1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
|
*DECK SNFKH3
SUBROUTINE SNFKH3(NKBA,NUN,NGEFF,IMPX,INCONV,NGIND,NHEX,LZ,ISPLH,
1 SIDE,IELEM,NM,NMX,NMY,NMZ,NMAT,NPQ,NSCT,MAT,VOL,TOTAL,NCODE,
2 ZCODE,QEXT,LFIXUP,DU,DE,DZ,W,MRMZ,DC,DB,DA,MN,DN,WX,WY,WZ,CST,
3 ISADPT,LOZSWP,COORDMAP,FUNKNO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one inner iteration for solving SN equations in 3D Cartesian
* geometry for the HODD method. KBA-like multithreading. Albedo
* boundary conditions on top/bottom, Void on sides. Boltzmann (BTE)
* discretization.
*
*Copyright:
* Copyright (C) 2025 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert, A. A. Calloo and C. Bienvenue
*
*Parameters: input
* NKBA number of macrocells along the z-axis
* NUN total number of unknowns in vector FUNKNO.
* NGEFF number of energy groups processed in parallel.
* IMPX print flag (equal to zero for no print).
* INCONV energy group convergence flag (set to .FALSE. if converged).
* NGIND energy group indices assign to the NGEFF set.
* NHEX number of hexagons in X-Y plane.
* ISPLH splitting option for hexagons.
* SIDE side of an hexagon.
* LZ number of meshes along Z axis.
* IELEM measure of order of the spatial approximation polynomial:
* =1 constant - default for HODD;
* =2 linear - default for DG;
* >3 higher orders.
* NM number of moments in space for flux components
* NMX number of moments for X axis boundaries components
* NMY number of moments for Y axis boundaries components
* NMZ number of moments for Z axis boundaries components
* NMAT number of material mixtures.
* NPQ number of SN directions in height octants.
* NSCT maximum number of spherical harmonics moments of the flux.
* MAT material mixture index in each region.
* VOL volumes of each region.
* TOTAL macroscopic total cross sections.
* ESTOPW stopping power.
* NCODE boundary condition indices.
* ZCODE albedos.
* DELTAE energy group width in MeV.
* QEXT Legendre components of the fixed source.
* LFIXUP flag to enable negative flux fixup.
* DU first direction cosines ($\\mu$).
* DE second direction cosines ($\\eta$).
* DZ third direction cosines ($\\xi$).
* W weights.
* MRMZ quadrature index.
* DC diamond-scheme parameter.
* DB diamond-scheme parameter.
* DA diamond-scheme parameter.
* MN moment-to-discrete matrix.
* DN discrete-to-moment matrix.
* WX spatial X axis closure relation weighting factors.
* WY spatial Y axis closure relation weighting factors.
* WZ spatial Z axis closure relation weighting factors.
* CST constants for the polynomial approximations.
* ISADPT flag to enable/disable adaptive flux calculations.
* LOZSWP lozenge sweep order depending on direction.
* COORDMAP coordinate map - mapping the hexagons from the indices
* within the DRAGON geometry to a Cartesian axial coordinate
* array (see redblobgames.com website).
*
*Parameters: input/output
* FUNKNO Legendre components of the flux and boundary fluxes.
*
*Comments:
* 1. The direction of the axes I, J and D for the surface boundary
* fluxes are shown in the diagram below. This means that
* i) lozenge A has I- and D-boundaries (instead of I and J)
* i) lozenge B has I- and J-boundaries
* i) lozenge C has D- and J-boundaries (instead of I and J)
*
* ^
* j-axis |
* | ^
* _________ / d-axis
* / / \ /
* / B / \
* / / \
* (-------( A )
* \ \ /
* \ C \ /
* \_______\_/ \
* \ i-axis
* ^
*
*-----------------------------------------------------------------------
*
#if defined(_OPENMP)
USE omp_lib
#endif
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NUN,NGEFF,IMPX,NGIND(NGEFF),NHEX,LZ,ISPLH,IELEM,NM,NMX,
1 NMY,NMZ,NMAT,NPQ,NSCT,MAT(ISPLH,ISPLH,3,NHEX,LZ),NCODE(6),
2 MRMZ(NPQ),LOZSWP(3,6),COORDMAP(3,NHEX)
LOGICAL INCONV(NGEFF)
REAL SIDE,VOL(ISPLH,ISPLH,3,NHEX,LZ),ZCODE(6),TOTAL(0:NMAT,NGEFF),
1 QEXT(NUN,NGEFF),DU(NPQ),DE(NPQ),DZ(NPQ),W(NPQ),
2 DC(ISPLH*ISPLH*3*NHEX,1,NPQ),DB(ISPLH*ISPLH*3*NHEX,LZ,NPQ),
3 DA(1,LZ,NPQ),FUNKNO(NUN,NGEFF),WX(IELEM+1),WY(IELEM+1),
4 WZ(IELEM+1),CST(IELEM),MN(NPQ,NSCT),DN(NSCT,NPQ)
LOGICAL LFIXUP,ISADPT(3)
*----
* LOCAL VARIABLES
*----
INTEGER :: NPQD(12),IIND(12),P,DCOORD
REAL :: JAC(2,2,3),MUH,ETAH,XIH,AAA,BBB,CCC,DDD,MUHTEMP,ETAHTEMP,
1 WX0(IELEM+1),WY0(IELEM+1),WZ0(IELEM+1)
DOUBLE PRECISION :: V,Q(NM),Q2(NM,NM+1),THETA,XNI(NMX),
> XNJ(NMY),XNK(NMZ)
PARAMETER(IUNOUT=6,RLOG=1.0E-8,PI=3.141592654)
LOGICAL ISFIX(3),LHEX(NHEX)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: III,JJJ,KKK
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: INDANG
INTEGER, ALLOCATABLE, DIMENSION(:,:,:,:,:,:) :: TMPMAT
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: FLUX
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:,:) :: FLUX_G
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:,:) :: TMPXNI,
> TMPXNJ, TMPXND
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:,:,:) :: TMPXNK
! CALL XABORT('SNFKH3: testing 1')
*----
* MAP MATERIAL VALUES TO CARTESIAN AXIAL COORDINATE MAP
*----
NRINGS=INT((SQRT( REAL((4*NHEX-1)/3) )+1.)/2.)
NCOL=2*NRINGS -1
ALLOCATE(TMPMAT(ISPLH,ISPLH,3,NCOL,NCOL,LZ))
TMPMAT(:,:,:,:,:,:) = -1
DO IZ=1,LZ
DO IHEX_XY=1,NHEX
TMPMAT(:,:,:,COORDMAP(1,IHEX_XY),COORDMAP(2,IHEX_XY),IZ) =
> MAT(:,:,:,IHEX_XY,IZ)
ENDDO
ENDDO
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(INDANG(NPQ,12))
ALLOCATE(FLUX(NM,NSCT))
ALLOCATE(FLUX_G(NM,NSCT,3*ISPLH**2,NHEX,LZ,NGEFF))
ALLOCATE(TMPXNI(NMX,ISPLH,NCOL,LZ,NPQ,NGEFF))
ALLOCATE(TMPXNJ(NMY,ISPLH,NCOL,LZ,NPQ,NGEFF))
ALLOCATE(TMPXND(NMX,ISPLH,NCOL,LZ,NPQ,NGEFF))
ALLOCATE(TMPXNK(NMZ,ISPLH,ISPLH,3,NHEX,NPQ,NGEFF))
*----
* CONSTRUCT JACOBIAN MATRIX FOR EACH LOZENGE
*----
JAC = RESHAPE((/ 1., -SQRT(3.), 1., SQRT(3.), 2., 0., 1.,
> SQRT(3.), 2., 0., -1., SQRT(3.) /), SHAPE(JAC))
JAC = (SIDE/2.)*JAC
*----
* LENGTH OF FUNKNO COMPONENTS (IN ORDER)
*----
LFLX=3*NM*(ISPLH**2)*NHEX*LZ*NSCT
L5=3*NMZ*(ISPLH**2)*NHEX
*----
* NUMBER OF MACROCELLS (MACRO*)
* NUMBER OF LZ LAYERS IN EACH MACROCELL (NCELL*)
*----
MACROZ=NKBA
NCELLZ = (LZ + MACROZ - 1) / MACROZ
*----
* SET DODECANT SWAPPING ORDER.
*----
NPQD(:12)=0
INDANG(:NPQ,:12)=0
IIND(:12)=0
DO M=1,NPQ
VU=DU(M)
VE=DE(M)
VZ=DZ(M)
IF(W(M).EQ.0) CYCLE
THETA=0.0D0
IF(VE.GT.0.0)THEN
IF(VU.EQ.0.0)THEN
THETA = PI/2
ELSEIF(VU.GT.0.0)THEN
THETA = ATAN(ABS(VE/VU))
ELSEIF(VU.LT.0.0)THEN
THETA = PI - ATAN(ABS(VE/VU))
ENDIF
ELSEIF(VE.LT.0.0)THEN
IF(VU.EQ.0.0)THEN
THETA = 3*PI/2
ELSEIF(VU.LT.0.0)THEN
THETA = PI + ATAN(ABS(VE/VU))
ELSEIF(VU.GT.0.0)THEN
THETA = 2.*PI - ATAN(ABS(VE/VU))
ENDIF
ENDIF
! UNFOLD DODECANTS
IND=0
IF(VZ.GE.0.0)THEN
IF((THETA.GT.0.0).AND.(THETA.LT.(PI/3.)))THEN
IND=1
ELSEIF((THETA.GT.(PI/3.)).AND.(THETA.LT.(2.*PI/3.)))THEN
IND=2
ELSEIF((THETA.GT.(2.*PI/3.)).AND.(THETA.LT.(PI)))THEN
IND=3
ELSEIF((THETA.GT.(PI)).AND.(THETA.LT.(4.*PI/3.)))THEN
IND=4
ELSEIF((THETA.GT.(4.*PI/3.)).AND.(THETA.LT.(5.*PI/3.)))THEN
IND=5
ELSEIF((THETA.GT.(5.*PI/3.)).AND.(THETA.LT.(2.*PI)))THEN
IND=6
ENDIF
ELSEIF(VZ.LT.0.0)THEN
IF((THETA.GT.0.0).AND.(THETA.LT.(PI/3.)))THEN
IND=7
ELSEIF((THETA.GT.(PI/3.)).AND.(THETA.LT.(2.*PI/3.)))THEN
IND=8
ELSEIF((THETA.GT.(2.*PI/3.)).AND.(THETA.LT.(PI)))THEN
IND=9
ELSEIF((THETA.GT.(PI)).AND.(THETA.LT.(4.*PI/3.)))THEN
IND=10
ELSEIF((THETA.GT.(4.*PI/3.)).AND.(THETA.LT.(5.*PI/3.)))THEN
IND=11
ELSEIF((THETA.GT.(5.*PI/3.)).AND.(THETA.LT.(2.*PI)))THEN
IND=12
ENDIF
ENDIF
! Assume IIND(I)=I in hexagonal geometry
IIND(IND)=IND
NPQD(IND)=NPQD(IND)+1
INDANG(NPQD(IND),IND)=M
ENDDO
*----
* MAIN LOOP OVER DODECANTS.
*----
FLUX_G(:NM,:NSCT,:3*ISPLH**2,:NHEX,:LZ,:NGEFF)=0.0D0
WX0=WX
WY0=WY
WZ0=WZ
DO JND=1,12
IND=IIND(JND)
IND_XY=MOD(IND-1,6)+1
! Needed because of S2 LS (8 dir. for 12 dodecants)
IF(IND.EQ.0) CYCLE
*----
* PRELIMINARY LOOPS FOR SETTING BOUNDARY CONDITIONS.
*----
IF((NCODE(5).NE.1).or.(NCODE(6).NE.1))THEN
*$OMP PARALLEL DO
*$OMP+ PRIVATE(M,IG,VZ,M1,IOF,JOF,IPQD)
*$OMP+ SHARED(FUNKNO) COLLAPSE(2)
DO IG=1,NGEFF
DO IPQD=1,NPQD(IND)
IF(.NOT.INCONV(IG)) CYCLE
M=INDANG(IPQD,IND)
VZ=DZ(M)
! Z-BOUNDARY
IF(VZ.GT.0.0)THEN
M1=MRMZ(M)
IF(NCODE(5).NE.4)THEN
IOF=(M-1)*(L5)
JOF=(M1-1)*(L5)
FUNKNO(LFLX+IOF+1:LFLX+IOF+L5,IG)=
> FUNKNO(LFLX+JOF+1:LFLX+JOF+L5,IG)
ENDIF
ELSEIF(VZ.LT.0.0)THEN
M1=MRMZ(M)
IF(NCODE(6).NE.4)THEN
IOF=(M-1)*(L5)
JOF=(M1-1)*(L5)
FUNKNO(LFLX+IOF+1:LFLX+IOF+L5,IG)=
> FUNKNO(LFLX+JOF+1:LFLX+JOF+L5,IG)
ENDIF
ENDIF
*
ENDDO
ENDDO
*$OMP END PARALLEL DO
ENDIF
TMPXNI(:NMX,:ISPLH,:NCOL,:LZ,:NPQ,:NGEFF)=0.0D0
TMPXNJ(:NMY,:ISPLH,:NCOL,:LZ,:NPQ,:NGEFF)=0.0D0
TMPXND(:NMX,:ISPLH,:NCOL,:LZ,:NPQ,:NGEFF)=0.0D0
TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX,:NPQ,:NGEFF)=0.0D0
*----
* LOOP OVER WAVEFRONTS
*----
DO IDI=1,NCOL+NCOL+MACROZ-2
*----
* SET SWEEP INDICES
*----
NMAX=MIN(NCOL,IDI)*MIN(NCOL,IDI)
ALLOCATE(III(NMAX),JJJ(NMAX),KKK(NMAX))
NCEL=0
J_STT=MAX(1,IDI-NCOL-MACROZ+2)
J_END=MIN(NCOL,IDI)
DO J_MC=J_STT,J_END
JIM=J_MC
! Account for different sweep direction depending on angle
IF((IND_XY.EQ.1).OR.(IND_XY.EQ.2).OR.(IND_XY.EQ.3)) JIM=NCOL+1-JIM
IF((IND_XY.EQ.1).OR.(IND_XY.EQ.4)) THEN
I_STT=MAX(1,IDI-J_MC-MACROZ+2)
I_END=MIN(NCOL,IDI-J_MC+1)
ELSE
I_STT=MAX(1,NRINGS-J_MC+1)
I_END=MIN(NCOL,IDI-J_MC+(NRINGS+1-J_MC))
ENDIF
DO I_MC=I_STT,I_END
IIM=I_MC
! Account for different sweep direction depending on angle
IF((IND_XY.EQ.2).OR.(IND_XY.EQ.3).OR.(IND_XY.EQ.4)) IIM=NCOL+1-IIM
! For IND_XY 3 or 6, Cartesian axial coordinate map is swept
! vertically instead of horizontally. IM suffix is for 'IMmutable'
I=IIM
J=JIM
IF((IND_XY.EQ.3).OR.(IND_XY.EQ.6))THEN
I=JIM
J=IIM
ENDIF
! If within corners of Cartesian axial coordinate map (where
! there are no hexagons), skip loop
IF(TMPMAT(1,1,1,I,J,1).EQ.-1) CYCLE
! Find I coordinate of macrocell
IF((IND_XY.EQ.1).OR.(IND_XY.EQ.4)) THEN
K_MC=IDI-I_MC-J_MC+2
ELSE
K_MC=IDI-I_MC+NRINGS-((J_MC-1)*2)
ENDIF
IF((K_MC.GT.MACROZ)) CYCLE
K=K_MC
NCEL=NCEL+1
IF(NCEL.GT.NMAX) CALL XABORT('SNFDH3: NMAX OVERFLOW.')
III(NCEL)=I
JJJ(NCEL)=J
KKK(NCEL)=K
ENDDO ! I_MC
ENDDO ! J_MC
*
*----
* MAIN SWAPPING LOOPS FOR SN FLUX CALCULATION
* LOOP OVER MACROCELLS IN WAVEFRONT AND ENERGY
*----
*$OMP PARALLEL DO
*$OMP+ PRIVATE(ITID,FLUX,M,IG,XNI,XNJ,XNK,Q,Q2,IOF,IER,II,JJ,I,J,K,K_MC)
*$OMP+ PRIVATE(IPQD,IBM,SIGMA,V,ISFIX,IX,JX,IY,JY,IZ,JZ,AAA,BBB,CCC,DDD)
*$OMP+ PRIVATE(IIX,IIY,IIZ,P,IEL)
*$OMP+ PRIVATE(LHEX,IHEX_XY,IIHEX,DCOORD,ILOZLOOP,ILOZ,IL,I2,JL,J2)
*$OMP+ PRIVATE(MUHTEMP,MUH,ETAHTEMP,ETAH,XIH,I3,I_FETCH)
*$OMP+ SHARED(IND,TMPXNI,TMPXNJ,TMPXND,TMPXNK,III,JJJ,KKK,FUNKNO)
*$OMP+ FIRSTPRIVATE(WX,WY,WZ,WX0,WY0,WZ0)
*$OMP+ COLLAPSE(2)
! LOOP FOR MACROCELLS TO EXECUTE IN PARALLEL
DO ICEL=1,NCEL
! LOOP FOR GROUPS TO EXECUTE IN PARALLEL
DO IG=1,NGEFF
! LOOP OVER ALL DIRECTIONS
DO IPQD=1,NPQD(IND)
IF(.NOT.INCONV(IG)) CYCLE
M=INDANG(IPQD,IND)
IF(W(M).EQ.0.0) CYCLE
! GET AND PRINT THREAD NUMBER
#if defined(_OPENMP)
ITID=omp_get_thread_num()
#else
ITID=0
#endif
IF(IMPX.GT.5) WRITE(IUNOUT,500) ITID,NGIND(IG),IPQD
I=III(ICEL)
J=JJJ(ICEL)
K_MC=KKK(ICEL)
! Find in X-Y plane DRAGON geometry hexagonal index using I and J
LHEX=(COORDMAP(1,:).EQ.I .AND. COORDMAP(2,:).EQ.J)
IHEX_XY=0
DO IIHEX=1,NHEX
IF(LHEX(IIHEX)) THEN
IHEX_XY=IIHEX
EXIT
ENDIF
ENDDO
IF(IHEX_XY.EQ.0) CALL XABORT('SNFDH3: IHEX_XY FAILURE.')
! Find D coordinate
DCOORD = ABS(COORDMAP(3,IHEX_XY))-NRINGS
IF(IDI.EQ.1)THEN
! PICK UP BOUNDARY ELEMENTS
IF((NCODE(5).NE.1).or.(NCODE(6).NE.1))THEN
IOF=(M-1)*(L5) + 1
TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX,IPQD,IG)=
> RESHAPE(FUNKNO(LFLX+IOF:LFLX+IOF+L5,IG),
> (/NMZ,ISPLH,ISPLH,3,NHEX/))
ENDIF
! ACCOUNT FOR ALBEDO IN BOUNDARY ELEMENTS
IF(IND.LT.7) THEN
TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX,IPQD,IG)=
> TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX,IPQD,IG)*ZCODE(5)
ELSE
TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX,IPQD,IG)=
> TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX,IPQD,IG)*ZCODE(6)
ENDIF
ENDIF
*----
* LOOP OVER Z-AXIS PLANES IN MACROCELL
*----
DO IMZ=1,MIN(NCELLZ,LZ-(K_MC-1)*NCELLZ)
K=(K_MC-1)*NCELLZ+IMZ
IF(IND.GE.7) K=LZ+1-K
*----
* LOOP OVER LOZENGES
*----
DO ILOZLOOP=1,3
ILOZ=LOZSWP(ILOZLOOP,IND_XY)
! Get Jacobian elements values
AAA = JAC(1,1,ILOZ)
BBB = JAC(1,2,ILOZ)
CCC = JAC(2,1,ILOZ)
DDD = JAC(2,2,ILOZ)
! CALL XABORT('SNFKH3: testing 19 ')
*----
* LOOP OVER SUBMESH WITHIN EACH LOZENGE
*----
DO IL=1,ISPLH
I2=IL
! Account for different sweep direction depending on angle
IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
IF((IND_XY.EQ.2).OR.(IND_XY.EQ.3).OR.(IND_XY.EQ.4))I2=ISPLH+1-I2
ELSEIF(ILOZ.EQ.3)THEN
IF((IND_XY.EQ.3).OR.(IND_XY.EQ.4).OR.(IND_XY.EQ.5))I2=ISPLH+1-I2
ENDIF
DO JL=1,ISPLH
J2=JL
! Account for different sweep direction depending on angle
IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
IF((IND_XY.EQ.4).OR.(IND_XY.EQ.5).OR.(IND_XY.EQ.6))J2=ISPLH+1-J2
ELSEIF(ILOZ.EQ.1)THEN
IF((IND_XY.EQ.3).OR.(IND_XY.EQ.4).OR.(IND_XY.EQ.5))J2=ISPLH+1-J2
ENDIF
FLUX(:IELEM**3,:NSCT)=0.0D0
! READ IN XNI AND XNJ DEPENDING ON LOZENGE
I_FETCH=0
IF((ILOZ.EQ.1))THEN
! Read boundary fluxes in reverse for lozenge A since affine
! transformation of lozenges causes the D and I directions
! of lozenges C and A respectively to be reversed
I_FETCH=ISPLH+1-I2
XNI(:) = TMPXNI(:,J2,J,K,IPQD,IG)
XNJ(:) = TMPXND(:,I_FETCH,DCOORD,K,IPQD,IG)
ELSEIF((ILOZ.EQ.2))THEN
XNI(:) = TMPXNI(:,J2,J,K,IPQD,IG)
XNJ(:) = TMPXNJ(:,I2,I,K,IPQD,IG)
ELSEIF((ILOZ.EQ.3))THEN
XNI(:) = TMPXND(:,J2,DCOORD,K,IPQD,IG)
XNJ(:) = TMPXNJ(:,I2,I,K,IPQD,IG)
ENDIF
XNK(:) = TMPXNK(:,I2,J2,ILOZ,IHEX_XY,IPQD,IG)
! DATA
IBM=MAT(I2,J2,ILOZ,IHEX_XY,K)
! Skip loop if virtual element
IF(IBM.EQ.0) CYCLE
SIGMA=TOTAL(IBM,IG)
V=VOL(I2,J2,ILOZ,IHEX_XY,K)
! COMPUTE ADJUSTED DIRECTION COSINES
MUHTEMP = DA(1,K,M)
ETAHTEMP = DB(1,K,M)
MUH = (MUHTEMP*DDD) - (ETAHTEMP*BBB)
ETAH = (-MUHTEMP*CCC) + (ETAHTEMP*AAA)
XIH = DC(1,1,M)
! IF(IND.EQ.12) CALL XABORT('SNFKH3: testing 60 ')
! WRITE(*,*) (((((((K-1)*NHEX+(IHEX_XY-1))*3+(ILOZ-1))*ISPLH+
! > (J2-1))*ISPLH+(I2-1))*NSCT+(2-1))*NM)+1
! WRITE(*,*) K, NHEX, IHEX_XY, ILOZ, ISPLH, J2, I2, NSCT, NM
! CALL XABORT('SNFKH3: testing 2')
! SOURCE DENSITY TERM
DO IEL=1,NM
Q(IEL)=0.0D0
DO P=1,NSCT
IOF=(((((((K-1)*NHEX+(IHEX_XY-1))*3+(ILOZ-1))*ISPLH+(J2-1))*
> ISPLH+(I2-1))*NSCT+(P-1))*NM)+IEL
Q(IEL)=Q(IEL)+QEXT(IOF,IG)*MN(M,P)
ENDDO
ENDDO
! CALL XABORT('SNFKH3: testing 17 ')
ISFIX=.FALSE.
DO WHILE (.NOT.ALL(ISFIX)) ! LOOP FOR ADAPTIVE CALCULATION
! FLUX MOMENT COEFFICIENTS MATRIX
Q2(:NM,:NM+1)=0.0D0
DO IZ=1,IELEM
DO JZ=1,IELEM
DO IY=1,IELEM
DO JY=1,IELEM
DO IX=1,IELEM
DO JX=1,IELEM
II=IELEM**2*(IZ-1)+IELEM*(IY-1)+IX
JJ=IELEM**2*(JZ-1)+IELEM*(JY-1)+JX
! IF(IPQD.EQ.3) CALL XABORT('SNFKH3: testing 69 ')
! CALL XABORT('SNFKH3: testing 17 ')
! DIAGONAL TERMS
IF(II.EQ.JJ) THEN
Q2(II,JJ)=SIGMA*V
1 +CST(IX)**2*WX(JX+1)*ABS(MUH)
2 +CST(IY)**2*WY(JY+1)*ABS(ETAH)
3 +CST(IZ)**2*WZ(JZ+1)*ABS(XIH)
! IF(IND.EQ.12) CALL XABORT('SNFKH3: testing 70 ')
! CALL XABORT('SNFKH3: testing 191 ')
! UPPER DIAGONAL TERMS
ELSEIF(II.LT.JJ) THEN
! CALL XABORT('SNFKH3: testing 1919 ')
IF(IZ.EQ.JZ) THEN
IF(IY.EQ.JY) THEN
! X-SPACE TERMS
IF(MOD(IX+JX,2).EQ.1) THEN
Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*MUH
ELSE
Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(MUH)
ENDIF
ELSEIF(IX.EQ.JX) THEN
! Y-SPACE TERMS
IF(MOD(IY+JY,2).EQ.1) THEN
Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ETAH
ELSE
Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ABS(ETAH)
ENDIF
ENDIF
ELSEIF(IY.EQ.JY.AND.IX.EQ.JX) THEN
! Z-SPACE TERMS
IF(MOD(IZ+JZ,2).EQ.1) THEN
Q2(II,JJ)=CST(IZ)*CST(JZ)*WZ(JZ+1)*XIH
ELSE
Q2(II,JJ)=CST(IZ)*CST(JZ)*WZ(JZ+1)*ABS(XIH)
ENDIF
ENDIF
! IF(IND.EQ.12) CALL XABORT('SNFKH3: testing 75 ')
! CALL XABORT('SNFKH3: testing 19 ')
! UNDER DIAGONAL TERMS
ELSE
! CALL XABORT('SNFKH3: testing 1920 ')
IF(IZ.EQ.JZ) THEN
IF(IY.EQ.JY) THEN
! X-SPACE TERMS
IF(MOD(IX+JX,2).EQ.1) THEN
Q2(II,JJ)=CST(IX)*CST(JX)*(WX(JX+1)-2)*MUH
ELSE
Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(MUH)
ENDIF
ELSEIF(IX.EQ.JX) THEN
! Y-SPACE TERMS
IF(MOD(IY+JY,2).EQ.1) THEN
Q2(II,JJ)=CST(IY)*CST(JY)*(WY(JY+1)-2)*ETAH
ELSE
Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ABS(ETAH)
ENDIF
ENDIF
ELSEIF(IY.EQ.JY.AND.IX.EQ.JX) THEN
! Z-SPACE TERMS
IF(MOD(IZ+JZ,2).EQ.1) THEN
Q2(II,JJ)=CST(IZ)*CST(JZ)*(WZ(JZ+1)-2)*XIH
ELSE
Q2(II,JJ)=CST(IZ)*CST(JZ)*WZ(JZ+1)*ABS(XIH)
ENDIF
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
! FLUX SOURCE VECTOR
DO IZ=1,IELEM
DO IY=1,IELEM
DO IX=1,IELEM
II=IELEM**2*(IZ-1)+IELEM*(IY-1)+IX
IIX=IELEM*(IZ-1)+IY
IIY=IELEM*(IZ-1)+IX
IIZ=IELEM*(IY-1)+IX
Q2(II,NM+1)=Q(II)*V
! X-SPACE TERMS
IF(MOD(IX,2).EQ.1) THEN
Q2(II,NM+1)=Q2(II,NM+1)+CST(IX)*(1-WX(1))
1 *XNI(IIX)*ABS(MUH)
ELSE
Q2(II,NM+1)=Q2(II,NM+1)-CST(IX)*(1+WX(1))
1 *XNI(IIX)*MUH
ENDIF
! Y-SPACE TERMS
IF(MOD(IY,2).EQ.1) THEN
Q2(II,NM+1)=Q2(II,NM+1)+CST(IY)*(1-WY(1))
1 *XNJ(IIY)*ABS(ETAH)
ELSE
Q2(II,NM+1)=Q2(II,NM+1)-CST(IY)*(1+WY(1))
1 *XNJ(IIY)*ETAH
ENDIF
! Z-SPACE TERMS
IF(MOD(IZ,2).EQ.1) THEN
Q2(II,NM+1)=Q2(II,NM+1)+CST(IZ)*(1-WZ(1))
1 *XNK(IIZ)*ABS(XIH)
ELSE
Q2(II,NM+1)=Q2(II,NM+1)-CST(IZ)*(1+WZ(1))
1 *XNK(IIZ)*XIH
ENDIF
ENDDO
ENDDO
ENDDO
CALL ALSBD(NM,1,Q2,IER,NM)
IF(IER.NE.0) CALL XABORT('SNFKH3: SINGULAR MATRIX.')
! ADAPTIVE CORRECTION OF WEIGHTING PARAMETERS
IF(ANY(ISADPT)) THEN
IF(ISADPT(1)) THEN
CALL SNADPT(IELEM,NM,IELEM**2,Q2(1:IELEM:1,NM+1),
1 XNI(:NMX),1.0,WX,ISFIX(1))
ELSE
ISFIX(1)=.TRUE.
ENDIF
IF(ISADPT(2)) THEN
CALL SNADPT(IELEM,NM,IELEM**2,Q2(1:IELEM**2:IELEM,NM+1),
1 XNJ(:NMY),1.0,WY,ISFIX(2))
ELSE
ISFIX(2)=.TRUE.
ENDIF
IF(ISADPT(3)) THEN
CALL SNADPT(IELEM,NM,IELEM**2,Q2(1:NM:IELEM**2,NM+1),
1 XNK(:NMZ),1.0,WZ,ISFIX(3))
ELSE
ISFIX(3)=.TRUE.
ENDIF
ELSE
ISFIX=.TRUE.
ENDIF
END DO ! END OF ADAPTIVE LOOP
! CLOSURE RELATIONS
IF(IELEM.EQ.1.AND.LFIXUP.AND.(Q2(1,2).LE.RLOG)) Q2(1,2)=0.0
! Read XNI/XNI/XNK into TMPXNI/J/D/K
IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
TMPXNI(:NMX,J2,J,K,IPQD,IG)=WX(1)*XNI(:NMX)
ELSE
TMPXND(:NMX,J2,DCOORD,K,IPQD,IG)=WX(1)*XNI(:NMX)
ENDIF
IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
TMPXNJ(:NMY,I2,I,K,IPQD,IG)=WY(1)*XNJ(:NMY)
ELSE
I3=I_FETCH
TMPXND(:NMY,I3,DCOORD,K,IPQD,IG)=WY(1)*XNJ(:NMY)
ENDIF
TMPXNK(:NMZ,I2,J2,ILOZ,IHEX_XY,IPQD,IG)=WZ(1)*XNK(:NMZ)
DO IZ=1,IELEM
DO IY=1,IELEM
DO IX=1,IELEM
II=IELEM**2*(IZ-1)+IELEM*(IY-1)+IX
IIX=IELEM*(IZ-1)+IY
IIY=IELEM*(IZ-1)+IX
IIZ=IELEM*(IY-1)+IX
! X-SPACE
! Assign I-boundary fluxes if lozenges A or B
IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
IF(MOD(IX,2).EQ.1) THEN
TMPXNI(IIX,J2,J,K,IPQD,IG)=TMPXNI(IIX,J2,J,K,IPQD,IG)+
1 CST(IX)*WX(IX+1)*Q2(II,NM+1)
ELSE
TMPXNI(IIX,J2,J,K,IPQD,IG)=TMPXNI(IIX,J2,J,K,IPQD,IG)+
1 CST(IX)*WX(IX+1)*Q2(II,NM+1)*SIGN(1.0,MUH)
ENDIF
ENDIF
! Y-SPACE
! Assign J-boundary fluxes if lozenges B or C
IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
IF(MOD(IY,2).EQ.1) THEN
TMPXNJ(IIY,I2,I,K,IPQD,IG)=TMPXNJ(IIY,I2,I,K,IPQD,IG)+
1 CST(IY)*WY(IY+1)*Q2(II,NM+1)
ELSE
TMPXNJ(IIY,I2,I,K,IPQD,IG)=TMPXNJ(IIY,I2,I,K,IPQD,IG)+
1 CST(IY)*WY(IY+1)*Q2(II,NM+1)*SIGN(1.0,ETAH)
ENDIF
ENDIF
! D-SPACE
! Assign D-boundary fluxes if lozenge A using XNJ
IF((ILOZ.EQ.1))THEN
I3=I_FETCH
IF(MOD(IY,2).EQ.1) THEN
TMPXND(IIY,I3,DCOORD,K,IPQD,IG)=
1 TMPXND(IIY,I3,DCOORD,K,IPQD,IG)+CST(IY)*WY(IY+1)*Q2(II,NM+1)
ELSE
TMPXND(IIY,I3,DCOORD,K,IPQD,IG)=
1 TMPXND(IIY,I3,DCOORD,K,IPQD,IG)+CST(IY)*WY(IY+1)
1 *Q2(II,NM+1)*SIGN(1.0,ETAH)
ENDIF
ENDIF
! Assign D-boundary fluxes if lozenge C using XNI
IF((ILOZ.EQ.3))THEN
IF(MOD(IX,2).EQ.1) THEN
TMPXND(IIX,J2,DCOORD,K,IPQD,IG)=
1 TMPXND(IIX,J2,DCOORD,K,IPQD,IG)+CST(IX)*WX(IX+1)*Q2(II,NM+1)
ELSE
TMPXND(IIX,J2,DCOORD,K,IPQD,IG)=
1 TMPXND(IIX,J2,DCOORD,K,IPQD,IG)+CST(IX)*WX(IX+1)
1 *Q2(II,NM+1)*SIGN(1.0,MUH)
ENDIF
ENDIF
! Z-SPACE
IF(MOD(IZ,2).EQ.1) THEN
TMPXNK(IIZ,I2,J2,ILOZ,IHEX_XY,IPQD,IG)=
1 TMPXNK(IIZ,I2,J2,ILOZ,IHEX_XY,IPQD,IG)+
1 CST(IZ)*WZ(IZ+1)*Q2(II,NM+1)
ELSE
TMPXNK(IIZ,I2,J2,ILOZ,IHEX_XY,IPQD,IG)=
1 TMPXNK(IIZ,I2,J2,ILOZ,IHEX_XY,IPQD,IG)+
1 CST(IZ)*WZ(IZ+1)*Q2(II,NM+1)*SIGN(1.0,XIH)
ENDIF
ENDDO
ENDDO
ENDDO
! FLIP GRADIENTS IF NECESSARY
DO IZ=1,IELEM
DO IY=1,IELEM
IIX=IELEM*(IZ-1)+IY
IF((MOD(IY,2).EQ.0).AND.(ILOZ.EQ.3).AND.(IL.EQ.ISPLH))
1 TMPXND(IIX,J2,DCOORD,K,IPQD,IG)=
1 TMPXND(IIX,J2,DCOORD,K,IPQD,IG)*(-1)
ENDDO
ENDDO
I3=I_FETCH
DO IZ=1,IELEM
DO IX=1,IELEM
IIY=IELEM*(IZ-1)+IX
IF((MOD(IX,2).EQ.0).AND.(ILOZ.EQ.1).AND.(JL.EQ.ISPLH))
1 TMPXND(IIY,I3,DCOORD,K,IPQD,IG)=
1 TMPXND(IIY,I3,DCOORD,K,IPQD,IG)*(-1)
ENDDO
ENDDO
! LFIXUP
IF(IELEM.EQ.1.AND.LFIXUP)THEN
IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
IF(TMPXNI(1,J2,J,K,IPQD,IG).LE.RLOG)
1 TMPXNI(1,J2,J,K,IPQD,IG)=0.0
ELSE
IF(TMPXND(1,J2,DCOORD,K,IPQD,IG).LE.RLOG)
1 TMPXND(1,J2,DCOORD,K,IPQD,IG)=0.0
ENDIF
IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
IF(TMPXNJ(1,I2,I,K,IPQD,IG).LE.RLOG)
1 TMPXNJ(1,I2,I,K,IPQD,IG)=0.0
ELSE
I3=I_FETCH
IF(TMPXND(1,I3,DCOORD,K,IPQD,IG).LE.RLOG)
1 TMPXND(1,I3,DCOORD,K,IPQD,IG)=0.0
ENDIF
IF(TMPXNK(1,I2,J2,ILOZ,IHEX_XY,IPQD,IG).LE.RLOG)
1 TMPXNK(1,I2,J2,ILOZ,IHEX_XY,IPQD,IG)=0.0
ENDIF
WX=WX0
WY=WY0
WZ=WZ0
! SAVE LEGENDRE MOMENT OF THE FLUX
DO P=1,NSCT
DO IEL=1,NM
FLUX(IEL,P)=FLUX(IEL,P)+Q2(IEL,NM+1)*DN(P,M)
ENDDO
ENDDO
IOF=((ILOZ-1)*ISPLH+(J2-1))*ISPLH+I2
FLUX_G(:,:,IOF,IHEX_XY,K,IG)=FLUX_G(:,:,IOF,IHEX_XY,K,IG)+
1 FLUX(:,:)
ENDDO ! END OF WITHIN LOZENGE J-LOOP
ENDDO ! END OF WITHIN LOZENGE I-LOOP
ENDDO ! END OF LOZENGE LOOP
ENDDO ! END OF Z-LOOP
! SAVE K-BOUNDARY CONDITIONS IF NOT VOID B.C.
IF(IDI.EQ.NCOL+NCOL+MACROZ-2)THEN
IF((NCODE(5).NE.1).or.(NCODE(6).NE.1))THEN
IOF=(M-1)*(L5)
FUNKNO(LFLX+IOF+1:LFLX+IOF+L5,IG)=
> RESHAPE(REAL(TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX,IPQD,IG)),
> (/L5/))
ENDIF
ENDIF
ENDDO ! END OF DIRECTION LOOP
ENDDO ! END OF ENERGY LOOP
ENDDO ! END OF MACROCELL (WITHIN ONE WAVEFRONT) LOOP
*$OMP END PARALLEL DO
DEALLOCATE(JJJ,III,KKK)
ENDDO ! END OF WAVEFRONT LOOP
ENDDO ! END OF OCTANT LOOP
! SAVE FLUX INFORMATION
DO IG=1,NGEFF
IF(.NOT.INCONV(IG)) CYCLE
FUNKNO(:LFLX,IG)=
1 RESHAPE(REAL(FLUX_G(:NM,:NSCT,:3*ISPLH**2,:NHEX,:LZ,IG)),
2 (/LFLX/))
ENDDO
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(FLUX_G,FLUX,INDANG,TMPXNI,TMPXNJ,TMPXND,TMPXNK,TMPMAT)
RETURN
500 FORMAT(16H SNFKH3: thread=,I8,12H --->(group=,I4,7H angle=,I4,1H))
END
|