summaryrefslogtreecommitdiff
path: root/Dragon/src/SNFT12.F
blob: 1ee44fcabaa9065177f28ed0a5d929551f9c86fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
*DECK SNFT12
      SUBROUTINE SNFT12(NUN,NGEFF,IMPX,INCONV,NGIND,LX,LY,IELEM,NMAT,
     1 NPQ,NSCT,MAT,VOL,TOTAL,NCODE,ZCODE,QEXT,LFIXUP,DU,DE,W,MRM,MRMY,
     2 DB,DA,FUNKNO,ISBS,NBS,ISBSM,BS,MAXL,MN,DN)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one inner iteration for solving SN equations in 2D Cartesian
* geometry for the HODD method. Energy-angle multithreading. Albedo
* boundary conditions.
*
*Copyright:
* Copyright (C) 2020 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NUN     total number of unknowns in vector FUNKNO.
* NGEFF   number of energy groups processed in parallel.
* IMPX    print flag (equal to zero for no print).
* INCONV  energy group convergence flag (set to .FALSE. if converged).
* NGIND   energy group indices assign to the NGEFF set.
* LX      number of meshes along X axis.
* LY      number of meshes along Y axis.
* IELEM   measure of order of the spatial approximation polynomial:
*         =1 constant - classical diamond scheme - default for HODD;
*         =2 linear;
*         =3 parabolic.
* NMAT    number of material mixtures.
* NPQ     number of SN directions in four octants (including zero-weight
*         directions).
* NSCT    maximum number of spherical harmonics moments of the flux.
* MAT     material mixture index in each region.
* VOL     volumes of each region.
* TOTAL   macroscopic total cross sections.
* NCODE   boundary condition indices.
* ZCODE   albedos.
* QEXT    Legendre components of the fixed source.
* LFIXUP  flag to enable negative flux fixup.
* DU      first direction cosines ($\\mu$).
* DE      second direction cosines ($\\eta$).
* W       weights.
* MRM     quadrature index.
* MRMY    quadrature index.
* DB      diamond-scheme parameter.
* DA      diamond-scheme parameter.
* MN      moment-to-discrete matrix.
* DN      discrete-to-moment matrix.
*
*Parameters: input/output
* FUNKNO  Legendre components of the flux and boundary fluxes.
*
*-----------------------------------------------------------------------
*
#if defined(_OPENMP)
      USE omp_lib
#endif
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NUN,NGEFF,IMPX,NGIND(NGEFF),LX,LY,IELEM,NMAT,NPQ,NSCT,
     1 MAT(LX,LY),NCODE(4),MRM(NPQ),MRMY(NPQ),ISBS,NBS,
     2 ISBSM(4*ISBS,NPQ*ISBS,NGEFF*ISBS),MAXL
      LOGICAL INCONV(NGEFF)
      REAL VOL(LX,LY),TOTAL(0:NMAT,NGEFF),ZCODE(4),QEXT(NUN,NGEFF),
     1 DU(NPQ),DE(NPQ),W(NPQ),DB(LX,NPQ),DA(LX,LY,NPQ),
     2 FUNKNO(NUN,NGEFF),BS(MAXL*ISBS,NBS*ISBS),MN(NPQ,NSCT),
     3 DN(NSCT,NPQ)
      LOGICAL LFIXUP
*----
*  LOCAL VARIABLES
*----
      INTEGER NPQD(4),IIND(4),P
      DOUBLE PRECISION Q(IELEM**2),Q2(IELEM**2,(IELEM**2)+1),XNJ(IELEM),
     1 VT,CONST0,CONST1,CONST2
      PARAMETER(IUNOUT=6,RLOG=1.0E-8,PI=3.141592654)
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: INDANG
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:) :: FLUX
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: FLUX_G
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: XNI
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(INDANG(NPQ,4))
      ALLOCATE(XNI(IELEM,LY),FLUX(IELEM**2,NSCT,LX,LY))
      ALLOCATE(FLUX_G(IELEM**2,NSCT,LX,LY,NGEFF))
*----
*  DEFINITION OF CONSTANTS.
*----
      L4=IELEM*IELEM*LX*LY*NSCT
      CONST0=2.0D0*DSQRT(3.0D0)
      CONST1=2.0D0*DSQRT(5.0D0)
      CONST2=2.0D0*DSQRT(15.0D0)
*----
*  PARAMETER VALIDATION.
*----
      IF(IELEM.GT.4) CALL XABORT('SNFT12: INVALID IELEM (DIAM) VALUE. '
     1 //'CHECK INPUT DATA FILE.')
      FLUX_G(:IELEM**2,:NSCT,:LX,:LY,:NGEFF)=0.0D0
*----
*  SET OCTANT SWAPPING ORDER.
*----
      NPQD(:4)=0
      INDANG(:NPQ,:4)=0
      IIND(:)=0
      DO M=1,NPQ
        VU=DU(M)
        VE=DE(M)
        IF(W(M).EQ.0) CYCLE
        IF((VU.GE.0.0).AND.(VE.GE.0.0)) THEN
          IND=1
          JND=4
        ELSE IF((VU.LE.0.0).AND.(VE.GE.0.0)) THEN
          IND=2
          JND=3
        ELSE IF((VU.LE.0.0).AND.(VE.LE.0.0)) THEN
          IND=3
          JND=1
        ELSE
          IND=4
          JND=2
        ENDIF
        IIND(JND)=IND
        NPQD(IND)=NPQD(IND)+1
        INDANG(NPQD(IND),IND)=M
      ENDDO
*----
*  MAIN LOOP OVER OCTANTS.
*----
      DO 190 JND=1,4
      IND=IIND(JND)
*----
*  PRELIMINARY LOOPS FOR SETTING BOUNDARY CONDITIONS.
*----
*$OMP  PARALLEL DO
*$OMP1 PRIVATE(M,IG,WEIGHT,VU,VE,M1,E1,IOF,JOF,IEL,I,J)
*$OMP2 SHARED(FUNKNO) COLLAPSE(2)
      DO 70 IG=1,NGEFF
      DO 60 IPQD=1,NPQD(IND)
      IF(.NOT.INCONV(IG)) GO TO 60
      M=INDANG(IPQD,IND)
      WEIGHT=W(M)
      VU=DU(M)
      VE=DE(M)
      IF(VU.GT.0.0)THEN
         M1=MRM(M)
         IF((NCODE(1).NE.4))THEN
            DO IEL=1,IELEM
               DO J=1,LY
                  IOF=((M-1)*LY+(J-1))*IELEM+IEL
                  JOF=((M1-1)*LY+(J-1))*IELEM+IEL
                  FUNKNO(L4+IOF,IG)=FUNKNO(L4+JOF,IG)
               ENDDO
            ENDDO
         ENDIF
      ELSEIF(VU.LT.0.0)THEN
         M1=MRM(M)
         IF((NCODE(2).NE.4))THEN
            DO IEL=1,IELEM
               DO J=1,LY
                  IOF=((M-1)*LY+(J-1))*IELEM+IEL
                  JOF=((M1-1)*LY+(J-1))*IELEM+IEL
                  FUNKNO(L4+IOF,IG)=FUNKNO(L4+JOF,IG)
               ENDDO
            ENDDO
         ENDIF
      ENDIF
      IF(VE.GT.0.0)THEN
         M1=MRMY(M)
         IF((NCODE(3).NE.4))THEN
            DO IEL=1,IELEM
               DO I=1,LX
                  IOF=((M-1)*LX+(I-1))*IELEM+IEL
                  JOF=((M1-1)*LX+(I-1))*IELEM+IEL
                  FUNKNO(L4+IELEM*LY*NPQ+IOF,IG)=
     >               FUNKNO(L4+IELEM*LY*NPQ+JOF,IG)
               ENDDO
            ENDDO
         ENDIF
      ELSEIF(VE.LT.0.0)THEN
         M1=MRMY(M)
         IF((NCODE(4).NE.4))THEN
            DO IEL=1,IELEM
               DO I=1,LX
                  IOF=((M-1)*LX+(I-1))*IELEM+IEL
                  JOF=((M1-1)*LX+(I-1))*IELEM+IEL
                  FUNKNO(L4+IELEM*LY*NPQ+IOF,IG)=
     >               FUNKNO(L4+IELEM*LY*NPQ+JOF,IG)
               ENDDO
            ENDDO
         ENDIF
      ENDIF
   60 CONTINUE
   70 CONTINUE
*$OMP END PARALLEL DO
*----
*  MAIN SWAPPING LOOPS FOR SN FLUX CALCULATION
*----
*$OMP  PARALLEL DO
*$OMP1 PRIVATE(ITID,FLUX,M,IG,XNI,XNJ,Q,Q2,IOF,IER,II,JJ,IEL,JEL,I,J,K)
*$OMP2 PRIVATE(VT) SHARED(FUNKNO) REDUCTION(+:FLUX_G)
*$OMP3 COLLAPSE(2)
      DO 180 IG=1,NGEFF
      DO 170 IPQD=1,NPQD(IND)
#if defined(_OPENMP)
        ITID=omp_get_thread_num()
#else
        ITID=0
#endif
      IF(IMPX.GT.5) WRITE(IUNOUT,400) ITID,NGIND(IG),IPQD
      IF(.NOT.INCONV(IG)) GO TO 170
      M=INDANG(IPQD,IND)
      FLUX(:IELEM**2,:NSCT,:LX,:LY)=0.0D0
      IF(W(M).EQ.0.0) GO TO 170
*----
*  LOOP OVER X- AND Y-DIRECTED AXES.
*----
      DO 155 II=1,LX
      I=II
      IF((IND.EQ.2).OR.(IND.EQ.3)) I=LX+1-I
      DO 100 IEL=1,IELEM
      IOF=(M-1)*IELEM*LX+(I-1)*IELEM+IEL
      IF((IND.EQ.1).OR.(IND.EQ.2)) THEN
         XNJ(IEL)=FUNKNO(L4+IELEM*LY*NPQ+IOF,IG)*ZCODE(3)
      ELSE
         XNJ(IEL)=FUNKNO(L4+IELEM*LY*NPQ+IOF,IG)*ZCODE(4)
      ENDIF
  100 CONTINUE
      IF(ISBS.EQ.1) THEN
        IF((IND.EQ.3.OR.IND.EQ.4).AND.ISBSM(4,M,IG).NE.0) THEN
          XNJ(1)=XNJ(1)+BS(I,ISBSM(4,M,IG))
        ELSE IF((IND.EQ.1.OR.IND.EQ.2).AND.ISBSM(3,M,IG).NE.0) THEN
          XNJ(1)=XNJ(1)+BS(I,ISBSM(3,M,IG))
        ENDIF
      ENDIF
      DO 140 JJ=1,LY
      J=JJ
      IF((IND.EQ.3).OR.(IND.EQ.4)) J=LY+1-J
      DO 105 IEL=1,IELEM
      IF(II.EQ.1) THEN
         IOF=(M-1)*IELEM*LY+(J-1)*IELEM+IEL
         IF((IND.EQ.1).OR.(IND.EQ.4)) THEN
            XNI(IEL,J)=FUNKNO(L4+IOF,IG)*ZCODE(1)
         ELSE
            XNI(IEL,J)=FUNKNO(L4+IOF,IG)*ZCODE(2)
         ENDIF
      ENDIF
  105 CONTINUE
      IF(ISBS.EQ.1.AND.II.EQ.1) THEN
        IF((IND.EQ.2.OR.IND.EQ.3).AND.ISBSM(2,M,IG).NE.0) THEN
          XNI(1,J)=XNI(1,J)+BS(J,ISBSM(2,M,IG))
        ELSE IF((IND.EQ.1.OR.IND.EQ.4).AND.ISBSM(1,M,IG).NE.0) THEN
          XNI(1,J)=XNI(1,J)+BS(J,ISBSM(1,M,IG))
        ENDIF
      ENDIF 
      IF(MAT(I,J).EQ.0) GO TO 140
*------
      DO 115 IEL=1,IELEM**2
      Q(IEL)=0.0D0
      DO 110 P=1,NSCT
      IOF=((J-1)*LX*NSCT+(I-1)*NSCT+(P-1))*IELEM*IELEM+IEL
      Q(IEL)=Q(IEL)+QEXT(IOF,IG)*MN(M,P)
  110 CONTINUE
  115 CONTINUE
      VT=VOL(I,J)*TOTAL(MAT(I,J),IG)
      Q2(:IELEM**2,:(IELEM**2)+1)=0.0D0
      IF(IELEM.EQ.1) THEN
         Q2(1,1)=2.0D0*ABS(DA(I,J,M))+2.0D0*ABS(DB(I,M))+VT
*        ------
         Q2(1,2)=2.0D0*ABS(DA(I,J,M))*XNI(1,J)+2.0D0*ABS(DB(I,M))
     1           *XNJ(1)+VOL(I,J)*Q(1)
      ELSE IF(IELEM.EQ.2) THEN
         Q2(1,1)=VT
         Q2(2,1)=CONST0*DA(I,J,M)
         Q2(2,2)=-VT-6.0D0*ABS(DA(I,J,M))
         Q2(3,1)=CONST0*DB(I,M)
         Q2(3,3)=-VT-6.0D0*ABS(DB(I,M))
         Q2(4,2)=-CONST0*DB(I,M)
         Q2(4,3)=-CONST0*DA(I,J,M)
         Q2(4,4)=VT+6.0D0*ABS(DA(I,J,M))+6.0D0*ABS(DB(I,M))
*        ------
         Q2(1,5)=VOL(I,J)*Q(1)
         Q2(2,5)=-VOL(I,J)*Q(2)+CONST0*DA(I,J,M)*XNI(1,J)
         Q2(3,5)=-VOL(I,J)*Q(3)+CONST0*DB(I,M)*XNJ(1)
         Q2(4,5)=VOL(I,J)*Q(4)-CONST0*DA(I,J,M)*XNI(2,J)-CONST0*
     1           DB(I,M)*XNJ(2)
      ELSE IF(IELEM.EQ.3) THEN
         Q2(1,1)=VT+2.0D0*ABS(DA(I,J,M))+2.0D0*ABS(DB(I,M))
         Q2(2,2)=-VT-2.0D0*ABS(DB(I,M))
         Q2(3,1)=CONST1*ABS(DA(I,J,M))
         Q2(3,2)=-CONST2*DA(I,J,M)
         Q2(3,3)=VT+1.0D1*ABS(DA(I,J,M))+2.0D0*ABS(DB(I,M))
         Q2(4,4)=-VT-2.0D0*ABS(DA(I,J,M))
         Q2(5,5)=VT
         Q2(6,4)=-CONST1*ABS(DA(I,J,M))
         Q2(6,5)=CONST2*DA(I,J,M)
         Q2(6,6)=-VT-1.0D1*ABS(DA(I,J,M))
         Q2(7,1)=CONST1*ABS(DB(I,M))
         Q2(7,4)=-CONST2*DB(I,M)
         Q2(7,7)=VT+2.0D0*ABS(DA(I,J,M))+1.0D1*ABS(DB(I,M))
         Q2(8,2)=-CONST1*ABS(DB(I,M))
         Q2(8,5)=CONST2*DB(I,M)
         Q2(8,8)=-VT-1.0D1*ABS(DB(I,M))
         Q2(9,3)=CONST1*ABS(DB(I,M))
         Q2(9,6)=-CONST2*DB(I,M)
         Q2(9,7)=CONST1*ABS(DA(I,J,M))
         Q2(9,8)=-CONST2*DA(I,J,M)
         Q2(9,9)=VT+1.0D1*ABS(DA(I,J,M))+1.0D1*ABS(DB(I,M))
*        ------
         Q2(1,10)=VOL(I,J)*Q(1)+2.0D0*ABS(DA(I,J,M))*XNI(1,J)+2.0D0*
     1            ABS(DB(I,M))*XNJ(1)
         Q2(2,10)=-VOL(I,J)*Q(2)-2.0D0*ABS(DB(I,M))*XNJ(2)
         Q2(3,10)=VOL(I,J)*Q(3)+CONST1*ABS(DA(I,J,M))*XNI(1,J)+2.0D0*
     1            ABS(DB(I,M))*XNJ(3)
         Q2(4,10)=-VOL(I,J)*Q(4)-2.0D0*ABS(DA(I,J,M))*XNI(2,J)
         Q2(5,10)=VOL(I,J)*Q(5)
         Q2(6,10)=-VOL(I,J)*Q(6)-CONST1*ABS(DA(I,J,M))*XNI(2,J)
         Q2(7,10)=VOL(I,J)*Q(7)+2.0D0*ABS(DA(I,J,M))*XNI(3,J)+CONST1*
     1            ABS(DB(I,M))*XNJ(1)
         Q2(8,10)=-VOL(I,J)*Q(8)-CONST1*ABS(DB(I,M))*XNJ(2)
         Q2(9,10)=VOL(I,J)*Q(9)+CONST1*ABS(DA(I,J,M))*XNI(3,J)+CONST1*
     1            ABS(DB(I,M))*XNJ(3)
      ELSE IF(IELEM.EQ.4) THEN
         Q2(1,1) = VT
         Q2(2,1) = 2*3**(0.5D0)*DA(I,J,M)
         Q2(2,2) = - VT - 6*ABS(DA(I,J,M))
         Q2(3,3) = VT
         Q2(4,1) = 2*7**(0.5D0)*DA(I,J,M)
         Q2(4,2) = -2*21**(0.5D0)*ABS(DA(I,J,M))
         Q2(4,3) = 2*35**(0.5D0)*DA(I,J,M)
         Q2(4,4) = - VT - 14*ABS(DA(I,J,M))
         Q2(5,1) = 2*3**(0.5D0)*DB(I,M)
         Q2(5,5) = - VT - 6*ABS(DB(I,M))
         Q2(6,2) = -2*3**(0.5D0)*DB(I,M)
         Q2(6,5) = -2*3**(0.5D0)*DA(I,J,M)
         Q2(6,6) = VT + 6*ABS(DB(I,M)) + 6*ABS(DA(I,J,M))
         Q2(7,3) = 2*3**(0.5D0)*DB(I,M)
         Q2(7,7) = - VT - 6*ABS(DB(I,M))
         Q2(8,4) = -2*3**(0.5D0)*DB(I,M)
         Q2(8,5) = -2*7**(0.5D0)*DA(I,J,M)
         Q2(8,6) = 2*21**(0.5D0)*ABS(DA(I,J,M))
         Q2(8,7) = -2*35**(0.5D0)*DA(I,J,M)
         Q2(8,8) = VT + 6*ABS(DB(I,M)) + 14*ABS(DA(I,J,M))
         Q2(9,9) = VT
         Q2(10,9) = 2*3**(0.5D0)*DA(I,J,M)
         Q2(10,10) = - VT - 6*ABS(DA(I,J,M))
         Q2(11,11) = VT
         Q2(12,9) = 2*7**(0.5D0)*DA(I,J,M)
         Q2(12,10) = -2*21**(0.5D0)*ABS(DA(I,J,M))
         Q2(12,11) = 2*35**(0.5D0)*DA(I,J,M)
         Q2(12,12) = - VT - 14*ABS(DA(I,J,M))
         Q2(13,1) = 2*7**(0.5D0)*DB(I,M)
         Q2(13,5) = -2*21**(0.5D0)*ABS(DB(I,M))
         Q2(13,9) = 2*35**(0.5D0)*DB(I,M)
         Q2(13,13) = - VT - 14*ABS(DB(I,M))
         Q2(14,2) = -2*7**(0.5D0)*DB(I,M)
         Q2(14,6) = 2*21**(0.5D0)*ABS(DB(I,M))
         Q2(14,10) = -2*35**(0.5D0)*DB(I,M)
         Q2(14,13) = -2*3**(0.5D0)*DA(I,J,M)
         Q2(14,14) = VT + 14*ABS(DB(I,M)) + 6*ABS(DA(I,J,M))
         Q2(15,3) = 2*7**(0.5D0)*DB(I,M)
         Q2(15,7) = -2*21**(0.5D0)*ABS(DB(I,M))
         Q2(15,11) = 2*35**(0.5D0)*DB(I,M)
         Q2(15,15) = - VT - 14*ABS(DB(I,M))
         Q2(15,16) = -2*35**(0.5D0)*DA(I,J,M)
         Q2(16,4) = -2*7**(0.5D0)*DB(I,M)
         Q2(16,8) = 2*21**(0.5D0)*ABS(DB(I,M))
         Q2(16,12) = -2*35**(0.5D0)*DB(I,M)
         Q2(16,13) = -2*7**(0.5D0)*DA(I,J,M)
         Q2(16,14) = 2*21**(0.5D0)*ABS(DA(I,J,M))
         Q2(16,15) = -2*35**(0.5D0)*DA(I,J,M)
         Q2(16,16) = VT + 14*ABS(DB(I,M)) + 14*ABS(DA(I,J,M))
*        ------
         Q2(1,17) = Q(1)*VOL(I,J)
         Q2(2,17) = -Q(2)*VOL(I,J)
         Q2(3,17) = Q(3)*VOL(I,J)
         Q2(4,17) = -Q(4)*VOL(I,J)
         Q2(5,17) = -Q(5)*VOL(I,J)
         Q2(6,17) = Q(6)*VOL(I,J)
         Q2(7,17) = -Q(7)*VOL(I,J)
         Q2(8,17) = Q(8)*VOL(I,J)
         Q2(9,17) = Q(9)*VOL(I,J)
         Q2(10,17) = -Q(10)*VOL(I,J)
         Q2(11,17) = Q(11)*VOL(I,J)
         Q2(12,17) = -Q(12)*VOL(I,J)
         Q2(13,17) = -Q(13)*VOL(I,J)
         Q2(14,17) = Q(14)*VOL(I,J)
         Q2(15,17) = -Q(15)*VOL(I,J)
         Q2(16,17) = Q(16)*VOL(I,J)

         Q2(2,17) = Q2(2,17) + 2*3**(0.5D0)*DA(I,J,M)*XNI(1,J)
         Q2(4,17) = Q2(4,17) + 2*7**(0.5D0)*DA(I,J,M)*XNI(1,J)
         Q2(5,17) = Q2(5,17) + 2*3**(0.5D0)*DB(I,M)*XNJ(1)
         Q2(6,17) = Q2(6,17) + (- 2*3**(0.5D0)*DB(I,M)*XNJ(2) -
     >   2*3**(0.5D0)*DA(I,J,M)*XNI(2,J))
         Q2(7,17) = Q2(7,17) + 2*3**(0.5D0)*DB(I,M)*XNJ(3)
         Q2(8,17) = Q2(8,17) + (- 2*3**(0.5D0)*DB(I,M)*XNJ(4) -
     >   2*7**(0.5D0)*DA(I,J,M)*XNI(2,J))
         Q2(10,17) = Q2(10,17) + 2*3**(0.5D0)*DA(I,J,M)*XNI(3,J)
         Q2(12,17) = Q2(12,17) + 2*7**(0.5D0)*DA(I,J,M)*XNI(3,J)
         Q2(13,17) = Q2(13,17) + 2*7**(0.5D0)*DB(I,M)*XNJ(1)
         Q2(14,17) = Q2(14,17) + (- 2*7**(0.5D0)*DB(I,M)*XNJ(2) -
     >   2*3**(0.5D0)*DA(I,J,M)*XNI(4,J))
         Q2(15,17) = Q2(15,17) + 2*7**(0.5D0)*DB(I,M)*XNJ(3)
         Q2(16,17) = Q2(16,17) + (- 2*7**(0.5D0)*DB(I,M)*XNJ(4) -
     >   2*7**(0.5D0)*DA(I,J,M)*XNI(4,J))
      ENDIF
*
      DO 125 IEL=1,IELEM**2
      DO 120 JEL=IEL+1,IELEM**2
      Q2(IEL,JEL)=Q2(JEL,IEL)
  120 CONTINUE
  125 CONTINUE
*
      CALL ALSBD(IELEM**2,1,Q2,IER,IELEM**2)
      IF(IER.NE.0) CALL XABORT('SNFT12: SINGULAR MATRIX.')
*
      IF(IELEM.EQ.1) THEN
         IF(LFIXUP.AND.(Q2(1,2).LE.RLOG)) Q2(1,2)=0.0
         XNI(1,J)=2.0D0*Q2(1,2)-XNI(1,J)
         XNJ(1)=2.0D0*Q2(1,2)-XNJ(1)
         IF(LFIXUP.AND.(XNI(1,J).LE.RLOG)) XNI(1,J)=0.0
         IF(LFIXUP.AND.(XNJ(1).LE.RLOG)) XNJ(1)=0.0
      ELSE IF(IELEM.EQ.2) THEN
         XNI(1,J)=XNI(1,J)+SIGN(1.0,DU(M))*CONST0*Q2(2,5)
         XNI(2,J)=XNI(2,J)+SIGN(1.0,DU(M))*CONST0*Q2(4,5)
         XNJ(1)=XNJ(1)+SIGN(1.0,DE(M))*CONST0*Q2(3,5)
         XNJ(2)=XNJ(2)+SIGN(1.0,DE(M))*CONST0*Q2(4,5)
      ELSE IF(IELEM.EQ.3) THEN
         XNI(1,J)=2.0D0*Q2(1,10)+CONST1*Q2(3,10)-XNI(1,J)
         XNI(2,J)=2.0D0*Q2(4,10)+CONST1*Q2(6,10)-XNI(2,J)
         XNI(3,J)=2.0D0*Q2(7,10)+CONST1*Q2(9,10)-XNI(3,J)
         XNJ(1)=2.0D0*Q2(1,10)+CONST1*Q2(7,10)-XNJ(1)
         XNJ(2)=2.0D0*Q2(2,10)+CONST1*Q2(8,10)-XNJ(2)
         XNJ(3)=2.0D0*Q2(3,10)+CONST1*Q2(9,10)-XNJ(3)
      ELSE IF(IELEM.EQ.4) THEN
         XNI(1,J) = XNI(1,J) + SIGN(1.0,DU(M))*2*3
     >   **(0.5D0)*Q2(02,17) + SIGN(1.0,DU(M))*2*7
     >   **(0.5D0)*Q2(04,17)
         XNI(2,J) = XNI(2,J) + SIGN(1.0,DU(M))*2*3
     >   **(0.5D0)*Q2(06,17) + SIGN(1.0,DU(M))*2*7
     >   **(0.5D0)*Q2(08,17)
         XNI(3,J) = XNI(3,J) + SIGN(1.0,DU(M))*2*3
     >   **(0.5D0)*Q2(10,17) + SIGN(1.0,DU(M))*2*7
     >   **(0.5D0)*Q2(12,17)
         XNI(4,J) = XNI(4,J) + SIGN(1.0,DU(M))*2*3
     >   **(0.5D0)*Q2(14,17) + SIGN(1.0,DU(M))*2*7
     >   **(0.5D0)*Q2(16,17)
         XNJ(1)   =   XNJ(1) + SIGN(1.0,DE(M))*2*7
     >   **(0.5D0)*Q2(13,17) + SIGN(1.0,DE(M))*2*3
     >   **(0.5D0)*Q2(05,17)
         XNJ(2)   =   XNJ(2) + SIGN(1.0,DE(M))*2*7
     >   **(0.5D0)*Q2(14,17) + SIGN(1.0,DE(M))*2*3
     >   **(0.5D0)*Q2(06,17)
         XNJ(3)   =   XNJ(3) + SIGN(1.0,DE(M))*2*7
     >   **(0.5D0)*Q2(15,17) + SIGN(1.0,DE(M))*2*3
     >   **(0.5D0)*Q2(07,17)
         XNJ(4)   =   XNJ(4) + SIGN(1.0,DE(M))*2*7
     >   **(0.5D0)*Q2(16,17) + SIGN(1.0,DE(M))*2*3
     >   **(0.5D0)*Q2(08,17)
      ENDIF
*
      DO 135 P=1,NSCT
      DO 130 IEL=1,IELEM**2
      FLUX(IEL,P,I,J)=FLUX(IEL,P,I,J)+Q2(IEL,IELEM**2+1)*DN(P,M)
  130 CONTINUE
  135 CONTINUE
*------
  140 CONTINUE
      DO 150 IEL=1,IELEM
      IOF=(M-1)*IELEM*LX+(I-1)*IELEM+IEL
      FUNKNO(L4+IELEM*LY*NPQ+IOF,IG)=REAL(XNJ(IEL))
  150 CONTINUE
*--
  155 CONTINUE
      DO 165 J=1,LY
      DO 160 IEL=1,IELEM
      IOF=(M-1)*IELEM*LY+(J-1)*IELEM+IEL
      FUNKNO(L4+IOF,IG)=REAL(XNI(IEL,J))
  160 CONTINUE
  165 CONTINUE
      FLUX_G(:,:,:,:,IG)=FLUX_G(:,:,:,:,IG)+FLUX(:,:,:,:)
  170 CONTINUE
  180 CONTINUE
*$OMP END PARALLEL DO
  190 CONTINUE
      DO 200 IG=1,NGEFF
        IF(.NOT.INCONV(IG)) GO TO 200
        FUNKNO(:L4,IG)=
     1  RESHAPE(REAL(FLUX_G(:IELEM**2,:NSCT,:LX,:LY,IG)), (/ L4 /) )
  200 CONTINUE
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(XNI,FLUX_G,FLUX,INDANG)
      RETURN
  400 FORMAT(16H SNFT12: thread=,I8,12H --->(group=,I4,7H angle=,I4,1H))
      END