summaryrefslogtreecommitdiff
path: root/Dragon/src/SNSBFP.f
blob: 111cab0c73c5488b8eb380a960246833a99a56b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
*DECK SNSBFP
      SUBROUTINE SNSBFP(IG,IPTRK,KPMACR,KPSYS,NANIS,NLF,NREG,NMAT,
     1 NUNKNO,NGRP,MATCOD,FLUX,QEXT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the QEXT for the solution of SN equations with a Boltzmann-
* Fokker-Planck discretization.
*
*Copyright:
* Copyright (C) 2020 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert 
*
*Parameters: input
* IG      secondary group.
* IPTRK   pointer to the tracking LCM object.
* KPMACR  pointer to the secondary-group related macrolib information.
* KPSYS   pointer to the system matrix information.
* NANIS   maximum cross section Legendre order.
* NLF     number of Legendre components in the flux.
* NREG    number of regions.
* NMAT    number of mixtures.
* NUNKNO  number of unknowns per energy group including spherical
*         harmonic terms, interface currents, fundamental currents
*         and slowing-down angular fluxes at group boundary.
* NGRP    number of energy groups.
* MATCOD  mixture indices.
* FLUX    fluxes and slowing-down angular fluxes at group boundary.
*
*Parameters: output
* QEXT    sources and slowing-down angular fluxes at group boundary.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,KPMACR,KPSYS
      INTEGER IG,NANIS,NLF,NREG,NMAT,NUNKNO,NGRP,MATCOD(NREG)
      REAL FLUX(NUNKNO,NGRP),QEXT(NUNKNO,NGRP)
*----
*  LOCAL VARIABLES
*----
      PARAMETER(NSTATE=40,PI4=12.5663706144)
      INTEGER JPAR(NSTATE),EELEM,P
      CHARACTER CAN(0:19)*2
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS
      REAL, ALLOCATABLE, DIMENSION(:) :: XSCAT
      TYPE(C_PTR) IL_PTR,IM_PTR
      INTEGER, POINTER, DIMENSION(:) :: IL,IM
*----
*  DATA STATEMENTS
*----
      DATA CAN /'00','01','02','03','04','05','06','07','08','09',
     >          '10','11','12','13','14','15','16','17','18','19'/
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(IJJ(0:NMAT),NJJ(0:NMAT),IPOS(0:NMAT))
      ALLOCATE(XSCAT(0:NMAT*NGRP))
*----
*  RECOVER SNT SPECIFIC PARAMETERS
*----
      LFEP=0
      CALL LCMGET(IPTRK,'STATE-VECTOR',JPAR)
      IF(JPAR(1).NE.NREG) CALL XABORT('SNSBFP: INCONSISTENT NREG.')
      IF(JPAR(2).NE.NUNKNO) CALL XABORT('SNSBFP: INCONSISTENT NUNKNO.')
      IF(JPAR(15).NE.NLF) CALL XABORT('SNSBFP: INCONSISTENT NLF.')
      ITYPE=JPAR(6)
      NSCT=JPAR(7)
      IELEM=JPAR(8)
      ISCAT=JPAR(16)
      EELEM=JPAR(35)
      CALL LCMGPD(IPTRK,'IL',IL_PTR)
      CALL LCMGPD(IPTRK,'IM',IM_PTR)
      CALL C_F_POINTER(IL_PTR,IL,(/ NSCT /))
      CALL C_F_POINTER(IM_PTR,IM,(/ NSCT /))
*----
*  CONSTRUCT THE QEXT.
*----
      IJJ(0)=0
      NJJ(0)=0
      IPOS(0)=0
      XSCAT(0)=0.0
      IOF0=0
      DO 130 P=1,NSCT
      ILP=IL(P)
      IF(ILP.GT.MIN(ISCAT-1,NANIS)) GO TO 130
      CALL LCMGET(KPMACR,'NJJS'//CAN(ILP),NJJ(1))
      CALL LCMGET(KPMACR,'IJJS'//CAN(ILP),IJJ(1))
      CALL LCMGET(KPMACR,'IPOS'//CAN(ILP),IPOS(1))
      CALL LCMGET(KPMACR,'SCAT'//CAN(ILP),XSCAT(1))
      IF((ITYPE.EQ.2).OR.(ITYPE.EQ.4)) THEN
*----
*  SLAB OR SPHERICAL 1D CASE.
*----
         NM=IELEM*EELEM
         LFEP=IELEM*NLF*NREG
         DO 20 IR=1,NREG
         IBM=MATCOD(IR)
         IF(IBM.LE.0) GO TO 20
         DO 15 IEL=1,NM
         IND=(IR-1)*NSCT*NM+(P-1)*NM+IEL
         JG=IJJ(IBM)
         DO 10 JND=1,NJJ(IBM)
         IF(JG.NE.IG) THEN
            QEXT(IND,IG)=QEXT(IND,IG)+FLUX(IND,JG)*
     1      XSCAT(IPOS(IBM)+JND-1)
         ENDIF
         JG=JG-1
   10    CONTINUE
   15    CONTINUE
   20    CONTINUE
      ELSE IF((ITYPE.EQ.5).OR.(ITYPE.EQ.6).OR.(ITYPE.EQ.8)) THEN
*----
*  2D CASES (CARTESIAN OR R-Z).
*----
        NME=IELEM*IELEM
        NM=NME*EELEM
        CALL LCMLEN(IPTRK,'DU',NPQ,ITYLCM)
        LFEP=NME*NPQ*NREG
        DO 70 IR=1,NREG
        IBM=MATCOD(IR)
        IF(IBM.LE.0) GO TO 70
        DO 65 IEL=1,NM
        IND=(IR-1)*NSCT*NM+(P-1)*NM+IEL
        JG=IJJ(IBM)
        DO 60 JND=1,NJJ(IBM)
        IF(JG.NE.IG) THEN
          QEXT(IND,IG)=QEXT(IND,IG)+FLUX(IND,JG)*
     1    XSCAT(IPOS(IBM)+JND-1)
        ENDIF
        JG=JG-1
   60   CONTINUE
   65   CONTINUE
   70   CONTINUE
      ELSE IF(ITYPE.EQ.7) THEN
*----
*  3D CASES (CARTESIAN)
*----
        NME=IELEM*IELEM*IELEM
        NM=NME*EELEM
        CALL LCMLEN(IPTRK,'DU',NPQ,ITYLCM)
        LFEP=NME*NPQ*NREG
        DO 110 IR=1,NREG
        IBM=MATCOD(IR)
        IF(IBM.LE.0) GO TO 110
        DO 100 IEL=1,NM
        IND=(IR-1)*NSCT*NM+(P-1)*NM+IEL
        JG=IJJ(IBM)
        DO 90 JND=1,NJJ(IBM)
        IF(JG.NE.IG) THEN
          QEXT(IND,IG)=QEXT(IND,IG)+FLUX(IND,JG)*
     1    XSCAT(IPOS(IBM)+JND-1)
        ENDIF
        JG=JG-1
   90   CONTINUE
  100   CONTINUE
  110   CONTINUE
      ELSE
        CALL XABORT('SNSBFP: TYPE OF DISCRETIZATION NOT IMPLEMENTED.')
      ENDIF
  130 CONTINUE
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(XSCAT)
      DEALLOCATE(IPOS,NJJ,IJJ)
*----
*  RECOVER SLOWING-DOWN ANGULAR FLUXES
*----
      CALL LCMGET(KPSYS,'DRAGON-DELTE',DELTAE)
      IF(IG.EQ.1) THEN
        QEXT(NUNKNO-LFEP+1:NUNKNO,1)=0.0
      ELSE
        QEXT(NUNKNO-LFEP+1:NUNKNO,IG)=FLUX(NUNKNO-LFEP+1:NUNKNO,IG-1)
     1 *DELTAE
      ENDIF
      RETURN
      END