summaryrefslogtreecommitdiff
path: root/Dragon/src/SNTT2D.f
blob: e5cdd857474f682d22651e78957ab16f41d6bfaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
*DECK SNTT2D
      SUBROUTINE SNTT2D (IGE,IMPX,LX,LY,SIDE,IELEM,NLF,NPQ,NSCT,IQUAD,
     1 NCODE,ZCODE,MAT,XXX,YYY,VOL,IDL,DU,DE,W,MRM,MRMY,DB,DA,DAL,PL,
     2 LL4,NUN,EELEM,WX,WE,CST,IBFP,ISCHM,ESCHM,IGLK,MN,DN,IL,IM,ISCAT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Numbering corresponding to a 2-D Cartesian or R-Z geometry with
* discrete ordinates approximation of the flux.
*
*Copyright:
* Copyright (C) 2005 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert and C. Bienvenue
*
*Parameters: input
* IGE     type of 2D geometry (=0 Cartesian; =1 R-Z; =2 Hexagonal).
* IMPX    print parameter.
* LX      number of elements along the X axis.
* LY      number of elements along the Y axis.
* SIDE    side of an hexagon.
* IELEM   measure of order of the spatial approximation polynomial:
*         =1 constant - only for HODD, classical diamond scheme 
*         (default for HODD);
*         =2 linear - default for DG;
*         =3 parabolic;
*         =4 cubic - only for DG.
* NLF     SN order for the flux (even number).
* NPQ     number of SN directions in four octants (including zero-weight
*         directions).
* NSCT    maximum number of spherical harmonics moments of the flux.
* IQUAD   type of SN quadrature (1 Level symmetric, type IQUAD;
*         4 Legendre-Chebyshev; 5 symmetric Legendre-Chebyshev;
*         6 quadruple range).
* NCODE   type of boundary condition applied on each side
*         (i=1 X-;  i=2 X+;  i=3 Y-;  i=4 Y+):
*         =1: VOID; =2: REFL; =4: TRAN.
* ZCODE   ZCODE(I) is the albedo corresponding to boundary condition
*         'VOID' on each side (ZCODE(I)=0.0 by default).
* MAT     mixture index assigned to each element.
* XXX     Cartesian coordinates along the X axis.
* YYY     Cartesian coordinates along the Y axis.
* EELEM   measure of order of the energy approximation polynomial:
*         =1 constant - default for HODD;
*         =2 linear - default for DG;
*         >3 higher orders.
* IBFP    type of energy proparation relation:
*         =0 no Fokker-Planck term;
*         =1 Galerkin type;
*         =2 heuristic Przybylski and Ligou type.
* ISCHM   method of spatial discretisation:
*         =1 High-Order Diamond Differencing (HODD) - default;
*         =2 Discontinuous Galerkin finite element method (DG);
*         =3 Adaptive weighted method (AWD).
* ESCHM   method of energy discretisation:
*         =1 High-Order Diamond Differencing (HODD) - default;
*         =2 Discontinuous Galerkin finite element method (DG);
*         =3 Adaptive weighted method (AWD).
* IGLK    angular interpolation type:
*         =0 classical SN method.
*         =1 Galerkin quadrature method (M = inv(D))
*         =2 Galerkin quadrature method (D = inv(M))
* ISCAT   maximum number of spherical harmonics moments of the flux.
*
*Parameters: output
* VOL     volume of each element.
* IDL     isotropic flux indices.
* DU      first direction cosines ($\\mu$).
* DE      second direction cosines ($\\eta$).
* W       weights.
* MRM     quadrature index.
* MRMY    quadrature index.
* DB      diamond-scheme parameter.
* DA      diamond-scheme parameter.
* DAL     diamond-scheme angular redistribution parameter.
* PL      discrete values of the spherical harmonics corresponding
*         to the 2D SN quadrature.
* LL4     number of unknowns being solved for, over the domain. This 
*         includes the various moments of the isotropic (and if present,
*         anisotropic) flux. 
* NUN     total number of unknowns stored in the FLUX vector per group.
*         This includes LL4 (see above) as well as any surface boundary
*         fluxes, if present.
* WX      spatial closure relation weighting factors.
* WE      energy closure relation weighting factors.
* CST     constants for the polynomial approximations.
* MN      moment-to-discrete matrix.
* DN      discrete-to-moment matrix.
* IL      indexes (l) of each spherical harmonics in the
*         interpolation basis.
* IM      indexes (m) of each spherical harmonics in the
*         interpolation basis.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER IGE,IMPX,LX,LY,IELEM,NLF,NPQ,NSCT,IQUAD,NCODE(4),
     1 MAT(LX,LY),IDL(LX*LY),MRM(NPQ),MRMY(NPQ),LL4,NUN,EELEM,IBFP,
     2 ISCHM,ESCHM,IL(NSCT),IM(NSCT),ISCAT,IGLK
      REAL ZCODE(4),VOL(LX,LY),XXX(LX+1),YYY(LY+1),DU(NPQ),DE(NPQ),
     1 W(NPQ),DB(LX,NPQ),DA(LX,LY,NPQ),DAL(LX,LY,NPQ),PL(NSCT,NPQ),
     2 WX(IELEM+1),WE(EELEM+1),CST(MAX(IELEM,EELEM)),MN(NPQ,NSCT),
     3 DN(NSCT,NPQ)
*----
*  LOCAL VARIABLES
*----
      CHARACTER HSMG*131
      LOGICAL L1,L2,L3,L4
      PARAMETER(RLOG=1.0E-8,PI=3.141592654)
      REAL PX,PE
      DOUBLE PRECISION NORM,IPROD
      INTEGER, ALLOCATABLE, DIMENSION(:) :: JOP
      REAL, ALLOCATABLE, DIMENSION(:) :: XX,YY,UU,WW,TPQ,UPQ,VPQ,WPQ
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: V,V2
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: U,MND
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: RLM
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(XX(LX),YY(LY))
*----
*  UNFOLD FOUR-OCTANT QUADRATURES.
*----
      IF(MOD(NLF,2).EQ.1) CALL XABORT('SNTT2D: EVEN NLF EXPECTED.')
      IF(IQUAD.EQ.10) THEN
         NPQ0=NLF**2/4
      ELSE
         NPQ0=NLF*(NLF/2+1)/4
      ENDIF
      ALLOCATE(JOP(NLF/2),UU(NLF/2),WW(NLF/2),TPQ(NPQ0),UPQ(NPQ0),
     1 VPQ(NPQ0),WPQ(NPQ0))
      IF(IQUAD.EQ.1) THEN
         CALL SNQU01(NLF,JOP,UU,WW,TPQ,UPQ,VPQ,WPQ)
      ELSE IF(IQUAD.EQ.2) THEN
         CALL SNQU02(NLF,JOP,UU,WW,TPQ,UPQ,VPQ,WPQ)
      ELSE IF(IQUAD.EQ.3) THEN
         CALL SNQU03(NLF,JOP,UU,WW,TPQ,UPQ,VPQ,WPQ)
      ELSE IF(IQUAD.EQ.4) THEN
         CALL SNQU04(NLF,JOP,UU,WW,TPQ,UPQ,VPQ,WPQ)
      ELSE IF(IQUAD.EQ.5) THEN
         UU(:NLF/2)=0.0
         CALL SNQU05(NLF,TPQ,UPQ,VPQ,WPQ)
      ELSE IF(IQUAD.EQ.6) THEN
         UU(:NLF/2)=0.0
         CALL SNQU06(NLF,TPQ,UPQ,VPQ,WPQ)
      ELSE IF(IQUAD.EQ.10) THEN
         CALL SNQU10(NLF,JOP,UU,WW,TPQ,UPQ,VPQ,WPQ)
      ELSE
         CALL XABORT('SNTT2D: UNKNOWN QUADRATURE TYPE.')
      ENDIF
            N=0
      IOF=0
      DO 30 I=1,NLF/2
         IF(IGLK.NE.0) THEN
            JOF = NLF-2*I+2
            KOF = (NLF+4)*NLF/4
         ELSE
            IOF=IOF+1
            JOF=IOF+NLF-2*I+2
            KOF=IOF+(NLF+4)*NLF/4
            MRM(IOF)=JOF
            MRMY(IOF)=KOF
            DU(IOF)=-SQRT(1.0-UU(I)*UU(I))
            DE(IOF)=-UU(I)
            W(IOF)=0.0
         ENDIF
         DO 10 J=0,NLF/2-I
            IOF=IOF+1
            KOF=IOF+(NLF+4)*NLF/4
            MRM(IOF)=JOF
            MRMY(IOF)=KOF
            DU(IOF)=-UPQ(N+J+1)
            DE(IOF)=-VPQ(N+J+1)
            W(IOF)=WPQ(N+J+1)
            JOF=JOF-1
   10    CONTINUE
            DO 20 J=NLF/2-I,0,-1
            IOF=IOF+1
            KOF=IOF+(NLF+4)*NLF/4
            MRM(IOF)=JOF
            MRMY(IOF)=KOF
            DU(IOF)=UPQ(N+J+1)
            DE(IOF)=-VPQ(N+J+1)
            W(IOF)=WPQ(N+J+1)
            JOF=JOF-1
   20    CONTINUE
         N=N+NLF/2-I+1
   30 CONTINUE
      N=0
      DO 60 I=1,NLF/2
         IF(IGLK.NE.0) THEN
            JOF=NLF-2*I+2
            KOF=-(NLF+4)*NLF/4
         ELSE
            IOF=IOF+1
            JOF=IOF+NLF-2*I+2
            KOF=IOF-(NLF+4)*NLF/4
            MRM(IOF)=JOF
            MRMY(IOF)=KOF
            DU(IOF)=-SQRT(1.0-UU(I)*UU(I))
            DE(IOF)=UU(I)
            W(IOF)=0.0
         ENDIF
         DO 40 J=0,NLF/2-I
            IOF=IOF+1
            KOF=IOF-(NLF+4)*NLF/4
            MRM(IOF)=JOF
            MRMY(IOF)=KOF
            DU(IOF)=-UPQ(N+J+1)
            DE(IOF)=VPQ(N+J+1)
            W(IOF)=WPQ(N+J+1)
            JOF=JOF-1
   40    CONTINUE
         DO 50 J=NLF/2-I,0,-1
            IOF=IOF+1
            KOF=IOF-(NLF+4)*NLF/4
            MRM(IOF)=JOF
            MRMY(IOF)=KOF
            DU(IOF)=UPQ(N+J+1)
            DE(IOF)=VPQ(N+J+1)
            W(IOF)=WPQ(N+J+1)
            JOF=JOF-1
   50    CONTINUE
         N=N+NLF/2-I+1
   60 CONTINUE
      DEALLOCATE(WPQ,VPQ,UPQ,TPQ,WW,UU,JOP)
      IF(IMPX.GE.4) THEN
         WRITE(6,'(/41H SNTT2D: FOUR-OCTANT ANGULAR QUADRATURES:/26X,
     1   2HMU,9X,3HETA,10X,2HXI,6X,6HWEIGHT)')
         SUM=0.0
         DO 70 N=1,NPQ
         SUM=SUM+W(N)
         ZI=SQRT(ABS(1.0-DU(N)**2-DE(N)**2))
         IF(ZI.LT.1.0E-3) ZI=0.0
         WRITE(6,'(1X,3I5,1P,4E12.4)') N,MRM(N),MRMY(N),DU(N),DE(N),ZI,
     1   W(N)
   70    CONTINUE
         WRITE(6,'(54X,10(1H-)/52X,1P,E12.4)') SUM
      ENDIF
*----
*  IDENTIFICATION OF THE GEOMETRY.
*----
      IF(IGE.EQ.0) THEN
* ----------
*        2D CARTESIAN
* ----------
         DO 82 N=1,NPQ
         VU=DU(N)
         VE=DE(N)
         DO 81 I=1,LX
         XX(I)=XXX(I+1)-XXX(I)
         DB(I,N)=VE*XX(I)
         DO 80 J=1,LY
         YY(J)=YYY(J+1)-YYY(J)
         DA(I,J,N)=VU*YY(J)
         DAL(I,J,N)=0.0
   80    CONTINUE
   81    CONTINUE
   82    CONTINUE
         DO 91 I=1,LX
         DO 90 J=1,LY
         VOL(I,J)=XX(I)*YY(J)
   90    CONTINUE
   91    CONTINUE
      ELSEIF(IGE.EQ.1) THEN
* ----------
*        2D TUBE
* ----------
         DO 95 J=1,LY
         YY(J)=YYY(J+1)-YYY(J)
   95    CONTINUE
         DO 102 N=1,NPQ
         VU=DU(N)*PI
         DO 101 I=1,LX
         XX(I)=XXX(I+1)-XXX(I)
         VE=(XXX(I)+XXX(I+1))*VU
         DO 100 J=1,LY
         DA(I,J,N)=VE*YY(J)
  100    CONTINUE
  101    CONTINUE
  102    CONTINUE
         DB(:LX,:NPQ)=0.0
         DAL(:LX,:LY,:NPQ)=0.0
         DO 135 J=1,LY
         DO 111 I=1,LX
         VE=2.0*PI*(XXX(I+1)-XXX(I))*YY(J)
         DO 110 N=2,NPQ
         DB(I,N)=DB(I,N-1)-W(N)*DU(N)*VE
  110    CONTINUE
  111    CONTINUE
         DO 130 N=2,NPQ
         VE=W(N)
         IF(VE.LE.RLOG) GOTO 130
         DO 120 I=1,LX
         DAL(I,J,N)=(DB(I,N)+DB(I,N-1))/VE
  120    CONTINUE
  130    CONTINUE
  135    CONTINUE
         DO 155 I=1,LX
         VE=PI*XX(I)*(XXX(I+1)+XXX(I))
         DO 140 N=1,NPQ
         DB(I,N)=VE*DE(N)
  140    CONTINUE
         DO 150 J=1,LY
         VOL(I,J)=YY(J)*VE
  150    CONTINUE
  155    CONTINUE
      ELSEIF(IGE.EQ.2) THEN
* ----------
*        2D HEXAGONAL
* ----------
         DET = SQRT(3.0)*(SIDE**2)/2.0 
         DO 162 N=1,NPQ
         VU=DU(N)
         VE=DE(N)
         DO 161 I=1,LX
         DB(I,N)=VE
         DO 160 J=1,LY
         DA(I,J,N)=VU
         VOL(I,J)=DET
  160    CONTINUE
  161    CONTINUE
  162    CONTINUE
      ENDIF
*----
*  GENERATE SPHERICAL HARMONICS FOR SCATTERING SOURCE.
*----
      IOF=0
      DO 211 L=0,ISCAT-1
      DO 210 M=-L,L
      IF(MOD(L+M,2).EQ.1) GO TO 210
      IOF=IOF+1
      IF(IOF.GT.NSCT) GO TO 211
      DO 200 N=1,NPQ
      ZI=SQRT(ABS(1.0-DU(N)**2-DE(N)**2))
      IF(ZI.LT.1.0E-3) ZI=0.0
      PL(IOF,N)=PNSH(L,M,ZI,DU(N),DE(N))
  200 CONTINUE
  210 CONTINUE
  211 CONTINUE
*----
*  GENERATE MAPPING MATRIX FOR GALERKIN QUADRATURE METHOD
*----
      MN(:NPQ,:NSCT)=0.0
      DN(:NSCT,:NPQ)=0.0
      IL(:NSCT)=0
      IM(:NSCT)=0
      IF(IGLK.NE.0) THEN
         ALLOCATE(U(NPQ,NPQ),RLM(NPQ,ISCAT,2*ISCAT-1),V(NPQ),V2(NPQ),
     1   MND(NPQ,NPQ))
         RLM(:NPQ,:ISCAT,:2*ISCAT-1)=0.0
         DO L=0,ISCAT-1
         DO M=-L,L
         DO N=1,NPQ
            ZI=SQRT(ABS(1.0-DU(N)**2-DE(N)**2))
            IF(ZI.LT.1.0E-3) ZI=0.0
            RLM(N,L+1,M+L+1)=PNSH(L,M,DU(N),DE(N),ZI)
         ENDDO
         ENDDO
         ENDDO
         ! GRAM-SCHMIDT PROCEDURE TO FIND INDEPENDANT SET
         ! OF SPHERICAL HARMONICS WITH ANY QUADRATURE
         U(:NPQ,:NPQ)=0.0D0
         NORM=0.0D0
         DO N=1,NPQ
            NORM=NORM+RLM(N,1,1)**2
         ENDDO
         NORM=SQRT(NORM)
         DO N=1,NPQ 
            IF(IGLK.EQ.1) THEN
               MND(1,N)=2.0D0*W(N)*RLM(N,1,1)
            ELSEIF(IGLK.EQ.2) THEN
               MND(N,1)=(2.0*L+1.0)/(4.0*PI)*RLM(N,1,1)
            ELSE
               CALL XABORT('UNKNOWN GALERKIN QUADRATURE METHOD.')
            ENDIF
            U(N,1)=RLM(N,1,1)/NORM
         ENDDO
         IND=1
         ! ITERATE OVER THE SPHERICAL HARMONICS
         DO 212 L=1,ISCAT-1
         DO 213 M=0,L
         V2(:NPQ)=0.0D0
         DO N=1,IND
         IPROD=0.0D0
         DO N2=1,NPQ
         IPROD=IPROD+U(N2,N)*RLM(N2,L+1,M+L+1)
         ENDDO
         DO N2=1,NPQ
         V2(N2)=V2(N2)+IPROD*U(N2,N)
         ENDDO
         ENDDO
         V(:NPQ)=0.0D0
         DO N=1,NPQ
         V(N)=RLM(N,L+1,M+L+1)-V2(N)
         ENDDO
         NORM=0.0D0
         DO N=1,NPQ
            NORM=NORM+V(N)**2
         ENDDO
         NORM=SQRT(NORM)
         ! KEEP THE SPHERICAL HARMONICS IF IT IS INDEPENDANT
         IF(NORM.GE.1.0E-5) THEN
            IND=IND+1
            DO N=1,NPQ
               U(N,IND)=V(N)/NORM
               IF(IGLK.EQ.1) THEN
                  MND(IND,N)=2.0D0*W(N)*RLM(N,L+1,M+L+1)
               ELSEIF(IGLK.EQ.2) THEN
                  MND(N,IND)=(2.0*L+1.0)/(4.0*PI)*RLM(N,L+1,M+L+1)
               ELSE
                  CALL XABORT('UNKNOWN GALERKIN QUADRATURE METHOD.')
               ENDIF
            ENDDO
            IL(IND)=L
            IM(IND)=M
         ENDIF
         IF(IND.EQ.NPQ) GOTO 217
  213    ENDDO
  212    ENDDO
         CALL XABORT('SNTT2D: THE'// 
     1   ' GRAM-SCHMIDTH PROCEDURE TO FIND A SUITABLE INTERPOLATION'//
     2   ' BASIS REQUIRE HIGHER LEGENDRE ORDER.')
         ! FIND INVERSE MATRIX
  217    IF(IGLK.EQ.1) THEN    
            DN=REAL(MND)
            CALL ALINVD(NPQ,MND,NPQ,IER)
            IF(IER.NE.0) CALL XABORT('SNTT2D: SINGULAR MATRIX.')
            MN=REAL(MND)
         ELSEIF(IGLK.EQ.2) THEN
            MN=REAL(MND)
            CALL ALINVD(NPQ,MND,NPQ,IER)
            IF(IER.NE.0) CALL XABORT('SNTT2D: SINGULAR MATRIX.')
            DN=REAL(MND)
         ELSE
            CALL XABORT('UNKNOWN GALERKIN QUADRATURE METHOD.')
         ENDIF
         DEALLOCATE(U,RLM,V,V2,MND)
      ELSE
         IND=1
         DO L=0,ISCAT-1
         DO 218 M=-L,L
         IF(MOD(L+M,2).EQ.1) GO TO 218
         IL(IND)=L
         IM(IND)=M
         DO N=1,NPQ
         ZI=SQRT(ABS(1.0-DU(N)**2-DE(N)**2))
         IF(ZI.LT.1.0E-3) ZI=0.0
         DN(IND,N)=2.0*W(N)*PNSH(L,M,ZI,DU(N),DE(N))
         MN(N,IND)=(2.0*L+1.0)/(4.0*PI)
     1   *PNSH(L,M,ZI,DU(N),DE(N))
         ENDDO
         IND=IND+1
  218    ENDDO
         ENDDO
      ENDIF
*----
* GENERATE THE WEIGHTING PARAMETERS OF THE CLOSURE RELATION.
*----
      PX=1
      PE=1
      IF(ISCHM.EQ.1.OR.ISCHM.EQ.3) THEN
        PX=1
      ELSEIF(ISCHM.EQ.2) THEN
        PX=0
      ELSE
        CALL XABORT('SNTT2D: UNKNOWN TYPE OF SPATIAL CLOSURE RELATION.')
      ENDIF
      IF(MOD(IELEM,2).EQ.1) THEN
        WX(1)=-PX
        WX(2:IELEM+1:2)=1+PX
        IF(IELEM.GE.2) WX(3:IELEM+1:2)=1-PX
      ELSE
        WX(1)=PX
        WX(2:IELEM+1:2)=1-PX
        IF(IELEM.GE.2) WX(3:IELEM+1:2)=1+PX
      ENDIF
      IF(IBFP.NE.0) THEN
      IF(ESCHM.EQ.1.OR.ESCHM.EQ.3) THEN
        PE=1
      ELSEIF(ESCHM.EQ.2) THEN
        PE=0
      ELSE
        CALL XABORT('SNTT2D: UNKNOWN TYPE OF ENERGY CLOSURE RELATION.')
      ENDIF
      IF(MOD(EELEM,2).EQ.1) THEN
        WE(1)=-PE
        WE(2:EELEM+1:2)=1+PE
        IF(EELEM.GE.2) WE(3:EELEM+1:2)=1-PE
      ELSE
        WE(1)=PE
        WE(2:EELEM+1:2)=1-PE
        IF(EELEM.GE.2) WE(3:EELEM+1:2)=1+PE
      ENDIF
      ENDIF
      ! NORMALIZED LEGENDRE POLYNOMIAL CONSTANTS
      DO IEL=1,MAX(IELEM,EELEM)
        CST(IEL)=SQRT(2.0*IEL-1.0)
      ENDDO
*----
*  COMPUTE ISOTROPIC FLUX INDICES.
*----
      NM=IELEM*IELEM*EELEM
      NMX=IELEM*EELEM
      NMY=IELEM*EELEM
      NME=IELEM**2
      LL4=LX*LY*NSCT*NM
      IF(IGE.LT.2) THEN
        NUN=LL4+(LX*NMY+LY*NMX)*NPQ
        DO I=1,LX*LY
          IDL(I)=(I-1)*NSCT*NM+1
        ENDDO
      ELSEIF(IGE.EQ.2) THEN
        NUN=LL4
        DO I=1,LX
           IDL(I)=(I-1)*NSCT*NM+1
        ENDDO
      ELSE
         CALL XABORT('SNTT2D: CHECK SPATIAL SCHEME DISCRETISATION '//
     1       'PARAMETER.')
      ENDIF
*----
*  SET BOUNDARY CONDITIONS.
*----
      DO 240 I=1,4
      IF(NCODE(I).NE.1) ZCODE(I)=1.0
      IF(NCODE(I).EQ.5) CALL XABORT('SNTT2D: SYME BC NOT ALLOWED.')
      IF(NCODE(I).EQ.7) CALL XABORT('SNTT2D: ZERO FLUX BC NOT ALLOWED.')
  240 CONTINUE
*----
*  CHECK FOR INVALID VIRTUAL ELEMENTS.
*----
      DO 295 I=2,LX-1
      DO 290 J=2,LY-1
      IF(MAT(I,J).EQ.0) THEN
         L1=(NCODE(1).NE.1)
         DO 250 J1=1,J-1
         L1=L1.OR.(MAT(I,J1).NE.0)
  250    CONTINUE
         L2=(NCODE(2).NE.1)
         DO 260 J1=J+1,LY
         L2=L2.OR.(MAT(I,J1).NE.0)
  260    CONTINUE
         L3=(NCODE(3).NE.1)
         DO 270 I1=1,I-1
         L3=L3.OR.(MAT(I1,J).NE.0)
  270    CONTINUE
         L4=(NCODE(4).NE.1)
         DO 280 I1=I+1,LX
         L4=L4.OR.(MAT(I1,J).NE.0)
  280    CONTINUE
         IF(L1.AND.L2.AND.L3.AND.L4) THEN
            WRITE(HSMG,'(17HSNTT2D: ELEMENT (,I3,1H,,I3,11H) CANNOT BE,
     1      9H VIRTUAL.)') I,J
            CALL XABORT(HSMG)
         ENDIF
      ENDIF
  290 CONTINUE
  295 CONTINUE
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(YY,XX)
      RETURN
      END