summaryrefslogtreecommitdiff
path: root/Dragon/src/SNFE3D.F
blob: d0c8cf49fcfaeb80aa73e2df8a85e385eee8cf32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
*DECK SNFP13
      SUBROUTINE SNFE3D(NUN,NGEFF,IMPX,INCONV,NGIND,LX,LY,LZ,
     1 IELEM,EELEM,NM,NME,NMX,NMY,NMZ,NMAT,NPQ,NSCT,MAT,VOL,TOTAL,
     2 ESTOPW,NCODE,ZCODE,DELTAE,QEXT,LFIXUP,DU,DE,DZ,W,MRMX,MRMY,MRMZ,
     3 DC,DB,DA,FUNKNO,ISLG,FLUXC,ISBS,NBS,ISBSM,BS,MAXL,WX,WY,WZ,WE,
     4 CST,ISADPT,IBFP,MN,DN)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one inner iteration for solving SN equations in 3D Cartesian
* geometry for the HODD method. Energy-angle multithreading. Albedo
* boundary conditions. Boltzmann-Fokker-Planck (BFP) discretization.
*
*Copyright:
* Copyright (C) 2021 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert, A. A. Calloo and C. Bienvenue
*
*Parameters: input
* NUN     total number of unknowns in vector FUNKNO.
* NGEFF   number of energy groups processed in parallel.
* IMPX    print flag (equal to zero for no print).
* INCONV  energy group convergence flag (set to .FALSE. if converged).
* NGIND   energy group indices assign to the NGEFF set.
* LX      number of meshes along X axis.
* LY      number of meshes along Y axis.
* LZ      number of meshes along Z axis.
* IELEM   measure of order of the spatial approximation polynomial:
*         =1 constant - default for HODD;
*         =2 linear - default for DG;
*         >3 higher orders.
* EELEM   measure of order of the energy approximation polynomial:
*         =1 constant - default for HODD;
*         =2 linear - default for DG;
*         >3 higher orders.
* NM      number of moments in space and energy for flux components
* NME     number of moments for energy boundaries components
* NMX     number of moments for X axis boundaries components
* NMY     number of moments for Y axis boundaries components
* NMZ     number of moments for Z axis boundaries components
* NMAT    number of material mixtures.
* NPQ     number of SN directions in height octants.
* NSCT    maximum number of spherical harmonics moments of the flux.
* MAT     material mixture index in each region.
* VOL     volumes of each region.
* TOTAL   macroscopic total cross sections.
* ESTOPW  stopping power.
* NCODE   boundary condition indices.
* ZCODE   albedos.
* DELTAE  energy group width in MeV.
* QEXT    Legendre components of the fixed source.
* LFIXUP  flag to enable negative flux fixup.
* DU      first direction cosines ($\\mu$).
* DE      second direction cosines ($\\eta$).
* DZ      third direction cosines ($\\xi$).
* W       weights.
* MRMX    quadrature index.
* MRMY    quadrature index.
* MRMZ    quadrature index.
* DC      diamond-scheme parameter.
* DB      diamond-scheme parameter.
* DA      diamond-scheme parameter.
* MN      moment-to-discrete matrix.
* DN      discrete-to-moment matrix.
* ISBS    flag to indicate the presence or not of boundary fixed
*         sources.
* NBS     number of boundary fixed sources.
* ISBSM   flag array to indicate the presence or not of boundary fixed
*         source in each unit surface.
* BS      boundary source array with their intensities.
* MAXL    maximum size of boundary source array.
* WX      spatial X axis closure relation weighting factors.
* WY      spatial Y axis closure relation weighting factors.
* WZ      spatial Z axis closure relation weighting factors.
* WE      energy closure relation weighting factors.
* CST     constants for the polynomial approximations.
* ISADPTX flag to enable/disable adaptive X axis flux calculations.
* ISADPTY flag to enable/disable adaptive Y axis flux calculations.
* ISADPTZ flag to enable/disable adaptive Z axis flux calculations.
* ISADPTE flag to enable/disable adaptive energy flux calculations.
* IBFP    type of energy proparation relation:
*         =1 Galerkin type;
*         =2 heuristic Przybylski and Ligou type.
*
*Parameters: input/output
* FUNKNO  Legendre components of the flux and boundary fluxes.
* FLUXC   flux at the cutoff energy.
*
*-----------------------------------------------------------------------
*
#if defined(_OPENMP)
      USE omp_lib
#endif
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NUN,NGEFF,IMPX,NGIND(NGEFF),LX,LY,LZ,IELEM,EELEM,NM,NME,
     1 NMX,NMY,NMZ,NMAT,NPQ,NSCT,MAT(LX,LY,LZ),NCODE(6),MRMX(NPQ),
     2 MRMY(NPQ),MRMZ(NPQ),ISLG(NGEFF),ISBS,NBS,
     3 ISBSM(6*ISBS,NPQ*ISBS,NGEFF*ISBS),MAXL
      LOGICAL INCONV(NGEFF)
      REAL VOL(LX,LY,LZ),TOTAL(0:NMAT,NGEFF),ESTOPW(0:NMAT,2,NGEFF),
     1 ZCODE(6),DELTAE(NGEFF),QEXT(NUN,NGEFF),DU(NPQ),DE(NPQ),DZ(NPQ),
     2 W(NPQ),DC(LX,LY,NPQ),DB(LX,LZ,NPQ),DA(LY,LZ,NPQ),
     3 FUNKNO(NUN,NGEFF),FLUXC(LX,LY,LZ),BS(MAXL*ISBS,NBS*ISBS),
     4 WX(IELEM+1),WY(IELEM+1),WZ(IELEM+1),WE(EELEM+1),
     5 CST(MAX(IELEM,EELEM)),MN(NPQ,NSCT),DN(NSCT,NPQ)
      LOGICAL LFIXUP,ISADPT(4)
*----
*  LOCAL VARIABLES
*----
      INTEGER NPQD(8),IIND(8),P
      PARAMETER(IUNOUT=6,RLOG=1.0E-8,PI=3.141592654)
      REAL BM,BP,WX0(IELEM+1),WY0(IELEM+1),WZ0(IELEM+1),WE0(EELEM+1)
      DOUBLE PRECISION V,Q(NM),Q2(NM,NM+1),FEP(NME),XNK(NMZ)
      LOGICAL ISFIX(4)
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: INDANG
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: FLUX,FLUX0
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:,:) :: FLUX_G,
     1 FLUX0_G
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: XNI
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: XNJ
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(INDANG(NPQ,8))
      ALLOCATE(XNI(NMX,LY,LZ),XNJ(NMY,LZ))
      ALLOCATE(FLUX(NM,NSCT,LX,LY,LZ),
     1 FLUX0(NME,NPQ,LX,LY,LZ))
      ALLOCATE(FLUX_G(NM,NSCT,LX,LY,LZ,NGEFF),
     1 FLUX0_G(NME,NPQ,LX,LY,LZ,NGEFF))
*----
*  LENGTH OF FUNKNO COMPONENTS (IN ORDER)
*----
      LFLX=NM*LX*LY*LZ*NSCT
      LXNI=NMX*LY*LZ*NPQ
      LXNJ=NMY*LX*LZ*NPQ
      LXNK=NMZ*LX*LY*NPQ
      LFEP=NME*LX*LY*LZ*NPQ
*----
*  SET OCTANT SWAPPING ORDER.
*----
      NPQD(:8)=0
      INDANG(:NPQ,:8)=0
      DO 10 M=1,NPQ
        VU=DU(M)
        VE=DE(M)
        VZ=DZ(M)
        IF((VU.GE.0.0).AND.(VE.GE.0.0).AND.(VZ.GE.0.0)) THEN
          IND=1
          JND=8
        ELSE IF((VU.LE.0.0).AND.(VE.GE.0.0).AND.(VZ.GE.0.0)) THEN
          IND=2
          JND=7
        ELSE IF((VU.LE.0.0).AND.(VE.LE.0.0).AND.(VZ.GE.0.0)) THEN
          IND=3
          JND=5
        ELSE IF((VU.GE.0.0).AND.(VE.LE.0.0).AND.(VZ.GE.0.0)) THEN
          IND=4
          JND=6
        ELSE IF((VU.GE.0.0).AND.(VE.GE.0.0).AND.(VZ.LE.0.0)) THEN
          IND=5
          JND=4
        ELSE IF((VU.LE.0.0).AND.(VE.GE.0.0).AND.(VZ.LE.0.0)) THEN
          IND=6
          JND=3
        ELSE IF((VU.LE.0.0).AND.(VE.LE.0.0).AND.(VZ.LE.0.0)) THEN
          IND=7
          JND=1
        ELSE
          IND=8
          JND=2
        ENDIF
        IIND(JND)=IND
        NPQD(IND)=NPQD(IND)+1
        INDANG(NPQD(IND),IND)=M
   10 CONTINUE
*----
*  MAIN LOOP OVER OCTANTS.
*----

      FLUX_G(:NM,:NSCT,:LX,:LY,:LZ,:NGEFF)=0.0D0
      FLUX0_G(:NME,:NPQ,:LX,:LY,:LZ,:NGEFF)=0.0D0

      DO 420 JND=1,8
      IND=IIND(JND)
*----
*  PRELIMINARY LOOPS FOR SETTING BOUNDARY CONDITIONS.
*----

*$OMP  PARALLEL DO
*$OMP+ PRIVATE(M,IG,VU,VE,VZ,M1,IOF,JOF,IEL,I,J,K,IPQD,E1)
*$OMP+ SHARED(FUNKNO) COLLAPSE(2)

      DO 150 IG=1,NGEFF
      DO 140 IPQD=1,NPQD(IND)
      IF(.NOT.INCONV(IG)) GO TO 140
      M=INDANG(IPQD,IND)
      VU=DU(M)
      VE=DE(M)
      VZ=DZ(M)
      ! X-BOUNDARY
      IF(VU.GT.0.0)THEN
         M1=MRMX(M)
         IF(NCODE(1).NE.4)THEN
         DO IEL=1,NMX
            DO J=1,LY
            DO K=1,LZ
             IOF=(((M-1)*LZ+(K-1))*LY+(J-1))*NMX+IEL
             JOF=(((M1-1)*LZ+(K-1))*LY+(J-1))*NMX+IEL
             FUNKNO(LFLX+IOF,IG)=FUNKNO(LFLX+JOF,IG)
            ENDDO
            ENDDO
         ENDDO
         ENDIF
      ELSEIF(VU.LT.0.0)THEN
         M1=MRMX(M)
         IF(NCODE(2).NE.4)THEN
         DO IEL=1,NMX
            DO J=1,LY
            DO K=1,LZ
             IOF=(((M-1)*LZ+(K-1))*LY+(J-1))*NMX+IEL
             JOF=(((M1-1)*LZ+(K-1))*LY+(J-1))*NMX+IEL
             FUNKNO(LFLX+IOF,IG)=FUNKNO(LFLX+JOF,IG)
            ENDDO
            ENDDO
         ENDDO
         ENDIF
      ENDIF
      ! Y-BOUNDARY
      IF(VE.GT.0.0)THEN
         M1=MRMY(M)
         IF(NCODE(3).NE.4)THEN
         DO IEL=1,NMY
            DO I=1,LX
            DO K=1,LZ
             IOF=(((M-1)*LZ+(K-1))*LX+(I-1))*NMY+IEL
             JOF=(((M1-1)*LZ+(K-1))*LX+(I-1))*NMY+IEL
             FUNKNO(LFLX+LXNI+IOF,IG)=FUNKNO(LFLX+LXNI+JOF,IG)
            ENDDO
            ENDDO
         ENDDO
         ENDIF
      ELSEIF(VE.LT.0.0)THEN
         M1=MRMY(M)
         IF(NCODE(4).NE.4)THEN
         DO IEL=1,NMY
            DO I=1,LX
            DO K=1,LZ
             IOF=(((M-1)*LZ+(K-1))*LX+(I-1))*NMY+IEL
             JOF=(((M1-1)*LZ+(K-1))*LX+(I-1))*NMY+IEL
             FUNKNO(LFLX+LXNI+IOF,IG)=FUNKNO(LFLX+LXNI+JOF,IG)
            ENDDO
            ENDDO
         ENDDO
         ENDIF
      ENDIF
      ! Z-BOUNDARY
      IF(VZ.GT.0.0)THEN
         M1=MRMZ(M)
         IF(NCODE(5).NE.4)THEN
         DO IEL=1,NMZ
            DO I=1,LX
            DO J=1,LY
             IOF=(((M-1)*LY+(J-1))*LX+(I-1))*NMZ+IEL
             JOF=(((M1-1)*LY+(J-1))*LX+(I-1))*NMZ+IEL
             E1=FUNKNO(LFLX+LXNI+LXNJ+IOF,IG)
             FUNKNO(LFLX+LXNI+LXNJ+IOF,IG)=FUNKNO(LFLX+LXNI+LXNJ+JOF,IG)
             FUNKNO(LFLX+LXNI+LXNJ+JOF,IG)=E1
            ENDDO
            ENDDO
         ENDDO
         ENDIF
      ELSEIF(VZ.LT.0.0)THEN
         M1=MRMZ(M)
         IF(NCODE(6).NE.4)THEN
         DO IEL=1,NMZ
            DO I=1,LX
            DO J=1,LY
             IOF=(((M-1)*LY+(J-1))*LX+(I-1))*NMZ+IEL
             JOF=(((M1-1)*LY+(J-1))*LX+(I-1))*NMZ+IEL
             E1=FUNKNO(LFLX+LXNI+LXNJ+IOF,IG)
             FUNKNO(LFLX+LXNI+LXNJ+IOF,IG)=FUNKNO(LFLX+LXNI+LXNJ+JOF,IG)
             FUNKNO(LFLX+LXNI+LXNJ+JOF,IG)=E1
            ENDDO
            ENDDO
         ENDDO
         ENDIF
      ENDIF
  140 CONTINUE
  150 CONTINUE

*$OMP END PARALLEL DO

*----
*  MAIN SWAPPING LOOPS FOR SN FLUX CALCULATION
*----

*$OMP  PARALLEL DO
*$OMP+ PRIVATE(ITID,FLUX,M,IG,XNI,XNJ,XNK,Q,Q2,IOF,IER,II,JJ,IEL,I,J,K)
*$OMP+ PRIVATE(FEP,FLUX0,BM,BP,IIE,IIX,IIY,IIZ,IX,IY,IZ)
*$OMP+ PRIVATE(IE,ISFIX,JX,JY,JZ,JE,TB,V,SIGMA,IBM,I0,J0,K0,L,IPQD)
*$OMP+ FIRSTPRIVATE(WE,WX,WY,WZ,WE0,WX0,WY0,WZ0) SHARED(FUNKNO)
*$OMP+ REDUCTION(+:FLUX_G,FLUX0_G,FLUXC) COLLAPSE(2)
      
      ! LOOP FOR GROUPS TO EXECUTE IN PARALLEL
      DO 410 IG=1,NGEFF

      ! LOOP OVER ALL DIRECTIONS
      DO 400 IPQD=1,NPQD(IND)
      IF(.NOT.INCONV(IG)) GO TO 400
      M=INDANG(IPQD,IND)
      IF(W(M).EQ.0.0) GO TO 400

      ! GET AND PRINT THREAD NUMBER 
#if defined(_OPENMP)
      ITID=omp_get_thread_num()
#else
      ITID=0
#endif
      IF(IMPX.GT.5) WRITE(IUNOUT,500) ITID,NGIND(IG),IPQD

      ! INITIALIZE FLUX
      FLUX(:NM,:NSCT,:LX,:LY,:LZ)=0.0D0
      FLUX0(:NME,:NPQ,:LX,:LY,:LZ)=0.0D0
      WE0=WE
      WX0=WX
      WY0=WY
      WZ0=WZ

*----
*  LOOP OVER X-, Y- AND Z-DIRECTED AXES.
*----

      ! X-AXIS LOOP
      DO 350 I0=1,LX
      I=I0
      IF((IND.EQ.2).OR.(IND.EQ.3).OR.(IND.EQ.6).OR.(IND.EQ.7)) I=LX+1-I

      ! Y-AXIS LOOP
      DO 310 J0=1,LY
      J=J0
      IF((IND.EQ.3).OR.(IND.EQ.4).OR.(IND.EQ.7).OR.(IND.EQ.8)) J=LY+1-J

      ! Z-BOUNDARIES CONDITIONS
      DO IEL=1,NMZ
      IOF=(((M-1)*LY+(J-1))*LX+(I-1))*NMZ+IEL
      IF((IND.EQ.1).OR.(IND.EQ.2).OR.(IND.EQ.3).OR.(IND.EQ.4)) THEN
        XNK(IEL)=FUNKNO(LFLX+LXNI+LXNJ+IOF,IG)*ZCODE(5)
      ELSE
        XNK(IEL)=FUNKNO(LFLX+LXNI+LXNJ+IOF,IG)*ZCODE(6)
      ENDIF
      ENDDO

      ! Z-BOUNDARIES FIXED SOURCES
      IF(ISBS.EQ.1) THEN
        IF(((IND.EQ.5).OR.(IND.EQ.6).OR.(IND.EQ.7).OR.(IND.EQ.8))
     1  .AND.ISBSM(6,M,IG).NE.0) THEN
          XNK(1)=XNK(1)+BS((I-1)*LY+J,ISBSM(6,M,IG)) 
        ELSEIF(((IND.EQ.1).OR.(IND.EQ.2).OR.(IND.EQ.3).OR.(IND.EQ.4))
     1  .AND.ISBSM(5,M,IG).NE.0) THEN
          XNK(1)=XNK(1)+BS((I-1)*LY+J,ISBSM(5,M,IG)) 
        ENDIF
      ENDIF

      ! Z-AXIS LOOP
      DO 280 K0=1,LZ
      K=K0
      IF((IND.EQ.5).OR.(IND.EQ.6).OR.(IND.EQ.7).OR.(IND.EQ.8)) K=LZ+1-K

      ! Y-BOUNDARIES CONDITIONS
      IF(J0.EQ.1) THEN
       DO IEL=1,NMY
        IOF=(((M-1)*LZ+(K-1))*LX+(I-1))*NMY+IEL
        IF((IND.EQ.1).OR.(IND.EQ.2).OR.(IND.EQ.5).OR.(IND.EQ.6)) THEN
          XNJ(IEL,K)=FUNKNO(LFLX+LXNI+IOF,IG)*ZCODE(3)
        ELSE
          XNJ(IEL,K)=FUNKNO(LFLX+LXNI+IOF,IG)*ZCODE(4)
        ENDIF
        ENDDO

        !Y-BOUNDARIES FIXED SOURCES
        IF(ISBS.EQ.1) THEN
          IF(((IND.EQ.3).OR.(IND.EQ.4).OR.(IND.EQ.7).OR.(IND.EQ.8))
     1    .AND.ISBSM(4,M,IG).NE.0) THEN
            XNJ(1,K)=XNJ(1,K)+BS((I-1)*LZ+K,ISBSM(4,M,IG)) 
          ELSEIF(((IND.EQ.1).OR.(IND.EQ.2).OR.(IND.EQ.5).OR.(IND.EQ.6))
     1    .AND.ISBSM(3,M,IG).NE.0) THEN
            XNJ(1,K)=XNJ(1,K)+BS((I-1)*LZ+K,ISBSM(3,M,IG)) 
          ENDIF
        ENDIF
      ENDIF

      ! X-BOUNDARIES CONDITIONS
      IF(I0.EQ.1) THEN
        DO IEL=1,NMX
        IOF=(((M-1)*LZ+(K-1))*LY+(J-1))*NMX+IEL
        IF((IND.EQ.1).OR.(IND.EQ.4).OR.(IND.EQ.5).OR.(IND.EQ.8)) THEN
          XNI(IEL,J,K)=FUNKNO(LFLX+IOF,IG)*ZCODE(1)
        ELSE
          XNI(IEL,J,K)=FUNKNO(LFLX+IOF,IG)*ZCODE(2)
        ENDIF
        ENDDO

        ! X-BOUNDARIES FIXED SOURCES
        IF(ISBS.EQ.1) THEN
          IF(((IND.EQ.2).OR.(IND.EQ.3).OR.(IND.EQ.6).OR.(IND.EQ.7))
     1    .AND.ISBSM(2,M,IG).NE.0) THEN
            XNI(1,J,K)=XNI(1,J,K)+BS((J-1)*LZ+K,ISBSM(2,M,IG)) 
          ELSEIF(((IND.EQ.1).OR.(IND.EQ.4).OR.(IND.EQ.5).OR.(IND.EQ.8))
     1    .AND.ISBSM(1,M,IG).NE.0) THEN
            XNI(1,J,K)=XNI(1,J,K)+BS((J-1)*LZ+K,ISBSM(1,M,IG)) 
          ENDIF
        ENDIF
      ENDIF

      ! DATA
      IBM=MAT(I,J,K)
      IF(IBM.EQ.0) GO TO 280
      SIGMA=TOTAL(IBM,IG)
      BM=ESTOPW(IBM,1,IG)/DELTAE(IG)
      BP=ESTOPW(IBM,2,IG)/DELTAE(IG)
      V=VOL(I,J,K)

      ! TYPE OF ENERGY PROPAGATION FACTOR
      IF(IBFP.EQ.1) THEN ! GALERKIN TYPE
        TB=BM/BP
        WE(1)=WE(1)*TB
        WE(2:EELEM+1)=(WE(2:EELEM+1)-1)*TB+1
      ELSE ! PRZYBYLSKI AND LIGOU TYPE
        TB=1.0
      ENDIF
    
      ! SOURCE DENSITY TERM
      DO IEL=1,NM
      Q(IEL)=0.0D0
      DO P=1,NSCT
      IOF=((((K-1)*LY+(J-1))*LX+(I-1))*NSCT+(P-1))*NM+IEL
      Q(IEL)=Q(IEL)+QEXT(IOF,IG)*MN(M,P)
      ENDDO
      ENDDO

      ! ENERGY GROUP UPPER BOUNDARY INCIDENT FLUX
      DO IEL=1,NME
      IOF=((((K-1)*LY+(J-1))*LX+(I-1))*NPQ+(M-1))*NME+IEL 
      FEP(IEL)=QEXT(LFLX+LXNI+LXNJ+LXNK+IOF,IG)
      ENDDO

      ISFIX=.FALSE.
      DO WHILE (.NOT.ALL(ISFIX)) ! LOOP FOR ADAPTIVE CALCULATION

      ! FLUX MOMENT COEFFICIENTS MATRIX
      Q2(:NM,:NM+1)=0.0D0

      DO IZ=1,IELEM
      DO JZ=1,IELEM
      DO IY=1,IELEM
      DO JY=1,IELEM
      DO IX=1,IELEM
      DO JX=1,IELEM
      DO IE=1,EELEM
      DO JE=1,EELEM 
        II=IELEM**2*EELEM*(IZ-1)+IELEM*EELEM*(IY-1)+EELEM*(IX-1)+IE
        JJ=IELEM**2*EELEM*(JZ-1)+IELEM*EELEM*(JY-1)+EELEM*(JX-1)+JE

        ! DIAGONAL TERMS
        IF(II.EQ.JJ) THEN
          Q2(II,JJ)=(SIGMA+CST(IE)**2*WE(JE+1)*BP+(IE-1)*(BM-BP))*V
     1              +CST(IX)**2*WX(JX+1)*ABS(DA(J,K,M))
     2              +CST(IY)**2*WY(JY+1)*ABS(DB(I,K,M))
     3              +CST(IZ)**2*WZ(JZ+1)*ABS(DC(I,J,M))

        ! UPPER DIAGONAL TERMS
        ELSEIF(II.LT.JJ) THEN
          IF(IZ.EQ.JZ) THEN
          IF(IY.EQ.JY) THEN
          IF(IX.EQ.JX) THEN
            ! ENERGY TERMS
            IF(MOD(IE+JE,2).EQ.1) THEN
              Q2(II,JJ)=-CST(IE)*CST(JE)*WE(JE+1)*BP*V
            ELSE
              Q2(II,JJ)=CST(IE)*CST(JE)*WE(JE+1)*BP*V
            ENDIF
          ELSEIF(IE.EQ.JE) THEN
            ! X-SPACE TERMS
            IF(MOD(IX+JX,2).EQ.1) THEN
              Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*DA(J,K,M)
            ELSE
              Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(DA(J,K,M))
            ENDIF
          ENDIF
          ELSEIF(IX.EQ.JX.AND.IE.EQ.JE) THEN
            ! Y-SPACE TERMS
            IF(MOD(IY+JY,2).EQ.1) THEN
              Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*DB(I,K,M)
            ELSE
              Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ABS(DB(I,K,M))
            ENDIF
          ENDIF
          ELSEIF(IY.EQ.JY.AND.IX.EQ.JX.AND.IE.EQ.JE) THEN
            ! Z-SPACE TERMS
            IF(MOD(IZ+JZ,2).EQ.1) THEN
              Q2(II,JJ)=CST(IZ)*CST(JZ)*WZ(JZ+1)*DC(I,J,M)
            ELSE
              Q2(II,JJ)=CST(IZ)*CST(JZ)*WZ(JZ+1)*ABS(DC(I,J,M))
            ENDIF
          ENDIF
       
        ! UNDER DIAGONAL TERMS
        ELSE
          IF(IZ.EQ.JZ) THEN
          IF(IY.EQ.JY) THEN
          IF(IX.EQ.JX) THEN
            ! ENERGY TERMS
            IF(MOD(IE+JE,2).EQ.1) THEN
              Q2(II,JJ)=-CST(IE)*CST(JE)*(WE(JE+1)*BP-BM-BP)*V
            ELSE
              Q2(II,JJ)=CST(IE)*CST(JE)*(WE(JE+1)*BP+BM-BP)*V
            ENDIF
          ELSEIF(IE.EQ.JE) THEN
            ! X-SPACE TERMS
            IF(MOD(IX+JX,2).EQ.1) THEN
              Q2(II,JJ)=CST(IX)*CST(JX)*(WX(JX+1)-2)*DA(J,K,M)
            ELSE
              Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(DA(J,K,M))
            ENDIF
          ENDIF
          ELSEIF(IX.EQ.JX.AND.IE.EQ.JE) THEN
            ! Y-SPACE TERMS
            IF(MOD(IY+JY,2).EQ.1) THEN
              Q2(II,JJ)=CST(IY)*CST(JY)*(WY(JY+1)-2)*DB(I,K,M)
            ELSE
              Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ABS(DB(I,K,M))
            ENDIF
          ENDIF
          ELSEIF(IY.EQ.JY.AND.IX.EQ.JX.AND.IE.EQ.JE) THEN
            ! Z-SPACE TERMS
            IF(MOD(IZ+JZ,2).EQ.1) THEN
              Q2(II,JJ)=CST(IZ)*CST(JZ)*(WZ(JZ+1)-2)*DC(I,J,M)
            ELSE
              Q2(II,JJ)=CST(IZ)*CST(JZ)*WZ(JZ+1)*ABS(DC(I,J,M))
            ENDIF
          ENDIF
        ENDIF
      ENDDO
      ENDDO
      ENDDO
      ENDDO
      ENDDO
      ENDDO
      ENDDO
      ENDDO

      ! FLUX SOURCE VECTOR
      DO IZ=1,IELEM
      DO IY=1,IELEM
      DO IX=1,IELEM
      DO IE=1,EELEM

        II=IELEM**2*EELEM*(IZ-1)+IELEM*EELEM*(IY-1)+EELEM*(IX-1)+IE
        IIE=IELEM**2*(IZ-1)+IELEM*(IY-1)+IX        
        IIX=IELEM*EELEM*(IZ-1)+EELEM*(IY-1)+IE
        IIY=IELEM*EELEM*(IZ-1)+EELEM*(IX-1)+IE
        IIZ=IELEM*EELEM*(IY-1)+EELEM*(IX-1)+IE
        Q2(II,NM+1)=Q(II)*V
        ! ENERGY TERMS
        IF(MOD(IE,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IE)*(BM-WE(1)*BP)*FEP(IIE)*V
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IE)*(BM+WE(1)*BP)*FEP(IIE)*V
        ENDIF
        ! X-SPACE TERMS
        IF(MOD(IX,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IX)*(1-WX(1))
     1                *XNI(IIX,J,K)*ABS(DA(J,K,M))
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)-CST(IX)*(1+WX(1))
     1                *XNI(IIX,J,K)*DA(J,K,M)
        ENDIF
        ! Y-SPACE TERMS
        IF(MOD(IY,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IY)*(1-WY(1))
     1                *XNJ(IIY,K)*ABS(DB(I,K,M))
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)-CST(IY)*(1+WY(1))
     1                *XNJ(IIY,K)*DB(I,K,M)
        ENDIF
        ! Z-SPACE TERMS
        IF(MOD(IZ,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IZ)*(1-WZ(1))
     1                *XNK(IIZ)*ABS(DC(I,J,M))
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)-CST(IZ)*(1+WZ(1))
     1                *XNK(IIZ)*DC(I,J,M)
        ENDIF
      ENDDO
      ENDDO
      ENDDO
      ENDDO
      CALL ALSBD(NM,1,Q2,IER,NM)
      IF(IER.NE.0) CALL XABORT('SNFE2D: SINGULAR MATRIX.')

      ! ADAPTIVE CORRECTION OF WEIGHTING PARAMETERS
      IF(ANY(ISADPT)) THEN
        IF(ISADPT(1)) THEN
          CALL SNADPT(EELEM,NM,IELEM**3,Q2(1:EELEM:1,NM+1),
     1    FEP,TB,WE,ISFIX(1))
        ELSE
          ISFIX(1)=.TRUE.
        ENDIF
        IF(ISADPT(2)) THEN
          CALL SNADPT(IELEM,NM,EELEM*IELEM**2,
     1    Q2(1:IELEM*EELEM:IELEM,NM+1),XNI(:NMX,J,K),
     2    1.0,WX,ISFIX(2))
        ELSE
          ISFIX(2)=.TRUE.
        ENDIF
        IF(ISADPT(3)) THEN
          CALL SNADPT(IELEM,NM,EELEM*IELEM**2,
     1    Q2(1:EELEM*IELEM**2:IELEM*EELEM,NM+1),XNJ(:NMY,K),
     2    1.0,WY,ISFIX(3))
        ELSE
          ISFIX(3)=.TRUE.
        ENDIF
        IF(ISADPT(4)) THEN
          CALL SNADPT(IELEM,NM,EELEM*IELEM**2,
     1    Q2(1:NM:EELEM*IELEM**2,NM+1),XNK,1.0,WZ,ISFIX(4))
        ELSE
          ISFIX(4)=.TRUE.
        ENDIF
      ELSE
        ISFIX=.TRUE.
      ENDIF

      END DO ! END OF ADAPTIVE LOOP

      ! CLOSURE RELATIONS
      IF(IELEM.EQ.1.AND.LFIXUP.AND.(Q2(1,2).LE.RLOG)) Q2(1,2)=0.0
      XNI(:NMX,J,K)=WX(1)*XNI(:NMX,J,K)
      XNJ(:NMY,K)=WY(1)*XNJ(:NMY,K)
      XNK(:NMZ)=WZ(1)*XNK(:NMZ)
      FEP(:NME)=WE(1)*FEP(:NME)
      DO IZ=1,IELEM
      DO IY=1,IELEM
      DO IX=1,IELEM
      DO IE=1,EELEM
        
        II=IELEM**2*EELEM*(IZ-1)+IELEM*EELEM*(IY-1)+EELEM*(IX-1)+IE
        IIE=IELEM**2*(IZ-1)+IELEM*(IY-1)+IX        
        IIX=IELEM*EELEM*(IZ-1)+EELEM*(IY-1)+IE
        IIY=IELEM*EELEM*(IZ-1)+EELEM*(IX-1)+IE
        IIZ=IELEM*EELEM*(IY-1)+EELEM*(IX-1)+IE
        
        ! ENERGY  
        IF(MOD(IE,2).EQ.1) THEN
          FEP(IIE)=FEP(IIE)+CST(IE)*WE(IE+1)*Q2(II,NM+1)
        ELSE
          FEP(IIE)=FEP(IIE)-CST(IE)*WE(IE+1)*Q2(II,NM+1)
        ENDIF
        ! X-SPACE
        IF(MOD(IX,2).EQ.1) THEN
          XNI(IIX,J,K)=XNI(IIX,J,K)+CST(IX)*WX(IX+1)
     1                 *Q2(II,NM+1)
        ELSE
          XNI(IIX,J,K)=XNI(IIX,J,K)+CST(IX)*WX(IX+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,DA(J,K,M))
        ENDIF
        ! Y-SPACE
        IF(MOD(IY,2).EQ.1) THEN
          XNJ(IIY,K)=XNJ(IIY,K)+CST(IY)*WY(IY+1)
     1                 *Q2(II,NM+1)
        ELSE
          XNJ(IIY,K)=XNJ(IIY,K)+CST(IY)*WY(IY+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,DB(I,K,M))
        ENDIF
        ! Z-SPACE
        IF(MOD(IZ,2).EQ.1) THEN
          XNK(IIZ)=XNK(IIZ)+CST(IZ)*WZ(IZ+1)
     1                 *Q2(II,NM+1)
        ELSE
          XNK(IIZ)=XNK(IIZ)+CST(IZ)*WZ(IZ+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,DC(I,J,M))
        ENDIF
      ENDDO
      ENDDO
      ENDDO
      ENDDO
      IF(IELEM.EQ.1.AND.LFIXUP.AND.(XNI(1,J,K).LE.RLOG))
     1 XNI(1,J,K)=0.0
      IF(IELEM.EQ.1.AND.LFIXUP.AND.(XNJ(1,K).LE.RLOG))
     1 XNJ(1,K)=0.0
      IF(IELEM.EQ.1.AND.LFIXUP.AND.(XNK(1).LE.RLOG)) XNK(1)=0.0
      WE=WE0
      WX=WX0
      WY=WY0
      WZ=WZ0

      ! SAVE ENERGY GROUP LOWER BOUNDARY OUTGOING FLUX
      FLUX0(:NME,M,I,J,K)=REAL(FEP(:NME))/DELTAE(IG)

      ! SAVE LAST GROUP LOWER BOUNDARY FLUX
      IF(ISLG(IG).EQ.1) THEN
      FLUXC(I,J,K)=FLUXC(I,J,K)+REAL(FLUX0(1,M,I,J,K))*DN(1,M)
      ENDIF

      ! SAVE LEGENDRE MOMENT OF THE FLIX
      DO P=1,NSCT
      DO IEL=1,NM
      FLUX(IEL,P,I,J,K)=FLUX(IEL,P,I,J,K)+Q2(IEL,NM+1)*DN(P,M)
      ENDDO
      ENDDO

  280 CONTINUE ! END OF Z-LOOP

      ! SAVE BOUNDARY CONDITIONS
      DO IEL=1,NMZ
      IOF=(((M-1)*LY+(J-1))*LX+(I-1))*NMZ+IEL
      FUNKNO(LFLX+LXNI+LXNJ+IOF,IG)=REAL(XNK(IEL))
      ENDDO

  310 CONTINUE ! END OF Y-LOOP

      ! SAVE BOUNDARY CONDITIONS
      DO K=1,LZ
      DO IEL=1,NMY
      IOF=(((M-1)*LZ+(K-1))*LX+(I-1))*NMY+IEL
      FUNKNO(LFLX+LXNI+IOF,IG)=REAL(XNJ(IEL,K))
      ENDDO
      ENDDO

  350 CONTINUE ! END OF X-LOOP

      ! SAVE BOUNDARY CONDITIONS
      DO K=1,LZ
      DO J=1,LY
      DO IEL=1,NMX
      IOF=(((M-1)*LZ+(K-1))*LY+(J-1))*NMX+IEL
      FUNKNO(LFLX+IOF,IG)=REAL(XNI(IEL,J,K))
      ENDDO
      ENDDO
      ENDDO

      ! SAVE FLUX INFORMATION
      FLUX_G(:,:,:,:,:,IG)=FLUX_G(:,:,:,:,:,IG)+FLUX(:,:,:,:,:)
      FLUX0_G(:,:,:,:,:,IG)=FLUX0_G(:,:,:,:,:,IG)+FLUX0(:,:,:,:,:)


  400 CONTINUE ! END OF DIRECTION LOOP
  410 CONTINUE ! END OF ENERGY LOOP
*$OMP END PARALLEL DO
  420 CONTINUE ! END OF OCTANT LOOP

      ! SAVE FLUX INFORMATION
      DO 430 IG=1,NGEFF
        IF(.NOT.INCONV(IG)) GO TO 430
        FUNKNO(:LFLX,IG)=
     1  RESHAPE(REAL(FLUX_G(:NM,:NSCT,:LX,:LY,:LZ,IG)), 
     2  (/LFLX/))
        FUNKNO(LFLX+LXNI+LXNJ+LXNK+1:LFLX+LXNI+LXNJ+LXNK+LFEP,IG)=
     1  RESHAPE(REAL(FLUX0_G(:NME,:NPQ,:LX,:LY,:LZ,IG)),
     2  (/ LFEP /) )
  430 CONTINUE

*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(FLUX0_G,FLUX_G,FLUX0,FLUX,XNJ,XNI,INDANG)
      RETURN
  500 FORMAT(16H SNFP13: thread=,I8,12H --->(group=,I4,7H angle=,I4,1H))
      END