(NGCOND),VOLMER(NMERGE),SIGW(NMERGE,NGCOND,ISCAT+1),
2 FLXMER(NMERGE,NGCOND),DIFF(NMERGE,NGCOND),ZLEAK(NMERGE,NGCOND),
3 SUNMER(NMERGE,NGCOND,NGCOND,ISCAT),FUNKNO(NUN2,NGCOND),
4 SUNKNO(NUN2,NGCOND),FACTOR(NMERGE),OUTG1(NGCOND),OUTG2(NGCOND),
5 SNORM(NGCOND),ALB1(NALBP,NGCOND),ALB2(NALBP,NGCOND),
6 LFISS(NMERGE))
*----
* CALCULATION OF THE REFERENCE MERGED/CONDENSED SET OF CROSS SECTIONS
*----
IF(NALBP.GT.1) CALL XABORT('SPHEQU: NALBP<=1 EXPECTED.')
CALL LCMGET(IPMACR,'STATE-VECTOR',IPAR)
NL=IPAR(3)
NIFISS=IPAR(4)
ILEAKS=IPAR(9)
NW=MAX(1,IPAR(10))
IF(IPAR(2).NE.NMERGE) THEN
CALL XABORT('SPHEQU: INVALID VALUE OF NMERGE.')
ELSE IF(IPAR(8).NE.NALBP) THEN
CALL XABORT('SPHEQU: INVALID VALUE OF NALBP.')
ENDIF
ALLOCATE(SIGT(NMERGE,NGCOND,NW+1),SIGMS(0:NBMIX2,NW+1))
CALL SPHMAC(IPMACR,IPRINT,NMERGE,NALBP,NGCOND,ISCAT,NW,NIFISS,
1 ILEAKS,VOLMER,FLXMER,SUNMER,SIGT,SIGW,DIFF,ZLEAK,OUTG2,ALB2,
2 LFISS)
*
DO 30 INL=1,ISCAT
DO 20 IGR=1,NGCOND
DO 10 IKK=1,NMERGE
SUNMER(IKK,IGR,IGR,INL)=SUNMER(IKK,IGR,IGR,INL)-SIGW(IKK,IGR,INL)
10 CONTINUE
20 CONTINUE
30 CONTINUE
LDIFF=.FALSE.
NLF=0
NANI=0
IF((NSPH.EQ.4).AND.((CDOOR.EQ.'BIVAC').OR.(CDOOR.EQ.'TRIVAC')))
> THEN
* TRANSPORT-DIFFUSION EQUIVALENCE.
IF(.NOT.C_ASSOCIATED(IPTRK2)) THEN
CALL XABORT('SPHEQU: MACRO-TRACKING NOT DEFINED(1).')
ENDIF
CALL LCMGET(IPTRK2,'STATE-VECTOR',IPAR)
IF(CDOOR.EQ.'BIVAC') THEN
NLF=IPAR(14)
NANI=IPAR(16)
ELSE IF(CDOOR.EQ.'TRIVAC') THEN
NLF=IPAR(30)
NANI=IPAR(32)
ENDIF
LDIFF=(NLF.EQ.0).OR.(NANI.LT.0)
NANI=ABS(NANI)
IF(NANI.GT.ISCAT) CALL XABORT('SPHEQU: ISCAT OVERFLOW.')
IF(LDIFF) THEN
IF(ILEAKS.EQ.0) CALL XABORT('SPHEQU: UNABLE TO COMPUTE DIFF'
> //'USION COEFFICIENTS.')
ENDIF
ENDIF
IF(NLF.EQ.0) NANI=1
*----
* RECOVER THE AVERAGED GAP AND ROW FLUXES FOR EDF-TYPE NORMALIZATION.
*----
IF(KSPH.GE.2) THEN
CALL LCMLEN(IPMACR,'ADF',ILONG,ITYLCM)
IF(ILONG.EQ.0) THEN
CALL LCMLIB(IPMACR)
CALL XABORT('SPHEQU: NO ADF DIRECTORY IN THE MACROLIB.')
ENDIF
IPADF=LCMDID(IPMACR,'ADF')
ENDIF
IF((KSPH.EQ.2).OR.(KSPH.EQ.5)) THEN
CALL LCMLEN(IPADF,'ALBS00',ILONG,ITYLCM)
IF(ILONG.NE.2*NGCOND) THEN
WRITE(HSMG,'(26HSPHEQU: BAD ALBS00 LENGTH=,I5,10H EXPECTED=,
> I5,1H.)') ILONG,2*NGCOND
CALL XABORT(HSMG)
ENDIF
ALLOCATE(WORK(NGCOND,2))
CALL LCMGET(IPADF,'ALBS00',WORK)
COURIN(:NGCOND)=WORK(:NGCOND,1)
DEALLOCATE(WORK)
IF(IPRINT.GT.3) THEN
WRITE(6,'(/45H SPHEQU: THE VALUES OF ALBS PER MACRO-GROUPS ,
> 3HARE)')
WRITE(6,'(1X,1P,10E13.5)') (COURIN(IGR),IGR=1,NGCOND)
ENDIF
ELSE IF((KSPH.EQ.3).OR.(KSPH.EQ.6)) THEN
CALL LCMLEN(IPADF,'FD_B',ILONG,ITYLCM)
IF(ILONG.NE.NMERGE*NGCOND) THEN
CALL LCMLIB(IPADF)
WRITE(HSMG,'(24HSPHEQU: BAD FD_B LENGTH=,I5,10H EXPECTED=,
> I5,5H (1).)') ILONG,NMERGE*NGCOND
CALL XABORT(HSMG)
ENDIF
ALLOCATE(WORK(NMERGE,NGCOND))
CALL LCMGET(IPADF,'FD_B',WORK)
DO IGR=1,NGCOND
VOLTOT=0.0D0
FLXTOT=0.0D0
DO IKK=1,NMERGE
VOLTOT=VOLTOT+VOLMER(IKK)
FLXTOT=FLXTOT+WORK(IKK,IGR)*VOLMER(IKK)
ENDDO
COURIN(IGR)=REAL(FLXTOT/VOLTOT)
ENDDO
DEALLOCATE(WORK)
IF(IPRINT.GT.3) THEN
WRITE(6,'(/45H SPHEQU: THE VALUES OF FD_B PER MACRO-GROUPS ,
> 3HARE)')
WRITE(6,'(1X,1P,10E13.5)') (COURIN(IGR),IGR=1,NGCOND)
ENDIF
ELSE IF(KSPH.EQ.4) THEN
CALL LCMLEN(IPADF,'FD_B',ILONG,ITYLCM)
IF(ILONG.NE.NMERGE*NGCOND) THEN
WRITE(HSMG,'(24HSPHEQU: BAD FD_B LENGTH=,I5,10H EXPECTED=,
> I5,5H (2).)') ILONG,NMERGE*NGCOND
CALL XABORT(HSMG)
ENDIF
ALLOCATE(WORK(NMERGE,NGCOND))
CALL LCMGET(IPADF,'FD_B',WORK)
DO IGR=1,NGCOND
VOLTOT=0.0D0
FLXTOT=0.0D0
DO IKK=1,NMERGE
VOLTOT=VOLTOT+VOLMER(IKK)
FLXTOT=FLXTOT+WORK(IKK,IGR)*VOLMER(IKK)
ENDDO
COURIN(IGR)=REAL(FLXTOT/VOLTOT)
ENDDO
CALL LCMLEN(IPADF,'FD_H',ILONG,ITYLCM)
IF(ILONG.NE.NMERGE*NGCOND) THEN
WRITE(HSMG,'(24HSPHEQU: BAD FD_H LENGTH=,I5,10H EXPECTED=,
> I5,1H.)') ILONG,NMERGE*NGCOND
CALL XABORT(HSMG)
ENDIF
CALL LCMGET(IPADF,'FD_H',WORK)
DO IGR=1,NGCOND
VOLTOT=0.0D0
FLXTOT=0.0D0
DO IKK=1,NMERGE
VOLTOT=VOLTOT+VOLMER(IKK)
FLXTOT=FLXTOT+WORK(IKK,IGR)*VOLMER(IKK)
ENDDO
COUROW(IGR)=REAL(FLXTOT/VOLTOT)
ENDDO
DEALLOCATE(WORK)
IF(IPRINT.GT.3) THEN
WRITE(6,'(/45H SPHEQU: THE VALUES OF FD_B PER MACRO-GROUPS ,
> 3HARE)')
WRITE(6,'(1X,1P,10E13.5)') (COURIN(IGR),IGR=1,NGCOND)
WRITE(6,'(/45H SPHEQU: THE VALUES OF FD_H PER MACRO-GROUPS ,
> 3HARE)')
WRITE(6,'(1X,1P,10E13.5)') (COUROW(IGR),IGR=1,NGCOND)
ENDIF
ENDIF
*----
* ITERATIVE STRATEGY USED TO COMPUTE THE SPH FACTORS
*----
IPRIN2=MAX(0,IPRINT-5)
CALL LCMOP(IPSYS2,'SPH$SYS',0,1,0)
JPSYS2=LCMLID(IPSYS2,'GROUP',NGCOND)
*----
* REMOVE DB2 LEAKAGE FROM SOURCES
*----
IF(ILEAKS.NE.0) THEN
DO 50 IGR=1,NGCOND
DO 40 IKK=1,NMERGE
SUNMER(IKK,IGR,IGR,1)=SUNMER(IKK,IGR,IGR,1)-ZLEAK(IKK,IGR)
40 CONTINUE
50 CONTINUE
ENDIF
*----
* SET SPH NORMALIZATION INFORMATION
*----
IF(KSPH.LT.0) THEN
* ASYMPTOTIC NORMALIZATION WITH RESPECT TO MIXTURE -KSPH.
DO 70 IGR=1,NGCOND
VOLTOT=0.0D0
FLXTOT=0.0D0
DO 60 IKK=1,NMERGE
IF(IKK.EQ.-KSPH) THEN
VOLTOT=VOLTOT+VOLMER(IKK)
FLXTOT=FLXTOT+FLXMER(IKK,IGR)*VOLMER(IKK)
ENDIF
60 CONTINUE
IF(VOLTOT.EQ.0.0) CALL XABORT('SPHEQU: ASYMPTOTIC NORMALIZATI'
> //'ON FAILURE.')
COURIN(IGR)=REAL(FLXTOT/VOLTOT)
SPH(:NMERGE,IGR)=1.0
70 CONTINUE
IF(IPRINT.GT.3) THEN
WRITE(6,910) (COURIN(IGR),IGR=1,NGCOND)
WRITE(6,'(/)')
ENDIF
ELSE IF(KSPH.EQ.1) THEN
* AVERAGE FLUX NORMALIZATION.
DO 90 IGR=1,NGCOND
VOLTOT=0.0D0
FLXTOT=0.0D0
DO 80 IKK=1,NMERGE
VOLTOT=VOLTOT+VOLMER(IKK)
FLXTOT=FLXTOT+FLXMER(IKK,IGR)*VOLMER(IKK)
80 CONTINUE
COURIN(IGR)=REAL(FLXTOT/VOLTOT)
90 CONTINUE
IF(IPRINT.GT.3) THEN
WRITE(6,910) (COURIN(IGR),IGR=1,NGCOND)
WRITE(6,'(/)')
ENDIF
ELSE IF((KSPH.EQ.2).OR.(KSPH.EQ.3).OR.(KSPH.EQ.5)) THEN
* SELENGUT NORMALIZATION.
DO 120 IGR=1,NGCOND
VOLTOT=0.0D0
FLXTOT=0.0D0
DO 100 IKK=1,NMERGE
VOLTOT=VOLTOT+VOLMER(IKK)
FLXTOT=FLXTOT+FLXMER(IKK,IGR)*VOLMER(IKK)
100 CONTINUE
FLXTOT=FLXTOT/VOLTOT
DO 110 IKK=1,NMERGE
SPH(IKK,IGR)=REAL(FLXTOT)/COURIN(IGR)
110 CONTINUE
120 CONTINUE
ELSE IF(KSPH.EQ.4) THEN
* GENERALIZED SELENGUT NORMALIZATION (EDF-TYPE).
DO 150 IGR=1,NGCOND
VOLTOT=0.0D0
FLXTOT=0.0D0
DO 130 IKK=1,NMERGE
VOLTOT=VOLTOT+VOLMER(IKK)
FLXTOT=FLXTOT+FLXMER(IKK,IGR)*VOLMER(IKK)
130 CONTINUE
FLXTOT=FLXTOT/VOLTOT
DO 140 IKK=1,NMERGE
SPH(IKK,IGR)=COUROW(IGR)/COURIN(IGR)
140 CONTINUE
COURIN(IGR)=COURIN(IGR)*REAL(FLXTOT)/COUROW(IGR)
150 CONTINUE
ELSE IF(KSPH.EQ.6) THEN
* MACRO-CALCULATION WATER GAP NORMALIZATION.
* COUROW = flux in gap in diffusion, initialized to flux in gap in transport
* FUNKNO = FLXMER : flux in diffusion, initialized to flux in transport
DO 160 IGR=1,NGCOND
COUROW(IGR)=COURIN(IGR)
SPH(:NMERGE,IGR)=1.0
160 CONTINUE
ELSE IF(KSPH.EQ.7) THEN
* AVERAGE FLUX NORMALIZATION IN FISSILE ZONES.
DO 180 IGR=1,NGCOND
VOLTOT=0.0D0
FLXTOT=0.0D0
DO 170 IKK=1,NMERGE
IF(LFISS(IKK)) THEN
VOLTOT=VOLTOT+VOLMER(IKK)
FLXTOT=FLXTOT+FLXMER(IKK,IGR)*VOLMER(IKK)
ENDIF
170 CONTINUE
COURIN(IGR)=REAL(FLXTOT/VOLTOT)
180 CONTINUE
IF(IPRINT.GT.3) THEN
WRITE(6,910) (COURIN(IGR),IGR=1,NGCOND)
WRITE(6,'(/)')
ENDIF
ENDIF
IF((NSPH.EQ.2).AND.(KSPH.NE.5)) GO TO 470
*----
* SPH ITERATIONS.
*----
ITER=0
IF(C_ASSOCIATED(IPFLX)) THEN
CALL LCMGET(IPFLX,'STATE-VECTOR',IPAR)
IF(IPAR(1).NE.NGCOND) CALL XABORT('SPHEQU: INVALID NB OF GROUP'
1 //'S IN THE INITIALIZATION FLUX.')
IF(IPAR(2).NE.NUN2) CALL XABORT('SPHEQU: INVALID NB OF UNKNOWN'
1 //'S IN THE INITIALIZATION FLUX.')
JPFLX=LCMGID(IPFLX,'FLUX')
DO 190 IGR=1,NGCOND
CALL LCMGDL(JPFLX,IGR,FUNKNO(1,IGR))
190 CONTINUE
ITER=1
ELSE IF((CDOOR.EQ.'BIVAC').OR.(CDOOR.EQ.'TRIVAC')) THEN
DO 200 IGR=1,NGCOND
FUNKNO(:NUN2,IGR)=1.0
200 CONTINUE
ELSE
DO 220 IGR=1,NGCOND
FUNKNO(:NUN2,IGR)=0.0
DO 210 IREG=1,NREG2
IMAT=MAT2(IREG)
IF(IMAT.GT.0) FUNKNO(KEY2(IREG),IGR)=FLXMER(MERG2(IMAT),IGR)
210 CONTINUE
220 CONTINUE
ENDIF
OLDERR=1.0
NBIERR=0
230 ITER=ITER+1
IF(ITER.GE.MAXIT) THEN
WRITE(6,'(/46H SPHEQU: MAX. NUMBER OF ITERATIONS IS REACHED.)')
GO TO 440
ENDIF
ERROR=0.0
ERR2=0.0
DO 240 IREG=1,NREG2
IF(MAT2(IREG).GT.NBMIX2) THEN
CALL XABORT('SPHEQU: INVALID MACRO-MIXTURE INDEX.')
ENDIF
240 CONTINUE
*----
* SET MACROSCOPIC CROSS SECTIONS IN THE IPSYS2 LCM OBJECT.
*----
NPSYS(:NGCOND)=0
DO 310 IGR=IGRMIN,IGRMAX
SIGMS(0:NBMIX2,:NW+1)=0.0
SIGMA(0:NBMIX2,:ISCAT+1)=0.0
SIGMD(0:NBMIX2)=0.0
DO 280 IREG=1,NREG2
IMAT=MAT2(IREG)
IF(IMAT.EQ.0) GO TO 280
IMERG=MERG2(IMAT)
IF(LDIFF) SIGMD(IMAT)=DIFF(IMERG,IGR)*SPH(IMERG,IGR)
IF(IMC.EQ.1) THEN
SIGMA(IMAT,1)=SIGW(IMERG,IGR,1)*SPH(IMERG,IGR)
DO 250 IW=1,NW+1
IF(MOD(IW-1,2).EQ.0) THEN
SIGMS(IMAT,IW)=SIGT(IMERG,IGR,IW)*SPH(IMERG,IGR)
ELSE IF(MOD(IW-1,2).EQ.1) THEN
SIGMS(IMAT,IW)=SIGT(IMERG,IGR,IW)/SPH(IMERG,IGR)
ENDIF
250 CONTINUE
ELSE IF(IMC.EQ.2) THEN
* TRANSPORT-PIJ EQUIVALENCE WITHOUT BELL FACTOR ACCELERATION.
SIGMA(IMAT,1)=SIGW(IMERG,IGR,1)*SPH(IMERG,IGR)+SIGT(IMERG,IGR,1)
> *(1.0-SPH(IMERG,IGR))
DO 260 IW=1,NW+1
SIGMS(IMAT,IW)=SIGT(IMERG,IGR,IW)
260 CONTINUE
ELSE IF(IMC.EQ.3) THEN
* TRANSPORT-PIJ EQUIVALENCE WITH BELL FACTOR ACCELERATION.
SIGMA(IMAT,1)=0.0
DO 270 IW=1,NW+1
SIGMS(IMAT,IW)=SIGT(IMERG,IGR,IW)
270 CONTINUE
ENDIF
280 CONTINUE
NPSYS(IGR)=IGR
KPSYS2=LCMDIL(JPSYS2,IGR)
DO 290 IW=1,MIN(NW+1,10)
IF(IW.EQ.1) THEN
TEXT12='DRAGON-TXSC'
ELSE
WRITE(TEXT12,'(8HDRAGON-T,I1,3HXSC)') IW-1
ENDIF
CALL LCMPUT(KPSYS2,TEXT12,NBMIX2+1,2,SIGMS(0,IW))
290 CONTINUE
CALL LCMPUT(KPSYS2,'DRAGON-S0XSC',NBMIX2+1,2,SIGMA(0,1))
IF(LDIFF) THEN
SIGMD(0)=1.0E10
CALL LCMPUT(KPSYS2,'DRAGON-DIFF',NBMIX2+1,2,SIGMD(0))
ENDIF
*----
* SPH CORRECTION OF PHYSICAL ALBEDOS
*----
IF(NALBP.GT.0) THEN
DO 300 IAL=1,NALBP
FACT=0.5*(1.0-ALB2(IAL,IGR))/(1.0+ALB2(IAL,IGR))*
1 SPH(NMERGE+IAL,IGR)
ALB1(IAL,IGR)=(1.0-2.0*FACT)/(1.0+2.0*FACT)
300 CONTINUE
CALL LCMPUT(KPSYS2,'ALBEDO',NALBP,2,ALB1(1,IGR))
ENDIF
310 CONTINUE
*----
* ASSEMBLY OF PIJ OR SYSTEM MATRICES AT ITERATION ITER.
*----
IF(.NOT.C_ASSOCIATED(IPTRK2)) THEN
CALL XABORT('SPHEQU: MACRO-TRACKING NOT DEFINED(2).')
ENDIF
ISTRM=1
KNORM=1
IPHASE=2
IF(NSPH.EQ.4) IPHASE=1
IF(IPHASE.EQ.2) THEN
IPIJK=1
ITPIJ=1
LNORM=.FALSE.
CALL DOORPV(CDOOR,JPSYS2,NPSYS,IPTRK2,IFTRAK,IPRIN2,NGCOND,
> NREG2,NBMIX2,NANI,MAT2,VOL2,KNORM,IPIJK,ILK,ITPIJ,LNORM,
> CTITRE,NALBP)
ELSE
CALL DOORAV(CDOOR,JPSYS2,NPSYS,IPTRK2,IFTRAK,IPRIN2,NGCOND,
> NREG2,NBMIX2,NANI,NW,MAT2,VOL2,KNORM,ILK,CTITRE,NALBP,ISTRM)
ENDIF
*----
* TRANSPORT-PIJ EQUIVALENCE WITH BELL FACTOR ACCELERATION.
*----
IF(IMC.EQ.3) THEN
CALL SPHTRA(JPSYS2,ITER,NPSYS,KSPH,NREG2,NUN2,NMERGE,NALBP,
1 NGCOND,SUNMER(1,1,1,1),FLXMER,NBMIX2,MAT2,VOL2,KEY2,MERG2,SPH,
2 SIGW(1,1,1),SIGT(1,1,1),COURIN,FUNKNO)
SNORM(:NGCOND)=1.0
GO TO 390
ENDIF
*----
* MACRO-FLUX CALCULATION AT ITERATION ITER.
*----
ALLOCATE(SIGG(0:NBMIX2))
DO IGR=1,NGCOND
SUNKNO(:NUN2,IGR)=0.0
IF(NPSYS(IGR).EQ.0) CYCLE
IF(ITER.EQ.1) THEN
SIGG(0)=0.0
DO IBM=1,NBMIX2
PV=0.0
DO JGR=1,NGCOND
PV=PV+SUNMER(MERG2(IBM),JGR,IGR,1)*FLXMER(MERG2(IBM),JGR)
ENDDO ! JGR
SIGG(IBM)=PV
ENDDO ! IBM
CALL DOORS(CDOOR,IPTRK2,NBMIX2,0,NUN2,SIGG,SUNKNO(1,IGR))
ELSE
DO JGR=1,NGCOND
SIGG(0)=0.0
DO IBM=1,NBMIX2
SIGG(IBM)=SUNMER(MERG2(IBM),JGR,IGR,1)*SPH(MERG2(IBM),JGR)
ENDDO ! IBM
CALL DOORS(CDOOR,IPTRK2,NBMIX2,0,NUN2,SIGG,SUNKNO(1,IGR),
1 FUNKNO(1,JGR))
ENDDO
ENDIF
ENDDO ! IGR
DEALLOCATE(SIGG)
*----
* COMPUTE THE MACRO-FLUX USING THE VECTORIAL DOOR.
*----
IDIR=0
IPSOU=C_NULL_PTR
LEXAC=.FALSE.
REBFLG=.FALSE.
CALL DOORFV(CDOOR,JPSYS2,NPSYS,IPTRK2,IFTRAK,IPRIN2,NGCOND,
1 NBMIX2,IDIR,NREG2,NUN2,IPHASE,LEXAC,MAT2,VOL2,KEY2,CTITRE,
2 SUNKNO,FUNKNO,IPMACR,IPSOU,REBFLG)
*----
* COMPUTE MACRO-CALCULATION LEAKAGE RATES IF NALBP.GT.0
*----
IF(NALBP.GT.0) THEN
DO 340 IGR=1,NGCOND
OUTG1(IGR)=0.0
DO 330 K=1,NREG2
L=MAT2(K)
IF(L.EQ.0) GO TO 330
IUN=KEY2(K)
IF(VOL2(K).EQ.0.0) GO TO 330
IKK=MERG2(L)
OUTG1(IGR)=OUTG1(IGR)+(SIGW(IKK,IGR,1)-SIGT(IKK,IGR,1))*
> FUNKNO(IUN,IGR)*VOLMER(IKK)*SPH(IKK,IGR)
DO 320 JGR=1,NGCOND
OUTG1(IGR)=OUTG1(IGR)+SUNMER(IKK,JGR,IGR,1)*FUNKNO(IUN,JGR)*
> VOLMER(IKK)*SPH(IKK,JGR)
320 CONTINUE
330 CONTINUE
IF(IPRIN2.GT.0) WRITE(6,920) IGR,OUTG1(IGR)
340 CONTINUE
ENDIF
*----
* MACRO-FLUX NORMALIZATION.
*----
IF(ILK.AND.(NALBP.EQ.0)) GO TO 390
SNORM(:NGCOND)=1.0
IF(KSPH.LT.0) THEN
* ASYMTTOTIC NORMALIZATION WITH RESPECT TO MIXTURE -KSPH.
IF(-KSPH.GT.NMERGE) CALL XABORT('SPHEQU: INVALID ASYMPTOTIC M'
> //'IXTURE SET.')
DO 360 IGR=1,NGCOND
IF(NPSYS(IGR).EQ.0) GO TO 360
VOLTOT=0.0D0
FLXTOT=0.0D0
DO 350 IREG=1,NREG2
IMAT=MAT2(IREG)
IF(IMAT.EQ.0) GO TO 350
IF(MERG2(IMAT).EQ.-KSPH) THEN
VOLTOT=VOLTOT+VOL2(IREG)
FLXTOT=FLXTOT+FUNKNO(KEY2(IREG),IGR)*VOL2(IREG)
ENDIF
350 CONTINUE
IF(VOLTOT.GT.0) THEN
FLXTOT=FLXTOT/VOLTOT
FFF=COURIN(IGR)/REAL(FLXTOT)
ELSE
FFF=1.0
ENDIF
SNORM(IGR)=FFF
IF(IPRIN2.GT.0) WRITE(6,960) IGR,FFF
360 CONTINUE
ELSE
* AVERAGE OR SELENGUT FLUX NORMALIZATION.
DO 380 IGR=1,NGCOND
IF(NPSYS(IGR).EQ.0) GO TO 380
VOLTOT=0.0D0
FLXTOT=0.0D0
DO 370 IREG=1,NREG2
IMAT=MAT2(IREG)
IF(IMAT.EQ.0) GO TO 370
IMERG=MERG2(IMAT)
IF((KSPH.NE.7).OR.LFISS(IMERG)) THEN
VOLTOT=VOLTOT+VOL2(IREG)
FLXTOT=FLXTOT+FUNKNO(KEY2(IREG),IGR)*VOL2(IREG)
ENDIF
370 CONTINUE
FLXTOT=FLXTOT/VOLTOT
IF(IPRINT.GE.100) THEN
WRITE(6,*)'FLXTOT: =',FLXTOT,'VOLTOT: =',VOLTOT
ENDIF
IF(KSPH.NE.6) THEN
SNORM(IGR)=COURIN(IGR)/REAL(FLXTOT)
ELSE
* Compute diffusion flux in water gap => COUROW(IGR)
IF(CDOOR.NE.'TRIVAC') CALL XABORT('SPHEQU: TRIVAC expected'
1 //' as tracking module with SELE-GAP')
CALL SPHGAP(IPTRK2,IPRINT,NREG2,NUN2,MAT2,KEY2,FUNKNO(1,IGR),
1 COUROW(IGR))
IF(IPRINT.GE.100) THEN
WRITE(6,*)'COURIN: =',COURIN(IGR),'COUROW: =',COUROW(IGR)
ENDIF
SNORM(IGR)=COURIN(IGR)/COUROW(IGR)
ENDIF
IF(IPRIN2.GT.0) WRITE(6,960) IGR,SNORM(IGR)
380 CONTINUE
ENDIF
*----
* COMPUTE THE IMPROVED SPH FACTORS.
*----
390 ALLOCATE(SPHNEW(NMERGE+NALBP))
DO 430 IGR=1,NGCOND
IF(NPSYS(IGR).EQ.0) GO TO 430
VOLMER(:NMERGE)=0.0
FACTOR(:NMERGE)=0.0
SPHNEW(:NMERGE+NALBP)=1.0
DO 400 IREG=1,NREG2
IMAT=MAT2(IREG)
IF(IMAT.EQ.0) GO TO 400
IKK=MERG2(IMAT)
VOLMER(IKK)=VOLMER(IKK)+VOL2(IREG)
FACTOR(IKK)=FACTOR(IKK)+FUNKNO(KEY2(IREG),IGR)*VOL2(IREG)
400 CONTINUE
DO 410 IKK=1,NMERGE
IF(VOLMER(IKK).EQ.0.0) GO TO 410
FACTOR(IKK)=FACTOR(IKK)/VOLMER(IKK)
SPHNEW(IKK)=FLXMER(IKK,IGR)/(SNORM(IGR)*FACTOR(IKK))
IF(SPHNEW(IKK).LT.0.0) THEN
WRITE(6,980) IGR,IKK
SPHNEW(IKK)=1.0
ENDIF
410 CONTINUE
IF(NALBP.EQ.1) SPHNEW(NMERGE+1)=OUTG1(IGR)/(OUTG2(IGR)*SNORM(IGR))
DO 420 IKK=1,NMERGE+NALBP
ERRT=ABS((SPHNEW(IKK)-SPH(IKK,IGR))/SPHNEW(IKK))
ERR2=ERR2+ERRT*ERRT
ERROR=MAX(ERROR,ERRT)
SPH(IKK,IGR)=SPHNEW(IKK)
420 CONTINUE
IF(IPRINT.GT.4) THEN
WRITE(6,930) 'NSPH',IGR,(SPH(IKK,IGR),IKK=1,NMERGE+NALBP)
ENDIF
IF(IPRINT.GT.5) THEN
WRITE(6,930) 'FUNKNO',IGR,(FUNKNO(IUNK,IGR),IUNK=1,NUN2)
ENDIF
430 CONTINUE
DEALLOCATE(SPHNEW)
ERR2=SQRT(ERR2/(NMERGE*NGCOND))
IF(IPRINT.GT.1) WRITE(6,935) ITER,ERROR,ERR2
IF(IPRINT.GT.2) THEN
IF(ERROR.GE.EPSPH) WRITE(6,940) ((IKK,IGR,SPH(IKK,IGR),
> IKK=1,NMERGE+NALBP),IGR=1,NGCOND)
ENDIF
IF(ERR2.LT.EPSPH) GO TO 440
IF((ITER.GT.1).AND.(ERR2.GT.OLDERR)) THEN
WRITE(6,970) ITER
NBIERR=NBIERR+1
IF(NBIERR.GE.MAXNBI) THEN
WRITE(6,990) ITER
GO TO 440
ENDIF
ENDIF
OLDERR=ERR2
GO TO 230
440 WRITE(6,950) ITER
*----
* RESET SOURCES TO NO DB2 LEAKAGE
*----
IF(ILEAKS.NE.0) THEN
DO 460 IGR=1,NGCOND
DO 450 IKK=1,NMERGE
SUNMER(IKK,IGR,IGR,1)=SUNMER(IKK,IGR,IGR,1)+ZLEAK(IKK,IGR)
450 CONTINUE
460 CONTINUE
ENDIF
CALL LCMCL(IPSYS2,2)
*----
* SCRATCH STORAGE DEALLOCATION
*----
470 DEALLOCATE(LFISS,ALB2,ALB1,SNORM,OUTG2,OUTG1,FACTOR,SUNKNO,
1 FUNKNO,SUNMER,ZLEAK,DIFF,FLXMER,SIGW,SIGT,VOLMER,COUROW,COURIN,
2 SIGMD,SIGMS,SIGMA)
DEALLOCATE(NPSYS)
RETURN
*
910 FORMAT(/44H SPHEQU: AVERAGE FLUXES PER MACRO-GROUPS ARE/
> (1X,1P,10E13.5))
920 FORMAT(/8H SPHEQU:,5X,6HGROUP=,I4,15H MACRO LEAKAGE=,1P,E12.4)
930 FORMAT(/26H SPHEQU: VALUES OF VECTOR ,A,9H IN GROUP,I5,4H ARE/
> (1X,1P,10E13.5))
935 FORMAT(/14H SPHEQU: ITER=,I3,4X,6HERROR=,1P,E10.3,1X,6HERR 2=,
> E10.3)
940 FORMAT(4X,4HSPH(,I3,1H,,I3,2H)=,F9.5,:,4X,4HSPH(,I3,1H,,I3,2H)=,
> F9.5,:,4X,4HSPH(,I3,1H,,I3,2H)=,F9.5,:,4X,4HSPH(,I3,1H,,I3,2H)=,
> F9.5,:,4X,4HSPH(,I3,1H,,I3,2H)=,F9.5)
950 FORMAT(/40H SPHEQU: ENDING OF SPH CONVERGENCE AFTER,I5,
> 12H ITERATIONS.)
960 FORMAT(/43H SPHEQU: FLUX NORMALIZATION FACTOR IN GROUP,I4,1H=,1P,
1 E13.5)
970 FORMAT(1X,'Warning: oscillations in SPH at iteration ',i10)
980 FORMAT(1X,'Warning: negative SPH factor in group ',i5,
> ' and region ',i5,' set to 1.0')
990 FORMAT(1X,'Warning: maximum of 3 error oscillations ',
>'in SPH convergence reached at iteration ',i10)
END
|