summaryrefslogtreecommitdiff
path: root/Dragon/src/SNFE1D.f
blob: 6877ae1eab67082d22b5776900a49a3d150116ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
*DECK SNFE1P
      SUBROUTINE SNFE1D(LX,NMAT,IELEM,EELEM,NM,NLF,NSCT,U,MAT,
     1 VOL,TOTAL,ESTOPW,NCODE,ZCODE,DELTAE,QEXT,LFIXUP,LSHOOT,
     2 FUNKNO,ISBS,NBS,ISBSM,BS,WX,WE,CST,ISADPT,IBFP,NUN,MN,DN)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one inner iteration for solving SN equations in 1D slab
* geometry. Albedo boundary conditions. Boltzmann-Fokker-Planck (BFP)
* discretization.
*
*Copyright:
* Copyright (C) 2020 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert, A. A. Calloo and C. Bienvenue
*
*Parameters: input
* LX    number of regions.
* NMAT    number of material mixtures.
* IELEM   measure of order of the spatial approximation polynomial:
*         =1 constant - default for HODD;
*         =2 linear - default for DG;
*         >3 higher orders.
* EELEM   measure of order of the energy approximation polynomial:
*         =1 constant - default for HODD;
*         =2 linear - default for DG;
*         >3 higher orders.
* NM      total number of moments of the flux in space and
*         energy.
* NLF     number of $\\mu$ levels.
* NSCT    number of Legendre components in the flux:
*         =1: isotropic sources;
*         =2: linearly anisotropic sources.
* U       base points in $\\mu$ of the SN quadrature.
* W       weights of the SN quadrature.
* MN      moment-to-discrete matrix.
* DN      discrete-to-moment matrix.
* MAT     material mixture index in each region.
* VOL     volumes of each region.
* TOTAL   macroscopic total cross sections.
* ESTOPW  stopping power.
* NCODE   boundary condition indices.
* ZCODE   albedos.
* DELTAE  energy group width in MeV.
* QEXT    Legendre components of the fixed source.
* QEXT0   initial slowing-down angular fluxes.
* LFIXUP  flag to enable negative flux fixup.
* LSHOOT  flag to enable/disable shooting method.
* ISBS    flag to indicate the presence or not of boundary fixed
*         sources.
* NBS     number of boundary fixed sources.
* ISBSM   flag array to indicate the presence or not of boundary fixed
*         source in each unit surface.
* BS      boundary source array with their intensities.
* WX      spatial closure relation weighting factors.
* WE      energy closure relation weighting factors.
* CST     constants for the polynomial approximations.
* ISADPTX flag to enable/disable spatial adaptive flux calculations.
* ISADPTE flag to enable/disable energy adaptive flux calculations.
* IBFP    type of energy proparation relation:
*         =1 Galerkin type;
*         =2 heuristic Przybylski and Ligou type.
* NUN     total number of unknowns in vector FUNKNO   
*
*Parameters: input/output
* FUNKNO  Legendre components of the flux and boundary fluxes.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER LX,NMAT,IELEM,EELEM,NLF,NSCT,MAT(LX),
     1 NCODE(2),ISBS,NBS,ISBSM(2*ISBS,NLF*ISBS),NM,IBFP,NUN
      REAL U(NLF),VOL(LX),TOTAL(0:NMAT),ESTOPW(0:NMAT,2),ZCODE(2),
     1 DELTAE,QEXT(NUN),FUNKNO(NUN),BS(NBS*ISBS),WX(IELEM+1),
     2 WE(EELEM+1),CST(MAX(IELEM,EELEM)),MN(NLF,NSCT),DN(NSCT,NLF)
      LOGICAL LFIXUP,LSHOOT,ISADPT(2)
*----
*  LOCAL VARIABLES
*----
      REAL BM,BP,TB,WX0(IELEM+1),WE0(EELEM+1)
      DOUBLE PRECISION XNI(EELEM),FEP(IELEM),XNI1(EELEM),XNI2(EELEM),
     1 XNIA(EELEM),XNIB(EELEM),XNIA1(EELEM),XNIA2(EELEM),XNIB1(EELEM),
     2 XNIB2(EELEM)
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: Q
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: Q2
      PARAMETER(RLOG=1.0E-8)
      LOGICAL ISSHOOT,ISFIX(2)
*----
*  ALLOCATABLE ARRAYS
*----
      ALLOCATE(Q(NM),Q2(NM,NM+1))
*----
*  LENGTH OF FUNKNO COMPONENTS (IN ORDER)
*----
      LFLX=NM*LX*NSCT
      LXNI=EELEM*NLF
      IF(LSHOOT) LXNI=0
      LFEP=IELEM*NLF*LX
*----
*  INNER ITERATION.
*----
      FUNKNO(:LFLX)=0.0
      XNI=0.0D0
      WX0=WX
      WE0=WE

      ! SHOOTING METHOD WHEN THERE IS A NON-VACUUM RIGHT
      ! BOUNDARY CONDITION.
      ISSHOOT=(ZCODE(2).NE.0.0).AND.LSHOOT
      IF(ISSHOOT) THEN
        NS=6
      ELSE
        NS=2
      ENDIF

      ! LOOP OVER ALL DIRECTIONS
      DO 200 M0=1,NLF/2

      ! LOOP FOR SHOOTING METHOD
      DO 500 IS=1,NS

      ! CHOOSE DIRECTION
      IF(MOD(IS,2).EQ.0) THEN
        M=NLF-M0+1 ! FORWARD
      ELSE
        M=M0       ! BACKWARD
      ENDIF

      ! SHOOTING METHOD BOUNDARY CONDITIONS.
      IF(ISSHOOT) THEN
        ! 1ST BACKWARD SWEEP
        IF(IS.EQ.1) THEN
          XNI(:EELEM)=0.0D0
          XNI1(:EELEM)=0.0D0
          XNI2(:EELEM)=0.0D0
        ! 1ST FORWARD SWEEP
        ELSEIF(IS.EQ.2) THEN
          XNIA1=0.0D0
          IF(NCODE(1).EQ.4) THEN
          XNIA1(:EELEM)=REAL(XNI(:EELEM))
          XNI(:EELEM)=0.0D0
          ELSE
          XNI(:EELEM)=ZCODE(1)*REAL(XNI(:EELEM))
          ENDIF
        ! 2ND BACKWARD SWEEP
        ELSEIF(IS.EQ.3) THEN
          XNIA2(:EELEM)=0.0D0
          XNIA(:EELEM)=0.0D0
          IF(NCODE(1).EQ.4) THEN
          XNIA2(:EELEM)=REAL(XNI(:EELEM))
          ELSE
          XNIA(:EELEM)=REAL(XNI(:EELEM))
          ENDIF
          XNI(:EELEM)=1.0D0
        ! 2ND FORWARD SWEEP
        ELSEIF(IS.EQ.4) THEN
          IF(NCODE(1).EQ.4) THEN
          XNIB1(:EELEM)=REAL(XNI(:EELEM))
          XNI1(:EELEM)=XNIA1(:EELEM)/(1.0D0+XNIA1(:EELEM)-XNIB1(:EELEM))
          XNI(:EELEM)=1.0D0
          ELSE
          XNI(:EELEM)=ZCODE(1)*REAL(XNI(:EELEM))
          ENDIF
        ! 3RD BACKWARD SWEEP
        ELSEIF(IS.EQ.5) THEN
          IF(NCODE(1).EQ.4) THEN
          XNIB2(:EELEM)=REAL(XNI(:EELEM))
          XNI2(:EELEM)=XNIA2(:EELEM)/(1.0D0+XNIA2(:EELEM)-XNIB2(:EELEM))
          XNI(:EELEM)=XNI1(:EELEM)
          ELSE
          XNIB(:EELEM)=REAL(XNI(:EELEM))
          XNI(:EELEM)=ZCODE(2)*XNIA(:EELEM)/(1.0D0+ZCODE(2)
     1                *(XNIA(:EELEM)-XNIB(:EELEM)))
          ENDIF
        ! 3RD FORWARD SWEEP
        ELSEIF(IS.EQ.6) THEN
          XNI(:EELEM)=ZCODE(1)*XNI(:EELEM)
          IF(NCODE(1).EQ.4) XNI(:EELEM)=XNI2
        ENDIF
      ! NO SHOOTING METHOD BOUNDARY CONDITIONS
      ELSE
        IF(.NOT.LSHOOT) THEN
        IF(U(M).GT.0.0) THEN
          IF(NCODE(1).NE.4) THEN
            DO IEL=1,EELEM
            IOF=(M-1)*EELEM+IEL
            FUNKNO(LFLX+LXNI+IOF)=FUNKNO(LFLX+LXNI-IOF+1)
            ENDDO
          ENDIF
        ELSE
          IF(NCODE(2).NE.4) THEN
            DO IEL=1,EELEM
            IOF=(M-1)*EELEM+IEL
            FUNKNO(LFLX+LXNI+IOF)=FUNKNO(LFLX+LXNI-IOF+1)
            ENDDO
          ENDIF
        ENDIF
        XNI(:EELEM)=0.0D0
        ELSE
          IF(IS.EQ.1) THEN
            XNI(:EELEM)=0.0D0
          ELSE
            XNI(:EELEM)=ZCODE(1)*XNI(:EELEM)
          ENDIF
        ENDIF
      ENDIF

      ! X-BOUNDARIES CONDITIONS (NO SHOOTING)
      IF(.NOT.LSHOOT) THEN
        DO IEL=1,EELEM
        IOF=(M-1)*EELEM+IEL
        IF(U(M).GT.0.0) THEN
          XNI(IEL)=FUNKNO(LFLX+IOF)*ZCODE(1)
        ELSE
          XNI(IEL)=FUNKNO(LFLX+IOF)*ZCODE(2)
        ENDIF
        ENDDO
      ENDIF

      ! BOUNDARY FIXED SOURCES
      IF(U(M).GT.0) THEN
        IF(ISBS.EQ.1.AND.ISBSM(1,M).NE.0) THEN
          XNI(1)=XNI(1)+BS(ISBSM(1,M))
        ENDIF
      ELSE
        IF(ISBS.EQ.1.AND.ISBSM(2,M).NE.0) THEN
          XNI(1)=XNI(1)+BS(ISBSM(2,M))
        ENDIF
      ENDIF
      
      ! SWEEPING OVER ALL VOXELS
      DO 30 I0=1,LX
      I=I0
      IF(U(M).LT.0) I=LX+1-I
      
      ! DATA
      IBM=MAT(I)
      SIGMA=TOTAL(IBM)
      BM=ESTOPW(IBM,1)/DELTAE
      BP=ESTOPW(IBM,2)/DELTAE

      ! TYPE OF ENERGY PROPAGATION FACTOR
      IF(IBFP.EQ.1) THEN ! GALERKIN TYPE
        TB=BM/BP
        WE(1)=WE(1)*TB
        WE(2:EELEM+1)=(WE(2:EELEM+1)-1)*TB+1
      ELSE ! PRZYBYLSKI AND LIGOU TYPE
        TB=1.0
      ENDIF

      ! SOURCE DENSITY TERM
      DO IEL=1,NM
        Q(IEL)=0.0
        DO L=1,NSCT
          IOF=(I-1)*NSCT*NM+(L-1)*NM+IEL
          Q(IEL)=Q(IEL)+QEXT(IOF)*MN(M,L)
        ENDDO
      ENDDO

      ! ENERGY GROUP UPPER BOUNDARY INCIDENT FLUX
      DO IEL=1,IELEM
        IOF=(I-1)*NLF*IELEM+(M-1)*IELEM+IEL
        FEP(IEL)=QEXT(LFLX+LXNI+IOF)
      ENDDO

      ISFIX=.FALSE.
      DO WHILE (.NOT.ALL(ISFIX)) ! LOOP FOR ADAPTIVE CALCULATION

      !FLUX MOMENT COEFFICIENTS MATRIX
      Q2=0.0D0
      DO IX=1,IELEM
      DO JX=1,IELEM
      DO IE=1,EELEM
      DO JE=1,EELEM
        II=EELEM*(IX-1)+IE
        JJ=EELEM*(JX-1)+JE

        ! DIAGONAL TERMS
        IF(II.EQ.JJ) THEN
          Q2(II,JJ)=(SIGMA+CST(IE)**2*WE(JE+1)*BP
     1              +(IE-1)*(BM-BP))*VOL(I)
     2              +CST(IX)**2*WX(JX+1)*ABS(U(M))

        ! UPPER DIAGONAL TERMS
        ELSEIF(II.LT.JJ) THEN
          ! ENERGY TERMS
          IF(IX.EQ.JX) THEN
          IF(MOD(IE+JE,2).EQ.1) THEN 
            Q2(II,JJ)=-CST(IE)*CST(JE)*WE(JE+1)*BP*VOL(I)
          ELSE
            Q2(II,JJ)=CST(IE)*CST(JE)*WE(JE+1)*BP*VOL(I)
          ENDIF
          ! X-SPACE TERMS
          ELSEIF(IE.EQ.JE) THEN
          IF(MOD(IX+JX,2).EQ.1) THEN 
            Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*U(M)
          ELSE
            Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(U(M))
          ENDIF
          ENDIF

        ! UNDER DIAGONAL TERMS
        ELSE
          ! ENERGY TERMS
          IF(IX.EQ.JX) THEN
          IF(MOD(IE+JE,2).EQ.1) THEN 
            Q2(II,JJ)=-CST(IE)*CST(JE)*(WE(JE+1)*BP-BM-BP)*VOL(I)
          ELSE
            Q2(II,JJ)=CST(IE)*CST(JE)*(WE(JE+1)*BP+BM-BP)*VOL(I)
          ENDIF
          ! X-SPACE TERMS
          ELSEIF(IE.EQ.JE) THEN
          IF(MOD(IX+JX,2).EQ.1) THEN 
            Q2(II,JJ)=CST(IX)*CST(JX)*(WX(JX+1)-2.0D0)*U(M)
          ELSE
            Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(U(M))
          ENDIF
          ENDIF
        ENDIF 
      ENDDO
      ENDDO
      ENDDO
      ENDDO

      ! FLUX SOURCE VECTOR
      DO IX=1,IELEM
      DO IE=1,EELEM
        II=EELEM*(IX-1)+IE
        Q2(II,NM+1)=Q(II)*VOL(I)
        ! ENERGY TERMS
        IF(MOD(IE,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IE)*(BM-WE(1)*BP)*FEP(IX)*VOL(I)
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IE)*(BM+WE(1)*BP)*FEP(IX)*VOL(I)
        ENDIF
        ! X-SPACE TERMS
        IF(MOD(IX,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IX)*(1-WX(1))*XNI(IE)*ABS(U(M))
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)-CST(IX)*(1+WX(1))*XNI(IE)*U(M)
        ENDIF
      ENDDO
      ENDDO

      CALL ALSBD(NM,1,Q2,IER,NM)
      IF(IER.NE.0) CALL XABORT('SNFE1D: SINGULAR MATRIX.')

      ! ADAPTIVE CORRECTION OF WEIGHTING PARAMETERS
      IF(ANY(ISADPT)) THEN
        IF(ISADPT(1)) THEN
          CALL SNADPT(EELEM,NM,IELEM,Q2(1:NM:1,NM+1),FEP,
     1    TB,WE,ISFIX(1))
        ELSE
          ISFIX(1)=.TRUE.
        ENDIF
        IF(ISADPT(2)) THEN
          CALL SNADPT(IELEM,NM,EELEM,Q2(1:NM:EELEM,NM+1),XNI,
     1    1.0,WX,ISFIX(2))
        ELSE
          ISFIX(2)=.TRUE.
        ENDIF
      ELSE
        ISFIX=.TRUE.
      ENDIF

      END DO ! END OF ADAPTIVE LOOP
        
      ! CLOSURE RELATIONS
      IF(IELEM.EQ.1.AND.LFIXUP.AND.(Q2(1,2).LE.RLOG)) Q2(1,2)=0.0
      XNI(:EELEM)=WX(1)*XNI(:EELEM)
      FEP(:IELEM)=WE(1)*FEP(:IELEM) 
      DO IX=1,IELEM
      DO IE=1,EELEM
        II=EELEM*(IX-1)+IE
        ! ENERGY TERMS
        IF(MOD(IE,2).EQ.1) THEN
          FEP(IX)=FEP(IX)+CST(IE)*WE(IE+1)*Q2(II,NM+1)
        ELSE
          FEP(IX)=FEP(IX)-CST(IE)*WE(IE+1)*Q2(II,NM+1)
        ENDIF
        ! X-SPACE TERMS
        IF(MOD(IX,2).EQ.1) THEN
          XNI(IE)=XNI(IE)+CST(IX)*WX(IX+1)*Q2(II,NM+1)
        ELSE
          XNI(IE)=XNI(IE)+CST(IX)*WX(IX+1)*Q2(II,NM+1)*SIGN(1.0,U(M))
        ENDIF
      ENDDO
      ENDDO
      IF(IELEM.EQ.1.AND.LFIXUP.AND.(XNI(1).LE.RLOG)) XNI(1)=0.0
      WX=WX0
      WE=WE0

      IF(ISSHOOT.AND.IS.LT.5) GO TO 30

      ! SAVE ENERGY GROUP LOWER BOUNDARY OUTGOING FLUX
      DO IEL=1,IELEM
        IOF=(I-1)*NLF*IELEM+(M-1)*IELEM+IEL
        FUNKNO(LFLX+LXNI+IOF)=REAL(FEP(IEL))/DELTAE
      ENDDO

      ! SAVE LEGENDRE MOMENT OF THE FLUX
      DO L=1,NSCT
        DO IEL=1,NM
          IOF=(I-1)*NSCT*NM+(L-1)*NM+IEL
          FUNKNO(IOF)=FUNKNO(IOF)+REAL(Q2(IEL,NM+1))*DN(L,M)
        ENDDO
      ENDDO

   30 CONTINUE ! END OF X-LOOP

      ! SAVE BOUNDARIES FLUX
      IF(.NOT.LSHOOT) THEN
        DO IEL=1,EELEM
        IOF=(M-1)*EELEM+IEL
        FUNKNO(LFLX+IOF)=REAL(XNI(IEL))
        ENDDO
      ENDIF

  500 CONTINUE ! END OF SHOOTING METHOD LOOP 
  200 CONTINUE ! END OF DIRECTION LOOP

      DEALLOCATE(Q,Q2)
      RETURN
      END