1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
*DECK SNSBFP
SUBROUTINE SNSBFP(IG,IPTRK,KPMACR,KPSYS,NANIS,NLF,NREG,NMAT,
1 NUNKNO,NGRP,MATCOD,FLUX,QEXT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the QEXT for the solution of SN equations with a Boltzmann-
* Fokker-Planck discretization.
*
*Copyright:
* Copyright (C) 2020 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IG secondary group.
* IPTRK pointer to the tracking LCM object.
* KPMACR pointer to the secondary-group related macrolib information.
* KPSYS pointer to the system matrix information.
* NANIS maximum cross section Legendre order.
* NLF number of Legendre components in the flux.
* NREG number of regions.
* NMAT number of mixtures.
* NUNKNO number of unknowns per energy group including spherical
* harmonic terms, interface currents, fundamental currents
* and slowing-down angular fluxes at group boundary.
* NGRP number of energy groups.
* MATCOD mixture indices.
* FLUX fluxes and slowing-down angular fluxes at group boundary.
*
*Parameters: output
* QEXT sources and slowing-down angular fluxes at group boundary.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,KPMACR,KPSYS
INTEGER IG,NANIS,NLF,NREG,NMAT,NUNKNO,NGRP,MATCOD(NREG)
REAL FLUX(NUNKNO,NGRP),QEXT(NUNKNO,NGRP)
*----
* LOCAL VARIABLES
*----
PARAMETER(NSTATE=40,PI4=12.5663706144)
INTEGER JPAR(NSTATE),EELEM,P
CHARACTER CAN(0:19)*2
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS
REAL, ALLOCATABLE, DIMENSION(:) :: XSCAT
TYPE(C_PTR) IL_PTR,IM_PTR
INTEGER, POINTER, DIMENSION(:) :: IL,IM
*----
* DATA STATEMENTS
*----
DATA CAN /'00','01','02','03','04','05','06','07','08','09',
> '10','11','12','13','14','15','16','17','18','19'/
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IJJ(0:NMAT),NJJ(0:NMAT),IPOS(0:NMAT))
ALLOCATE(XSCAT(0:NMAT*NGRP))
*----
* RECOVER SNT SPECIFIC PARAMETERS
*----
LFEP=0
CALL LCMGET(IPTRK,'STATE-VECTOR',JPAR)
IF(JPAR(1).NE.NREG) CALL XABORT('SNSBFP: INCONSISTENT NREG.')
IF(JPAR(2).NE.NUNKNO) CALL XABORT('SNSBFP: INCONSISTENT NUNKNO.')
IF(JPAR(15).NE.NLF) CALL XABORT('SNSBFP: INCONSISTENT NLF.')
ITYPE=JPAR(6)
NSCT=JPAR(7)
IELEM=JPAR(8)
ISCAT=JPAR(16)
EELEM=JPAR(35)
CALL LCMGPD(IPTRK,'IL',IL_PTR)
CALL LCMGPD(IPTRK,'IM',IM_PTR)
CALL C_F_POINTER(IL_PTR,IL,(/ NSCT /))
CALL C_F_POINTER(IM_PTR,IM,(/ NSCT /))
*----
* CONSTRUCT THE QEXT.
*----
IJJ(0)=0
NJJ(0)=0
IPOS(0)=0
XSCAT(0)=0.0
IOF0=0
DO 130 P=1,NSCT
ILP=IL(P)
IF(ILP.GT.MIN(ISCAT-1,NANIS)) GO TO 130
CALL LCMGET(KPMACR,'NJJS'//CAN(ILP),NJJ(1))
CALL LCMGET(KPMACR,'IJJS'//CAN(ILP),IJJ(1))
CALL LCMGET(KPMACR,'IPOS'//CAN(ILP),IPOS(1))
CALL LCMGET(KPMACR,'SCAT'//CAN(ILP),XSCAT(1))
IF((ITYPE.EQ.2).OR.(ITYPE.EQ.4)) THEN
*----
* SLAB OR SPHERICAL 1D CASE.
*----
NM=IELEM*EELEM
LFEP=IELEM*NLF*NREG
DO 20 IR=1,NREG
IBM=MATCOD(IR)
IF(IBM.LE.0) GO TO 20
DO 15 IEL=1,NM
IND=(IR-1)*NSCT*NM+(P-1)*NM+IEL
JG=IJJ(IBM)
DO 10 JND=1,NJJ(IBM)
IF(JG.NE.IG) THEN
QEXT(IND,IG)=QEXT(IND,IG)+FLUX(IND,JG)*
1 XSCAT(IPOS(IBM)+JND-1)
ENDIF
JG=JG-1
10 CONTINUE
15 CONTINUE
20 CONTINUE
ELSE IF((ITYPE.EQ.5).OR.(ITYPE.EQ.6).OR.(ITYPE.EQ.8)) THEN
*----
* 2D CASES (CARTESIAN OR R-Z).
*----
NME=IELEM*IELEM
NM=NME*EELEM
CALL LCMLEN(IPTRK,'DU',NPQ,ITYLCM)
LFEP=NME*NPQ*NREG
DO 70 IR=1,NREG
IBM=MATCOD(IR)
IF(IBM.LE.0) GO TO 70
DO 65 IEL=1,NM
IND=(IR-1)*NSCT*NM+(P-1)*NM+IEL
JG=IJJ(IBM)
DO 60 JND=1,NJJ(IBM)
IF(JG.NE.IG) THEN
QEXT(IND,IG)=QEXT(IND,IG)+FLUX(IND,JG)*
1 XSCAT(IPOS(IBM)+JND-1)
ENDIF
JG=JG-1
60 CONTINUE
65 CONTINUE
70 CONTINUE
ELSE IF(ITYPE.EQ.7) THEN
*----
* 3D CASES (CARTESIAN)
*----
NME=IELEM*IELEM*IELEM
NM=NME*EELEM
CALL LCMLEN(IPTRK,'DU',NPQ,ITYLCM)
LFEP=NME*NPQ*NREG
DO 110 IR=1,NREG
IBM=MATCOD(IR)
IF(IBM.LE.0) GO TO 110
DO 100 IEL=1,NM
IND=(IR-1)*NSCT*NM+(P-1)*NM+IEL
JG=IJJ(IBM)
DO 90 JND=1,NJJ(IBM)
IF(JG.NE.IG) THEN
QEXT(IND,IG)=QEXT(IND,IG)+FLUX(IND,JG)*
1 XSCAT(IPOS(IBM)+JND-1)
ENDIF
JG=JG-1
90 CONTINUE
100 CONTINUE
110 CONTINUE
ELSE
CALL XABORT('SNSBFP: TYPE OF DISCRETIZATION NOT IMPLEMENTED.')
ENDIF
130 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(XSCAT)
DEALLOCATE(IPOS,NJJ,IJJ)
*----
* RECOVER SLOWING-DOWN ANGULAR FLUXES
*----
CALL LCMGET(KPSYS,'DRAGON-DELTE',DELTAE)
IF(IG.EQ.1) THEN
QEXT(NUNKNO-LFEP+1:NUNKNO,1)=0.0
ELSE
QEXT(NUNKNO-LFEP+1:NUNKNO,IG)=FLUX(NUNKNO-LFEP+1:NUNKNO,IG-1)
1 *DELTAE
ENDIF
RETURN
END
|