1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
*DECK SNFE1P
SUBROUTINE SNFE1D(LX,NMAT,IELEM,EELEM,NM,NLF,NSCT,U,MAT,
1 VOL,TOTAL,ESTOPW,NCODE,ZCODE,DELTAE,QEXT,LFIXUP,LSHOOT,
2 FUNKNO,ISBS,NBS,ISBSM,BS,WX,WE,CST,ISADPT,IBFP,NUN,MN,DN)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one inner iteration for solving SN equations in 1D slab
* geometry. Albedo boundary conditions. Boltzmann-Fokker-Planck (BFP)
* discretization.
*
*Copyright:
* Copyright (C) 2020 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert, A. A. Calloo and C. Bienvenue
*
*Parameters: input
* LX number of regions.
* NMAT number of material mixtures.
* IELEM measure of order of the spatial approximation polynomial:
* =1 constant - default for HODD;
* =2 linear - default for DG;
* >3 higher orders.
* EELEM measure of order of the energy approximation polynomial:
* =1 constant - default for HODD;
* =2 linear - default for DG;
* >3 higher orders.
* NM total number of moments of the flux in space and
* energy.
* NLF number of $\\mu$ levels.
* NSCT number of Legendre components in the flux:
* =1: isotropic sources;
* =2: linearly anisotropic sources.
* U base points in $\\mu$ of the SN quadrature.
* W weights of the SN quadrature.
* MN moment-to-discrete matrix.
* DN discrete-to-moment matrix.
* MAT material mixture index in each region.
* VOL volumes of each region.
* TOTAL macroscopic total cross sections.
* ESTOPW stopping power.
* NCODE boundary condition indices.
* ZCODE albedos.
* DELTAE energy group width in MeV.
* QEXT Legendre components of the fixed source.
* QEXT0 initial slowing-down angular fluxes.
* LFIXUP flag to enable negative flux fixup.
* LSHOOT flag to enable/disable shooting method.
* ISBS flag to indicate the presence or not of boundary fixed
* sources.
* NBS number of boundary fixed sources.
* ISBSM flag array to indicate the presence or not of boundary fixed
* source in each unit surface.
* BS boundary source array with their intensities.
* WX spatial closure relation weighting factors.
* WE energy closure relation weighting factors.
* CST constants for the polynomial approximations.
* ISADPTX flag to enable/disable spatial adaptive flux calculations.
* ISADPTE flag to enable/disable energy adaptive flux calculations.
* IBFP type of energy proparation relation:
* =1 Galerkin type;
* =2 heuristic Przybylski and Ligou type.
* NUN total number of unknowns in vector FUNKNO
*
*Parameters: input/output
* FUNKNO Legendre components of the flux and boundary fluxes.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER LX,NMAT,IELEM,EELEM,NLF,NSCT,MAT(LX),
1 NCODE(2),ISBS,NBS,ISBSM(2*ISBS,NLF*ISBS),NM,IBFP,NUN
REAL U(NLF),VOL(LX),TOTAL(0:NMAT),ESTOPW(0:NMAT,2),ZCODE(2),
1 DELTAE,QEXT(NUN),FUNKNO(NUN),BS(NBS*ISBS),WX(IELEM+1),
2 WE(EELEM+1),CST(MAX(IELEM,EELEM)),MN(NLF,NSCT),DN(NSCT,NLF)
LOGICAL LFIXUP,LSHOOT,ISADPT(2)
*----
* LOCAL VARIABLES
*----
REAL BM,BP,TB,WX0(IELEM+1),WE0(EELEM+1)
DOUBLE PRECISION XNI(EELEM),FEP(IELEM),XNI1(EELEM),XNI2(EELEM),
1 XNIA(EELEM),XNIB(EELEM),XNIA1(EELEM),XNIA2(EELEM),XNIB1(EELEM),
2 XNIB2(EELEM)
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: Q
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: Q2
PARAMETER(RLOG=1.0E-8)
LOGICAL ISSHOOT,ISFIX(2)
*----
* ALLOCATABLE ARRAYS
*----
ALLOCATE(Q(NM),Q2(NM,NM+1))
*----
* LENGTH OF FUNKNO COMPONENTS (IN ORDER)
*----
LFLX=NM*LX*NSCT
LXNI=EELEM*NLF
IF(LSHOOT) LXNI=0
LFEP=IELEM*NLF*LX
*----
* INNER ITERATION.
*----
FUNKNO(:LFLX)=0.0
XNI=0.0D0
WX0=WX
WE0=WE
! SHOOTING METHOD WHEN THERE IS A NON-VACUUM RIGHT
! BOUNDARY CONDITION.
ISSHOOT=(ZCODE(2).NE.0.0).AND.LSHOOT
IF(ISSHOOT) THEN
NS=6
ELSE
NS=2
ENDIF
! LOOP OVER ALL DIRECTIONS
DO 200 M0=1,NLF/2
! LOOP FOR SHOOTING METHOD
DO 500 IS=1,NS
! CHOOSE DIRECTION
IF(MOD(IS,2).EQ.0) THEN
M=NLF-M0+1 ! FORWARD
ELSE
M=M0 ! BACKWARD
ENDIF
! SHOOTING METHOD BOUNDARY CONDITIONS.
IF(ISSHOOT) THEN
! 1ST BACKWARD SWEEP
IF(IS.EQ.1) THEN
XNI(:EELEM)=0.0D0
XNI1(:EELEM)=0.0D0
XNI2(:EELEM)=0.0D0
! 1ST FORWARD SWEEP
ELSEIF(IS.EQ.2) THEN
XNIA1=0.0D0
IF(NCODE(1).EQ.4) THEN
XNIA1(:EELEM)=REAL(XNI(:EELEM))
XNI(:EELEM)=0.0D0
ELSE
XNI(:EELEM)=ZCODE(1)*REAL(XNI(:EELEM))
ENDIF
! 2ND BACKWARD SWEEP
ELSEIF(IS.EQ.3) THEN
XNIA2(:EELEM)=0.0D0
XNIA(:EELEM)=0.0D0
IF(NCODE(1).EQ.4) THEN
XNIA2(:EELEM)=REAL(XNI(:EELEM))
ELSE
XNIA(:EELEM)=REAL(XNI(:EELEM))
ENDIF
XNI(:EELEM)=1.0D0
! 2ND FORWARD SWEEP
ELSEIF(IS.EQ.4) THEN
IF(NCODE(1).EQ.4) THEN
XNIB1(:EELEM)=REAL(XNI(:EELEM))
XNI1(:EELEM)=XNIA1(:EELEM)/(1.0D0+XNIA1(:EELEM)-XNIB1(:EELEM))
XNI(:EELEM)=1.0D0
ELSE
XNI(:EELEM)=ZCODE(1)*REAL(XNI(:EELEM))
ENDIF
! 3RD BACKWARD SWEEP
ELSEIF(IS.EQ.5) THEN
IF(NCODE(1).EQ.4) THEN
XNIB2(:EELEM)=REAL(XNI(:EELEM))
XNI2(:EELEM)=XNIA2(:EELEM)/(1.0D0+XNIA2(:EELEM)-XNIB2(:EELEM))
XNI(:EELEM)=XNI1(:EELEM)
ELSE
XNIB(:EELEM)=REAL(XNI(:EELEM))
XNI(:EELEM)=ZCODE(2)*XNIA(:EELEM)/(1.0D0+ZCODE(2)
1 *(XNIA(:EELEM)-XNIB(:EELEM)))
ENDIF
! 3RD FORWARD SWEEP
ELSEIF(IS.EQ.6) THEN
XNI(:EELEM)=ZCODE(1)*XNI(:EELEM)
IF(NCODE(1).EQ.4) XNI(:EELEM)=XNI2
ENDIF
! NO SHOOTING METHOD BOUNDARY CONDITIONS
ELSE
IF(.NOT.LSHOOT) THEN
IF(U(M).GT.0.0) THEN
IF(NCODE(1).NE.4) THEN
DO IEL=1,EELEM
IOF=(M-1)*EELEM+IEL
FUNKNO(LFLX+LXNI+IOF)=FUNKNO(LFLX+LXNI-IOF+1)
ENDDO
ENDIF
ELSE
IF(NCODE(2).NE.4) THEN
DO IEL=1,EELEM
IOF=(M-1)*EELEM+IEL
FUNKNO(LFLX+LXNI+IOF)=FUNKNO(LFLX+LXNI-IOF+1)
ENDDO
ENDIF
ENDIF
XNI(:EELEM)=0.0D0
ELSE
IF(IS.EQ.1) THEN
XNI(:EELEM)=0.0D0
ELSE
XNI(:EELEM)=ZCODE(1)*XNI(:EELEM)
ENDIF
ENDIF
ENDIF
! X-BOUNDARIES CONDITIONS (NO SHOOTING)
IF(.NOT.LSHOOT) THEN
DO IEL=1,EELEM
IOF=(M-1)*EELEM+IEL
IF(U(M).GT.0.0) THEN
XNI(IEL)=FUNKNO(LFLX+IOF)*ZCODE(1)
ELSE
XNI(IEL)=FUNKNO(LFLX+IOF)*ZCODE(2)
ENDIF
ENDDO
ENDIF
! BOUNDARY FIXED SOURCES
IF(U(M).GT.0) THEN
IF(ISBS.EQ.1.AND.ISBSM(1,M).NE.0) THEN
XNI(1)=XNI(1)+BS(ISBSM(1,M))
ENDIF
ELSE
IF(ISBS.EQ.1.AND.ISBSM(2,M).NE.0) THEN
XNI(1)=XNI(1)+BS(ISBSM(2,M))
ENDIF
ENDIF
! SWEEPING OVER ALL VOXELS
DO 30 I0=1,LX
I=I0
IF(U(M).LT.0) I=LX+1-I
! DATA
IBM=MAT(I)
SIGMA=TOTAL(IBM)
BM=ESTOPW(IBM,1)/DELTAE
BP=ESTOPW(IBM,2)/DELTAE
! TYPE OF ENERGY PROPAGATION FACTOR
IF(IBFP.EQ.1) THEN ! GALERKIN TYPE
TB=BM/BP
WE(1)=WE(1)*TB
WE(2:EELEM+1)=(WE(2:EELEM+1)-1)*TB+1
ELSE ! PRZYBYLSKI AND LIGOU TYPE
TB=1.0
ENDIF
! SOURCE DENSITY TERM
DO IEL=1,NM
Q(IEL)=0.0
DO L=1,NSCT
IOF=(I-1)*NSCT*NM+(L-1)*NM+IEL
Q(IEL)=Q(IEL)+QEXT(IOF)*MN(M,L)
ENDDO
ENDDO
! ENERGY GROUP UPPER BOUNDARY INCIDENT FLUX
DO IEL=1,IELEM
IOF=(I-1)*NLF*IELEM+(M-1)*IELEM+IEL
FEP(IEL)=QEXT(LFLX+LXNI+IOF)
ENDDO
ISFIX=.FALSE.
DO WHILE (.NOT.ALL(ISFIX)) ! LOOP FOR ADAPTIVE CALCULATION
!FLUX MOMENT COEFFICIENTS MATRIX
Q2=0.0D0
DO IX=1,IELEM
DO JX=1,IELEM
DO IE=1,EELEM
DO JE=1,EELEM
II=EELEM*(IX-1)+IE
JJ=EELEM*(JX-1)+JE
! DIAGONAL TERMS
IF(II.EQ.JJ) THEN
Q2(II,JJ)=(SIGMA+CST(IE)**2*WE(JE+1)*BP
1 +(IE-1)*(BM-BP))*VOL(I)
2 +CST(IX)**2*WX(JX+1)*ABS(U(M))
! UPPER DIAGONAL TERMS
ELSEIF(II.LT.JJ) THEN
! ENERGY TERMS
IF(IX.EQ.JX) THEN
IF(MOD(IE+JE,2).EQ.1) THEN
Q2(II,JJ)=-CST(IE)*CST(JE)*WE(JE+1)*BP*VOL(I)
ELSE
Q2(II,JJ)=CST(IE)*CST(JE)*WE(JE+1)*BP*VOL(I)
ENDIF
! X-SPACE TERMS
ELSEIF(IE.EQ.JE) THEN
IF(MOD(IX+JX,2).EQ.1) THEN
Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*U(M)
ELSE
Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(U(M))
ENDIF
ENDIF
! UNDER DIAGONAL TERMS
ELSE
! ENERGY TERMS
IF(IX.EQ.JX) THEN
IF(MOD(IE+JE,2).EQ.1) THEN
Q2(II,JJ)=-CST(IE)*CST(JE)*(WE(JE+1)*BP-BM-BP)*VOL(I)
ELSE
Q2(II,JJ)=CST(IE)*CST(JE)*(WE(JE+1)*BP+BM-BP)*VOL(I)
ENDIF
! X-SPACE TERMS
ELSEIF(IE.EQ.JE) THEN
IF(MOD(IX+JX,2).EQ.1) THEN
Q2(II,JJ)=CST(IX)*CST(JX)*(WX(JX+1)-2.0D0)*U(M)
ELSE
Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(U(M))
ENDIF
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
! FLUX SOURCE VECTOR
DO IX=1,IELEM
DO IE=1,EELEM
II=EELEM*(IX-1)+IE
Q2(II,NM+1)=Q(II)*VOL(I)
! ENERGY TERMS
IF(MOD(IE,2).EQ.1) THEN
Q2(II,NM+1)=Q2(II,NM+1)+CST(IE)*(BM-WE(1)*BP)*FEP(IX)*VOL(I)
ELSE
Q2(II,NM+1)=Q2(II,NM+1)+CST(IE)*(BM+WE(1)*BP)*FEP(IX)*VOL(I)
ENDIF
! X-SPACE TERMS
IF(MOD(IX,2).EQ.1) THEN
Q2(II,NM+1)=Q2(II,NM+1)+CST(IX)*(1-WX(1))*XNI(IE)*ABS(U(M))
ELSE
Q2(II,NM+1)=Q2(II,NM+1)-CST(IX)*(1+WX(1))*XNI(IE)*U(M)
ENDIF
ENDDO
ENDDO
CALL ALSBD(NM,1,Q2,IER,NM)
IF(IER.NE.0) CALL XABORT('SNFE1D: SINGULAR MATRIX.')
! ADAPTIVE CORRECTION OF WEIGHTING PARAMETERS
IF(ANY(ISADPT)) THEN
IF(ISADPT(1)) THEN
CALL SNADPT(EELEM,NM,IELEM,Q2(1:NM:1,NM+1),FEP,
1 TB,WE,ISFIX(1))
ELSE
ISFIX(1)=.TRUE.
ENDIF
IF(ISADPT(2)) THEN
CALL SNADPT(IELEM,NM,EELEM,Q2(1:NM:EELEM,NM+1),XNI,
1 1.0,WX,ISFIX(2))
ELSE
ISFIX(2)=.TRUE.
ENDIF
ELSE
ISFIX=.TRUE.
ENDIF
END DO ! END OF ADAPTIVE LOOP
! CLOSURE RELATIONS
IF(IELEM.EQ.1.AND.LFIXUP.AND.(Q2(1,2).LE.RLOG)) Q2(1,2)=0.0
XNI(:EELEM)=WX(1)*XNI(:EELEM)
FEP(:IELEM)=WE(1)*FEP(:IELEM)
DO IX=1,IELEM
DO IE=1,EELEM
II=EELEM*(IX-1)+IE
! ENERGY TERMS
IF(MOD(IE,2).EQ.1) THEN
FEP(IX)=FEP(IX)+CST(IE)*WE(IE+1)*Q2(II,NM+1)
ELSE
FEP(IX)=FEP(IX)-CST(IE)*WE(IE+1)*Q2(II,NM+1)
ENDIF
! X-SPACE TERMS
IF(MOD(IX,2).EQ.1) THEN
XNI(IE)=XNI(IE)+CST(IX)*WX(IX+1)*Q2(II,NM+1)
ELSE
XNI(IE)=XNI(IE)+CST(IX)*WX(IX+1)*Q2(II,NM+1)*SIGN(1.0,U(M))
ENDIF
ENDDO
ENDDO
IF(IELEM.EQ.1.AND.LFIXUP.AND.(XNI(1).LE.RLOG)) XNI(1)=0.0
WX=WX0
WE=WE0
IF(ISSHOOT.AND.IS.LT.5) GO TO 30
! SAVE ENERGY GROUP LOWER BOUNDARY OUTGOING FLUX
DO IEL=1,IELEM
IOF=(I-1)*NLF*IELEM+(M-1)*IELEM+IEL
FUNKNO(LFLX+LXNI+IOF)=REAL(FEP(IEL))/DELTAE
ENDDO
! SAVE LEGENDRE MOMENT OF THE FLUX
DO L=1,NSCT
DO IEL=1,NM
IOF=(I-1)*NSCT*NM+(L-1)*NM+IEL
FUNKNO(IOF)=FUNKNO(IOF)+REAL(Q2(IEL,NM+1))*DN(L,M)
ENDDO
ENDDO
30 CONTINUE ! END OF X-LOOP
! SAVE BOUNDARIES FLUX
IF(.NOT.LSHOOT) THEN
DO IEL=1,EELEM
IOF=(M-1)*EELEM+IEL
FUNKNO(LFLX+IOF)=REAL(XNI(IEL))
ENDDO
ENDIF
500 CONTINUE ! END OF SHOOTING METHOD LOOP
200 CONTINUE ! END OF DIRECTION LOOP
DEALLOCATE(Q,Q2)
RETURN
END
|