1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
|
*DECK SNTRK
SUBROUTINE SNTRK(MAXPTS,IPTRK,IPGEOM,IMPX,ISCHM,IELEM,ISPLH,INSB,
1 NLF,MAXIT,EPSI,ISCAT,IQUAD,LFIXUP,LIVO,ICL1,ICL2,LDSA,NSTART,
2 NSDSA,IELEMSA,ISOLVSA,LBIHET,LSHOOT,IBFP,MCELL,NMPI,NFOU,
3 EELEM,ESCHM,IGLK)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Recover of the geometry and tracking for SN methods.
*
*Copyright:
* Copyright (C) 2007 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert and N. Martin
*
*Parameters: input
* MAXPTS allocated storage for arrays of dimension NEL.
* IPTRK L_TRACK pointer to the tracking information.
* IPGEOM L_GEOM pointer to the geometry.
* IMPX print flag.
* ISCHM method of spatial discretisation:
* =1 High-Order Diamond Differencing (HODD) - default;
* =2 Discontinuous Galerkin finite element method (DG);
* =3 Adaptive weighted method (AWD).
* IELEM measure of order of the spatial approximation polynomial:
* =1 constant - default for HODD;
* =2 linear - default for DG;
* >3 higher orders.
* ISPLH mesh-splitting index for hexagons into lozenges.
* INSB group vectorization flag (=0/1 group vectorization off/on).
* NLF SN order for the flux (even number).
* MAXIT maximum number of inner iterations (default=100).
* EPSI convergence criterion on inner iterations (default=5.E-5).
* ISCAT anisotropy of one-speed sources:
* =1 isotropic sources;
* =2 linearly anisotropic sources.
* IQUAD type of SN quadrature (=1 Level symmetric, type IQUAD;
* =4 Gauss-Legendre and Gauss-Chebyshev; =10 product).
* LFIXUP flag to enable negative flux fixup.
* LIVO flag to enable Livolant acceleration.
* ICL1 Number of free iterations with Livolant acceleration.
* ICL2 Number of accelerated iterations with Livolant acceleration.
* LDSA flag to enable diffusion synthetic acceleration.
* NSTART restarts the GMRES method every NSTART iterations.
* NSDSA number of inner flux iterations before enabling SA.
* IELEMSA degree of the Lagrangian finite elements for the SA:
* <0 order -IELEMSA primal finite elements;
* >0 order IELEMSA dual finite elements.
* ISOLVSA type of solver to be used for the SA:
* 1 - BIVAC ;
* 2 - TRIVAC.
* LBIHET flag to enable the double-heterogeneity model.
* LSHOOT enablig flag for the shooting method.
* IBFP type of energy proparation relation:
* =0 no Fokker-Planck term;
* =1 Galerkin type;
* =2 heuristic Przybylski and Ligou type.
* MCELL number of macrocells along each axis (in Cartesian geometry)
* for the parallelisation using the OpenMP paradigm; OR
* number of macrocells along the z-axis (in hexagonal geometry)
* for the parallelisation using the OpenMP paradigm.
* NMPI number of macrocells along each axis (in Cartesian geometry)
* or along the z-axis for the hexagonal geometry for the
* parallelisation using the MPI paradigm, when using WYVERN.
* NFOU number of Fourier frequencies in the range (2*pi/L) to be
* investigated.
* ESCHM method of energy discretisation:
* =1 High-Order Diamond Differencing (HODD) - default;
* =2 Discontinuous Galerkin finite element method (DG);
* =3 Adaptive weighted method (AWD).
* EELEM measure of order of the energy approximation polynomial:
* =1 constant - default for HODD;
* =2 linear - default for DG;
* >3 higher orders.
* IGLK angular interpolation type:
* =0 classical SN method.
* =1 Galerkin quadrature method (M = inv(D))
* =2 Galerkin quadrature method (D = inv(M))
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPGEOM
INTEGER MAXPTS,IMPX,ISCHM,IELEM,ISPLH,INSB,NLF,ISCAT,IQUAD,
1 MAXIT,ICL1,ICL2,NSTART,NSDSA,IELEMSA,ISOLVSA,MCELL,NMPI,NFOU,
2 EELEM,ESCHM,IGLK
REAL EPSI
LOGICAL LFIXUP,LDSA,LBIHET,LIVO,LSHOOT
*----
* LOCAL VARIABLES
*----
PARAMETER(NSTATE=40)
LOGICAL ILK
CHARACTER HSMG*131
INTEGER ISTATE(NSTATE),IGP(NSTATE),NCODE(6),ICODE(6),LOZSWP(3,6),P
REAL ZCODE(6)
INTEGER, ALLOCATABLE, DIMENSION(:) :: MAT,IDL,ISPLX,ISPLY,ISPLZ,
1 JOP,MRMX,MRMY,MRMZ,IL,IM
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: COORDMAP
INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: KEYANI
REAL, ALLOCATABLE, DIMENSION(:) :: VOL,XXX,YYY,ZZZ,UU,WW,PL,TPQ,
1 UPQ,VPQ,WPQ,ALPHA,PLZ,SURF,DU,DE,DZ,DC,DB,DA,DAL,WX,WE,CST,MN,DN
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(MAT(MAXPTS),VOL(MAXPTS),IDL(MAXPTS))
*
CALL LCMGET(IPGEOM,'STATE-VECTOR',ISTATE)
ITYPE=ISTATE(1)
ISUB2=ISTATE(9)
*----
* PARAMETER VALIDATION.
*----
IF(ISUB2.NE.0) CALL XABORT('SNTRK: DISCRETIZATION NOT AVAILABLE
1 .(1)')
IF((ISCHM.NE.1).AND.(ISCHM.NE.2).AND.(ISCHM.NE.3)) THEN
CALL XABORT('SNTRK: SPATIAL DISCRETIZATION SCHEME NOT AVAILABLE
1. ONLY VALUES OF 1 (=DIAMOND-DIFFERENCE) OR 2 (=DISCONTINUOUS GALE
2RKIN) OR 3 (=ADAPTIVE WEIGHTED DIFFERENCE) ARE ALLOWED.')
ENDIF
IF((ESCHM.NE.1).AND.(ESCHM.NE.2).AND.(ESCHM.NE.3)) THEN
CALL XABORT('SNTRK: ENERGY DISCRETIZATION SCHEME NOT AVAILABLE
1. ONLY VALUES OF 1 (=DIAMOND-DIFFERENCE) OR 2 (=DISCONTINUOUS GALE
2RKIN) OR 3 (=ADAPTIVE WEIGHTED DIFFERENCE) ARE ALLOWED.')
ENDIF
IF(ISCHM.EQ.3.OR.ESCHM.EQ.3) THEN
IF(.NOT.(ITYPE.EQ.2.OR.ITYPE.EQ.5.OR.ITYPE.EQ.7)) THEN
CALL XABORT('SNTRK: ADAPTIVE SCHEME ONLY AVAILABLE IN CARTESIAN'
1 //' GEOMETRIES')
ELSEIF(IELEM.GT.1.AND.ISCHM.EQ.3.OR.
1 EELEM.GT.1.AND.ESCHM.EQ.3) THEN
CALL XABORT('SNTRK: ADAPTIVE SCHEMES ONLY AVAILABLE FOR CONSTANT'
1 //' ORDER CLOSURE RELATION.')
ENDIF
ENDIF
IF((ITYPE.NE.2).AND.(ITYPE.NE.3).AND.(ITYPE.NE.4).AND.
1 (ITYPE.NE.5).AND.(ITYPE.NE.6).AND.(ITYPE.NE.7).AND.
2 (ITYPE.NE.8).AND.(ITYPE.NE.9)) THEN
CALL XABORT('SNTRK: DISCRETIZATION NOT AVAILABLE.(2)')
ENDIF
IF((LDSA).AND.(ISOLVSA.EQ.1))THEN
IF((ITYPE.EQ.7).OR.(ITYPE.EQ.9))
> CALL XABORT('SNTRK: SYNTHETIC ACCELERATION WITH BIVAC NOT AV
1AILABLE IN 3D.')
ENDIF
*
ALLOCATE(XXX(MAXPTS+1),YYY(MAXPTS+1),ZZZ(MAXPTS+1))
ALLOCATE(ISPLX(MAXPTS),ISPLY(MAXPTS),ISPLZ(MAXPTS))
CALL READ3D(MAXPTS,MAXPTS,MAXPTS,MAXPTS,IPGEOM,IHEX,IR,ILK,SIDE,
1 XXX,YYY,ZZZ,IMPX,LX,LY,LZ,MAT,NEL,NCODE,ICODE,ZCODE,ISPLX,ISPLY,
2 ISPLZ,ISPLTH,ISPLTL)
DEALLOCATE(ISPLZ,ISPLY,ISPLX)
*
IF(LX*LY*LZ.GT.MAXPTS) THEN
WRITE (HSMG,'(38HSNTRK: MAXPTS SHOULD BE INCREASED FROM,I7,
1 3H TO,I7)') MAXPTS,LX*LY*LZ
CALL XABORT(HSMG)
ENDIF
IF((ITYPE.EQ.2).OR.(ITYPE.EQ.3)) THEN
! 1-D AND 2-D CYLINDRICAL CASES.
NCODE(3)=2
NCODE(4)=5
ZCODE(3)=1.0
ZCODE(4)=1.0
YYY(1)=0.0
YYY(2)=2.0
ELSE IF(ITYPE.EQ.6) THEN
LY=LZ
DO I=1,LZ+1
YYY(I)=ZZZ(I)
ENDDO
NCODE(3)=NCODE(5)
NCODE(4)=NCODE(6)
ZCODE(3)=ZCODE(5)
ZCODE(4)=ZCODE(6)
ICODE(3)=ICODE(5)
ICODE(4)=ICODE(6)
ENDIF
IF(IBFP.EQ.0) EELEM=1
*----
* UNFOLD THE DOMAIN IN DIAGONAL SYMMETRY CASES.
*----
IF(ITYPE.EQ.7) THEN
! CARTESIAN 3D CASE
IDIAG=0
IF((NCODE(2).EQ.3).AND.(NCODE(3).EQ.3)) THEN
IDIAG=1
NCODE(3)=NCODE(1)
NCODE(2)=NCODE(4)
ZCODE(3)=ZCODE(1)
ZCODE(2)=ZCODE(4)
ICODE(3)=ICODE(1)
ICODE(2)=ICODE(4)
K=NEL
DO IZ=LZ,1,-1
IOFF=(IZ-1)*LX*LY
DO IY=LY,1,-1
DO IX=LX,IY+1,-1
MAT(IOFF+(IY-1)*LX+IX)=MAT(IOFF+(IX-1)*LY+IY)
ENDDO
DO IX=IY,1,-1
MAT(IOFF+(IY-1)*LX+IX)=MAT(K)
K=K-1
ENDDO
ENDDO
ENDDO
NEL=LX*LY*LZ
IF(K.NE.0) THEN
CALL XABORT('SNTRK: UNABLE TO UNFOLD THE DOMAIN.')
ENDIF
ELSE IF((NCODE(1).EQ.3).AND.(NCODE(4).EQ.3)) THEN
IDIAG=1
NCODE(1)=NCODE(3)
NCODE(4)=NCODE(2)
ZCODE(1)=ZCODE(3)
ZCODE(4)=ZCODE(2)
ICODE(1)=ICODE(3)
ICODE(4)=ICODE(2)
K=NEL
DO IZ=LZ,1,-1
IOFF=(IZ-1)*LX*LY
DO IY=LY,1,-1
DO IX=LX,IY,-1
MAT(IOFF+(IY-1)*LX+IX)=MAT(K)
K=K-1
ENDDO
ENDDO
ENDDO
DO IZ=1,LZ
IOFF=(IZ-1)*LX*LY
DO IY=1,LY
DO IX=1,IY-1
MAT(IOFF+(IY-1)*LX+IX)=MAT(IOFF+(IX-1)*LY+IY)
ENDDO
ENDDO
ENDDO
NEL=LX*LY*LZ
IF(K.NE.0) THEN
CALL XABORT('SNTRK: UNABLE TO UNFOLD THE DOMAIN.')
ENDIF
ENDIF
ELSE
! OTHER CASES
IF((NCODE(2).EQ.3).AND.(NCODE(3).EQ.3)) THEN
NCODE(3)=NCODE(1)
NCODE(2)=NCODE(4)
ZCODE(3)=ZCODE(1)
ZCODE(2)=ZCODE(4)
ICODE(3)=ICODE(1)
ICODE(2)=ICODE(4)
K=LX*(LX+1)/2
DO IY=LY,1,-1
DO IX=LX,IY+1,-1
MAT((IY-1)*LX+IX)=MAT((IX-1)*LY+IY)
ENDDO
DO IX=IY,1,-1
MAT((IY-1)*LX+IX)=MAT(K)
K=K-1
ENDDO
ENDDO
NEL=LX*LY
IF(K.NE.0) THEN
CALL XABORT('SNTRK: UNABLE TO UNFOLD THE DOMAIN.')
ENDIF
ELSE IF((NCODE(1).EQ.3).AND.(NCODE(4).EQ.3)) THEN
NCODE(1)=NCODE(3)
NCODE(4)=NCODE(2)
ZCODE(1)=ZCODE(3)
ZCODE(4)=ZCODE(2)
ICODE(1)=ICODE(3)
ICODE(4)=ICODE(2)
K=LX*(LX+1)/2
DO IY=LY,1,-1
DO IX=LX,IY,-1
MAT((IY-1)*LX+IX)=MAT(K)
K=K-1
ENDDO
ENDDO
DO IY=1,LY
DO IX=1,IY-1
MAT((IY-1)*LX+IX)=MAT((IX-1)*LY+IY)
ENDDO
ENDDO
NEL=LX*LY
IF(K.NE.0) THEN
CALL XABORT('SNTRK: UNABLE TO UNFOLD THE DOMAIN.')
ENDIF
ENDIF
ENDIF
IF(IMPX.GT.5) THEN
WRITE(6,600) 'NCODE',(NCODE(I),I=1,6)
WRITE(6,600) 'ICODE',(ICODE(I),I=1,6)
WRITE(6,600) 'MAT',(MAT(I),I=1,LX*LY*LZ)
ENDIF
*---
* CALL TO THE SN TRACKING MODULE RELEVANT TO EACH GEOMETRY
*---
NDIM=0
IF(ITYPE.EQ.2) THEN
* 1D SLAB GEOMETRY.
NDIM=1
IF(ISCAT.EQ.0) CALL XABORT('SNTRK: SCAT NOT DEFINED.')
IF(IGLK.NE.0) THEN
NSCT=NLF
ELSE
NSCT=ISCAT
ENDIF
ALLOCATE(UU(NLF),WW(NLF),WX(IELEM+1),WE(EELEM+1),
1 CST(MAX(IELEM,EELEM)),MN(NSCT*NLF),DN(NLF*NSCT),IL(NSCT),
2 IM(NSCT),PL(NSCT*NLF))
CALL SNT1DP(IMPX,LX,IELEM,NCODE,ZCODE,XXX,NLF,NSCT,UU,WW,PL,
1 VOL,IDL,LL4,NUN,LSHOOT,EELEM,WX,WE,CST,IBFP,ISCHM,ESCHM,
2 IGLK,MN,DN,IL,IM,IQUAD)
CALL LCMPUT(IPTRK,'U',NLF,2,UU)
CALL LCMPUT(IPTRK,'W',NLF,2,WW)
CALL LCMPUT(IPTRK,'WX',IELEM+1,2,WX)
IF(IBFP.NE.0) CALL LCMPUT(IPTRK,'WE',EELEM+1,2,WE)
CALL LCMPUT(IPTRK,'CST',MAX(IELEM,EELEM),2,CST)
CALL LCMPUT(IPTRK,'MN',NSCT*NLF,2,MN)
CALL LCMPUT(IPTRK,'DN',NLF*NSCT,2,DN)
CALL LCMPUT(IPTRK,'IL',NSCT,1,IL)
CALL LCMPUT(IPTRK,'IM',NSCT,1,IM)
CALL LCMPUT(IPTRK,'PL',NSCT*NLF,2,PL)
DEALLOCATE(WW,UU,WX,WE,CST,MN,DN,IL,IM,PL)
! For Fourier Analysis
IF(NFOU.GT.0)THEN
XLEN = XXX(LX+1)
CALL LCMPUT(IPTRK,'XXX',LX+1,2,XXX)
CALL LCMPUT(IPTRK,'XLEN',1,2,XLEN)
ENDIF
ELSE IF(ITYPE.EQ.3) THEN
* 1D CYLINDRICAL GEOMETRY.
NDIM=1
IF(ISCAT.EQ.0) CALL XABORT('SNTRK: SCAT NOT DEFINED.')
NSCT=(ISCAT/2)*(ISCAT/2+1)+(ISCAT+1)*MOD(ISCAT,2)/2
IF(IQUAD.GE.10) THEN
* PRODUCT QUADRATURE.
NPQ=(NLF**2)/2
ELSE
NPQ=NLF*(1+NLF/2)/2
ENDIF
ALLOCATE(JOP(NLF/2),UU(NLF/2),WW(NLF/2),TPQ(NPQ),UPQ(NPQ),
1 VPQ(NPQ),WPQ(NPQ),ALPHA(NPQ),PLZ(NSCT*NLF/2),PL(NSCT*NPQ),
2 SURF(LX+1),IL(NSCT),IM(NSCT))
CALL SNT1DC(IMPX,LX,NCODE,ZCODE,XXX,NLF,NPQ,NSCT,IQUAD,JOP,
1 UU,WW,TPQ,UPQ,VPQ,WPQ,ALPHA,PLZ,PL,VOL,IDL,SURF,IL,IM)
DEALLOCATE(VPQ,TPQ,WW)
CALL LCMPUT(IPTRK,'JOP',NLF/2,1,JOP)
CALL LCMPUT(IPTRK,'U',NLF/2,2,UU)
CALL LCMPUT(IPTRK,'UPQ',NPQ,2,UPQ)
CALL LCMPUT(IPTRK,'WPQ',NPQ,2,WPQ)
CALL LCMPUT(IPTRK,'ALPHA',NPQ,2,ALPHA)
CALL LCMPUT(IPTRK,'PLZ',NSCT*NLF/2,2,PLZ)
CALL LCMPUT(IPTRK,'PL',NSCT*NPQ,2,PL)
CALL LCMPUT(IPTRK,'SURF',LX+1,2,SURF)
CALL LCMPUT(IPTRK,'IL',NSCT,1,IL)
CALL LCMPUT(IPTRK,'IM',NSCT,1,IM)
DEALLOCATE(SURF,PL,PLZ,ALPHA,WPQ,UPQ,UU,JOP,IL,IM)
LL4=LX*NSCT
NUN=LL4
ELSE IF(ITYPE.EQ.4) THEN
* 1D SPHERICAL GEOMETRY.
NDIM=1
IF(ISCAT.EQ.0) CALL XABORT('SNTRK: SCAT NOT DEFINED.')
NSCT=ISCAT
ALLOCATE(UU(NLF),WW(NLF),ALPHA(NLF),PLZ(NSCT),PL(NSCT*NLF),
1 SURF(LX+1),IL(NSCT),IM(NSCT))
CALL SNT1DS(IMPX,LX,NCODE,ZCODE,XXX,NLF,NSCT,UU,WW,ALPHA,
1 PLZ,PL,VOL,IDL,SURF,IQUAD,IL,IM)
CALL LCMPUT(IPTRK,'U',NLF,2,UU)
CALL LCMPUT(IPTRK,'W',NLF,2,WW)
CALL LCMPUT(IPTRK,'ALPHA',NLF,2,ALPHA)
CALL LCMPUT(IPTRK,'PLZ',NSCT,2,PLZ)
CALL LCMPUT(IPTRK,'PL',NSCT*NLF,2,PL)
CALL LCMPUT(IPTRK,'SURF',LX+1,2,SURF)
CALL LCMPUT(IPTRK,'XXX',LX+1,2,XXX)
CALL LCMPUT(IPTRK,'IL',NSCT,1,IL)
CALL LCMPUT(IPTRK,'IM',NSCT,1,IM)
DEALLOCATE(SURF,PL,PLZ,ALPHA,WW,UU,IL,IM)
LL4=LX*NSCT
NUN=LL4
ELSE IF((ITYPE.EQ.5).OR.(ITYPE.EQ.6).OR.(ITYPE.EQ.8)) THEN
* 2D GEOMETRIES: CARTESIAN; TUBE; HEXAGONAL
NDIM=2
IF(ISCAT.EQ.0) CALL XABORT('SNTRK: SCAT NOT DEFINED.')
IF(IQUAD.GE.10) THEN
NPQ=NLF**2
ELSE
NPQ=(NLF+4)*NLF/2
ENDIF
IF(IGLK.NE.0) THEN
NPQ=(NLF+2)*NLF/2
NSCT=NPQ
ELSE
NSCT=ISCAT*(ISCAT+1)/2
ENDIF
IGE=0
*
IF(ITYPE.EQ.5) THEN
! 2D Cartesian
IF(NFOU.GT.0)THEN
XLEN = XXX(LX+1)
YLEN = YYY(LY+1)
CALL LCMPUT(IPTRK,'XXX',LX+1,2,XXX)
CALL LCMPUT(IPTRK,'XLEN',1,2,XLEN)
CALL LCMPUT(IPTRK,'YYY',LY+1,2,YYY)
CALL LCMPUT(IPTRK,'YLEN',1,2,YLEN)
ENDIF
ELSEIF(ITYPE.EQ.6) THEN
! 2D Tube
IGE=1
ELSEIF(ITYPE.EQ.8) THEN
! 2D Hexagonal
IGE=2
NHEX=LX/(3*ISPLH**2)
ALLOCATE(COORDMAP(3,NHEX))
COORDMAP(:,:)=0
CALL SNTSFH(IMPX,ITYPE,NHEX,LZ,MCELL,ISPLH,MAT,LOZSWP,
> COORDMAP)
CALL LCMPUT(IPTRK,'LOZSWP',3*6,1,LOZSWP)
CALL LCMPUT(IPTRK,'COORDMAP',3*NHEX,1,COORDMAP)
CALL LCMPUT(IPTRK,'SIDE',1,2,SIDE)
DEALLOCATE(COORDMAP)
ENDIF
*
ALLOCATE(MRMX(NPQ),MRMY(NPQ))
ALLOCATE(DU(NPQ),DE(NPQ),WW(NPQ),DB(LX*NPQ),DA(LX*LY*NPQ),
1 DAL(LX*LY*NPQ),WX(IELEM+1),
2 WE(EELEM+1),CST(MAX(IELEM,EELEM)),MN(NSCT*NPQ),DN(NPQ*NSCT),
3 IL(NSCT),IM(NSCT),PL(NSCT*NPQ))
CALL SNTT2D(IGE,IMPX,LX,LY,SIDE,IELEM,NLF,NPQ,NSCT,IQUAD,
1 NCODE,ZCODE,MAT,XXX,YYY,VOL,IDL,DU,DE,WW,MRMX,MRMY,DB,DA,DAL,
2 PL,LL4,NUN,EELEM,WX,WE,CST,IBFP,ISCHM,ESCHM,IGLK,MN,DN,IL,IM,
3 ISCAT)
CALL LCMPUT(IPTRK,'DU',NPQ,2,DU)
CALL LCMPUT(IPTRK,'DE',NPQ,2,DE)
CALL LCMPUT(IPTRK,'W',NPQ,2,WW)
CALL LCMPUT(IPTRK,'MRM',NPQ,1,MRMX)
CALL LCMPUT(IPTRK,'MRMY',NPQ,1,MRMY)
CALL LCMPUT(IPTRK,'DB',LX*NPQ,2,DB)
CALL LCMPUT(IPTRK,'DA',LX*LY*NPQ,2,DA)
IF(IGE.EQ.1) CALL LCMPUT(IPTRK,'DAL',LX*LY*NPQ,2,DAL)
CALL LCMPUT(IPTRK,'PL',NSCT*NPQ,2,PL)
CALL LCMPUT(IPTRK,'WX',IELEM+1,2,WX)
IF(IBFP.NE.0) CALL LCMPUT(IPTRK,'WE',EELEM+1,2,WE)
CALL LCMPUT(IPTRK,'CST',MAX(IELEM,EELEM),2,CST)
CALL LCMPUT(IPTRK,'MN',NSCT*NPQ,2,MN)
CALL LCMPUT(IPTRK,'DN',NPQ*NSCT,2,DN)
CALL LCMPUT(IPTRK,'IL',NSCT,1,IL)
CALL LCMPUT(IPTRK,'IM',NSCT,1,IM)
CALL LCMPUT(IPTRK,'PL',NSCT*NPQ,2,PL)
DEALLOCATE(DAL,DA,DB,WW,DE,DU,WX,WE,CST,MN,DN,IL,IM,PL)
DEALLOCATE(MRMY,MRMX)
ELSE IF((ITYPE.EQ.7).OR.(ITYPE.EQ.9)) THEN
* 3D GEOMETRIES: CARTESIAN; HEXAGONAL
NDIM=3
IF(ISCAT.EQ.0) CALL XABORT('SNTRK: SCAT NOT DEFINED.')
IF(IQUAD.GE.10) THEN
NPQ=2*NLF**2
ELSE
NPQ=(NLF+2)*NLF
ENDIF
IF(IGLK.NE.0) THEN
NSCT=NPQ
ELSE
NSCT=ISCAT*(ISCAT+1)
ENDIF
IGE=0
*
IF(ITYPE.EQ.9) THEN
! 3D Hexagonal
IGE=2
NHEX =LX/(3*ISPLH**2)
ALLOCATE(COORDMAP(3,NHEX))
COORDMAP(:,:)=0
CALL SNTSFH(IMPX,ITYPE,NHEX,LZ,MCELL,ISPLH,MAT,LOZSWP,
> COORDMAP)
CALL LCMPUT(IPTRK,'LOZSWP',3*6,1,LOZSWP)
CALL LCMPUT(IPTRK,'COORDMAP',3*NHEX,1,COORDMAP)
CALL LCMPUT(IPTRK,'SIDE',1,2,SIDE)
DEALLOCATE(COORDMAP)
ENDIF
*
ALLOCATE(MRMX(NPQ),MRMY(NPQ),MRMZ(NPQ))
ALLOCATE(DU(NPQ),DE(NPQ),DZ(NPQ),WW(NPQ),DC(LX*LY*NPQ),
1 DB(LX*LZ*NPQ),DA(LY*LZ*NPQ),WX(IELEM+1),
2 WE(EELEM+1),CST(MAX(IELEM,EELEM)),MN(NSCT*NPQ),DN(NPQ*NSCT),
3 IL(NSCT),IM(NSCT),PL(NSCT*NPQ))
CALL SNTT3D(IGE,IMPX,LX,LY,LZ,SIDE,IELEM,NLF,NPQ,NSCT,IQUAD,
1 NCODE,ZCODE,MAT,XXX,YYY,ZZZ,VOL,IDL,DU,DE,DZ,WW,MRMX,MRMY,
2 MRMZ,DC,DB,DA,PL,LL4,NUN,EELEM,WX,WE,CST,IBFP,ISCHM,ESCHM,
3 IGLK,MN,DN,IL,IM,ISCAT)
*
CALL LCMPUT(IPTRK,'DU',NPQ,2,DU)
CALL LCMPUT(IPTRK,'DE',NPQ,2,DE)
CALL LCMPUT(IPTRK,'DZ',NPQ,2,DZ)
CALL LCMPUT(IPTRK,'W',NPQ,2,WW)
CALL LCMPUT(IPTRK,'MRMX',NPQ,1,MRMX)
CALL LCMPUT(IPTRK,'MRMY',NPQ,1,MRMY)
CALL LCMPUT(IPTRK,'MRMZ',NPQ,1,MRMZ)
CALL LCMPUT(IPTRK,'DC',LX*LY*NPQ,2,DC)
CALL LCMPUT(IPTRK,'DB',LX*LZ*NPQ,2,DB)
CALL LCMPUT(IPTRK,'DA',LY*LZ*NPQ,2,DA)
CALL LCMPUT(IPTRK,'PL',NSCT*NPQ,2,PL)
CALL LCMPUT(IPTRK,'WX',IELEM+1,2,WX)
IF(IBFP.NE.0) CALL LCMPUT(IPTRK,'WE',EELEM+1,2,WE)
CALL LCMPUT(IPTRK,'CST',MAX(IELEM,EELEM),2,CST)
CALL LCMPUT(IPTRK,'MN',NSCT*NPQ,2,MN)
CALL LCMPUT(IPTRK,'DN',NPQ*NSCT,2,DN)
CALL LCMPUT(IPTRK,'IL',NSCT,1,IL)
CALL LCMPUT(IPTRK,'IM',NSCT,1,IM)
CALL LCMPUT(IPTRK,'PL',NSCT*NPQ,2,PL)
DEALLOCATE(DA,DB,DC,WW,DZ,DE,DU,WX,WE,CST,MN,DN,IL,IM,PL)
DEALLOCATE(MRMZ,MRMY,MRMX)
ELSE
CALL XABORT('SNTRK: UNKNOWN GEOMETRY.')
ENDIF
DEALLOCATE(YYY,ZZZ)
*----
* THE NUMBER OF UNKNOWNS OF A BOLTZMANN-FOKKER-PLANCK DISCRETIZATION IS
* INCREASED TO HOLD SLOWING-DOWN ANGULAR FLUXES.
*----
IF(IBFP.GT.0) THEN
IF(NDIM.EQ.1) THEN
NUN=NUN+IELEM*NLF*NEL
ELSE IF(NDIM.EQ.2) THEN
NUN=NUN+IELEM**2*NPQ*NEL
ELSE IF(NDIM.EQ.3) THEN
NUN=NUN+IELEM**3*NPQ*NEL
ELSE
CALL XABORT('SNTRK: FOKKER-PLANCK NOT IMPLEMENTED.')
ENDIF
ENDIF
IF(IMPX.GT.0) WRITE (6,'(/33H SNTRK: ORDER OF LINEAR SYSTEMS =,
1 I10/8X,37HNUMBER OF UNKNOWNS PER ENERGY GROUP =,I10)') LL4,NUN
*
IF(IMPX.GT.5) THEN
I1=1
DO I=1,(NEL-1)/8+1
I2=I1+7
IF(I2.GT.NEL) I2=NEL
WRITE (6,620) (J,J=I1,I2)
WRITE (6,630) (MAT(J),J=I1,I2)
WRITE (6,640) (IDL(J),J=I1,I2)
WRITE (6,650) (VOL(J),J=I1,I2)
I1=I1+8
ENDDO
ENDIF
*----
* SYNTHETIC ACCELERATION TRACKING INFORMATION.
*----
IF(LDSA) THEN
IF(IMPX.GT.0) WRITE (6,'(/32H SNTRK: SYNTHETIC ACCELERATION I,
1 19HNFORMATION FOLLOWS:)')
CALL LCMSIX(IPTRK,'DSA',1)
ICOL=3 ! Gauss-Legendre quadrature
NLFSA=2 ! P1 method
ISPN=1 ! simplified PN method
ISCSA=1 ! isotropic scattering
NVD=1 ! SN-type VOID boundary conditions
NADI=2 ! ADI iteration
ICHX=2 ! Raviart-Thomas finite elements
ISEG=0 ! scalar algorithm
IMPV=0 ! print parameter for vector operations
IF(MAXPTS.EQ.0) CALL XABORT('SNTRK: MAXPTS NOT DEFINED.')
IF((ITYPE.EQ.7).OR.(ITYPE.EQ.9)) THEN
CALL TRITRK(MAXPTS,IPTRK,IPGEOM,IMPX,IELEMSA,ICOL,ICHX,ISEG,
1 IMPV,NLFSA,NVD,ISPN,ISCSA,NADI)
ELSE
IF(ISOLVSA.EQ.1)THEN
CALL BIVTRK(MAXPTS,IPTRK,IPGEOM,IMPX,IELEMSA,ICOL,
1 NLFSA,NVD,ISPN,ISCSA)
ELSEIF(ISOLVSA.EQ.2)THEN
CALL TRITRK(MAXPTS,IPTRK,IPGEOM,IMPX,IELEMSA,ICOL,ICHX,
1 ISEG,IMPV,NLFSA,NVD,ISPN,ISCSA,NADI)
ELSE
CALL XABORT('SNTRK: UNDEFINED SOLVER OPTION FOR '
1 //'SYNTHETIC ACCELERATION.')
ENDIF
ENDIF
CALL LCMSIX(IPTRK,' ',2)
ENDIF
*----
* SAVE GENERAL AND SN-SPECIFIC TRACKING INFORMATION.
*----
IGP(:NSTATE)=0
IGP(1)=NEL
IGP(2)=NUN
IF(ILK) THEN
IGP(3)=0
ELSE
IGP(3)=1
ENDIF
IGP(4)=ISTATE(7)
IGP(5)=1
IGP(6)=ITYPE
IGP(7)=NSCT
IGP(8)=IELEM
IGP(9)=NDIM
IGP(10)=ISCHM
IGP(11)=LL4
IGP(12)=LX
IGP(13)=LY
IGP(14)=LZ
IGP(15)=NLF
IGP(16)=ISCAT
IGP(17)=IQUAD
IGP(18)=0
IF(LFIXUP) IGP(18)=1
IGP(19)=0
IF(LDSA) IGP(19)=1
IGP(20)=NSTART
IGP(21)=NSDSA
IGP(22)=MAXIT
IF(LIVO) IGP(23)=1
IGP(24)=ICL1
IGP(25)=ICL2
IGP(26)=ISPLH
IGP(27)=INSB
IGP(28)=MCELL
IF((ITYPE.EQ.3).OR.(ITYPE.GE.4)) IGP(29)=1
IGP(30)=0
IF(LSHOOT) IGP(30)=1
IGP(31)=IBFP
IGP(32)=NMPI
IGP(33)=ISOLVSA
IGP(34)=NFOU
IGP(35)=EELEM
IGP(36)=ESCHM
IGP(37)=IGLK
IF(LBIHET) IGP(40)=1
CALL LCMPUT(IPTRK,'STATE-VECTOR',NSTATE,1,IGP)
CALL LCMPUT(IPTRK,'MATCOD',NEL,1,MAT)
CALL LCMPUT(IPTRK,'VOLUME',NEL,2,VOL)
CALL LCMPUT(IPTRK,'KEYFLX',NEL,1,IDL)
CALL LCMPUT(IPTRK,'NCODE',6,1,NCODE)
CALL LCMPUT(IPTRK,'ICODE',6,1,ICODE)
CALL LCMPUT(IPTRK,'ZCODE',6,2,ZCODE)
CALL LCMPUT(IPTRK,'EPSI',1,2,EPSI)
IF(ITYPE.EQ.4) CALL LCMPUT(IPTRK,'XXX',LX+1,2,XXX)
DEALLOCATE(XXX)
*----
* SET KEYFLX$ANIS
*----
NLIN=IELEM**NDIM*EELEM
ALLOCATE(KEYANI(NEL,NLIN,NSCT))
DO IR=1,NEL
IND=IDL(IR)
DO IE=1,NLIN
DO P=1,NSCT
IF(IND.EQ.0) THEN
KEYANI(IR,IE,P)=0
ELSE
KEYANI(IR,IE,P)=IND+(P-1)*NLIN+IE-1
ENDIF
ENDDO
ENDDO
ENDDO
CALL LCMPUT(IPTRK,'KEYFLX$ANIS',NEL*NLIN*NSCT,1,KEYANI)
DEALLOCATE(KEYANI)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(IDL,VOL,MAT)
RETURN
*
600 FORMAT(/25H SNTRK: VALUES OF VECTOR ,A6,4H ARE/(1X,1P,20I6))
620 FORMAT (///11H REGION ,8(I8,6X,1HI))
630 FORMAT ( 11H MIXTURE ,8(I8,6X,1HI))
640 FORMAT ( 11H POINTER ,8(I8,6X,1HI))
650 FORMAT ( 11H VOLUME ,8(1P,E13.6,2H I))
END
|