summaryrefslogtreecommitdiff
path: root/Dragon/src/SNFBH3.F
blob: cc7b8d736fb92f5f68e0ff9bec43138ebac9ff6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
*DECK SNFBH3
      SUBROUTINE SNFBH3(NUN,NGEFF,IMPX,INCONV,NGIND,NHEX,LZ,ISPLH,SIDE,
     1 IELEM,NM,NMX,NMY,NMZ,NMAT,NPQ,NSCT,MAT,VOL,TOTAL,NCODE,ZCODE,
     2 QEXT,LFIXUP,DU,DE,DZ,W,MRMZ,DC,DB,DA,MN,DN,WX,WY,WZ,CST,ISADPT,
     3 LOZSWP,COORDMAP,FUNKNO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one inner iteration for solving SN equations in 3D Cartesian
* geometry for the HODD method. Energy-angle multithreading. Albedo
* boundary conditions on top/bottom, Void on sides. Boltzmann (BTE) 
* discretization.
*
*Copyright:
* Copyright (C) 2025 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert, A. A. Calloo and C. Bienvenue
*
*Parameters: input
* NUN      total number of unknowns in vector FUNKNO.
* NGEFF    number of energy groups processed in parallel.
* IMPX     print flag (equal to zero for no print).
* INCONV   energy group convergence flag (set to .FALSE. if converged).
* NGIND    energy group indices assign to the NGEFF set.
* NHEX     number of hexagons in X-Y plane.
* ISPLH    splitting option for hexagons.
* SIDE     side of an hexagon.
* LZ       number of meshes along Z axis.
* IELEM    measure of order of the spatial approximation polynomial:
*          =1 constant - default for HODD;
*          =2 linear - default for DG;
*          >3 higher orders.
* NM       number of moments in space for flux components
* NMX      number of moments for X axis boundaries components
* NMY      number of moments for Y axis boundaries components
* NMZ      number of moments for Z axis boundaries components
* NMAT     number of material mixtures.
* NPQ      number of SN directions in height octants.
* NSCT     maximum number of spherical harmonics moments of the flux.
* MAT      material mixture index in each region.
* VOL      volumes of each region.
* TOTAL    macroscopic total cross sections.
* ESTOPW   stopping power.
* NCODE    boundary condition indices.
* ZCODE    albedos.
* DELTAE   energy group width in MeV.
* QEXT     Legendre components of the fixed source.
* LFIXUP   flag to enable negative flux fixup.
* DU       first direction cosines ($\\mu$).
* DE       second direction cosines ($\\eta$).
* DZ       third direction cosines ($\\xi$).
* W        weights.
* MRMZ     quadrature index.
* DC       diamond-scheme parameter.
* DB       diamond-scheme parameter.
* DA       diamond-scheme parameter.
* MN       moment-to-discrete matrix.
* DN       discrete-to-moment matrix.
* WX       spatial X axis closure relation weighting factors.
* WY       spatial Y axis closure relation weighting factors.
* WZ       spatial Z axis closure relation weighting factors.
* CST      constants for the polynomial approximations.
* ISADPT   flag to enable/disable adaptive flux calculations.
* LOZSWP   lozenge sweep order depending on direction.
* COORDMAP coordinate map - mapping the hexagons from the indices 
*          within the DRAGON geometry to a Cartesian axial coordinate
*          array (see redblobgames.com website).
*
*Parameters: input/output
* FUNKNO  Legendre components of the flux and boundary fluxes.
*
*Comments:
* 1. The direction of the axes I, J and D for the surface boundary 
*    fluxes are shown in the diagram below. This means that 
*    i) lozenge A has I- and D-boundaries (instead of I and J)
*    i) lozenge B has I- and J-boundaries
*    i) lozenge C has D- and J-boundaries (instead of I and J)
*
*                                  ^
*                         j-axis   |
*                                  |          ^
*                              _________     /    d-axis
*                             /       / \   /
*                            /   B   /   \
*                           /       /     \
*                          (-------(   A   )
*                           \       \     /
*                            \  C    \   / 
*                             \_______\_/   \
*                                            \   i-axis
*                                             ^
*
*-----------------------------------------------------------------------
*
#if defined(_OPENMP)
      USE omp_lib
#endif
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NUN,NGEFF,IMPX,NGIND(NGEFF),NHEX,LZ,ISPLH,IELEM,NM,NMX,
     1 NMY,NMZ,NMAT,NPQ,NSCT,MAT(ISPLH,ISPLH,3,NHEX,LZ),NCODE(6),
     2 MRMZ(NPQ),LOZSWP(3,6),COORDMAP(3,NHEX)
      LOGICAL INCONV(NGEFF)
      REAL SIDE,VOL(ISPLH,ISPLH,3,NHEX,LZ),TOTAL(0:NMAT,NGEFF),ZCODE(6),
     1 QEXT(NUN,NGEFF),DU(NPQ),DE(NPQ),DZ(NPQ),W(NPQ),
     2 DC(ISPLH*ISPLH*3*NHEX,1,NPQ),DB(ISPLH*ISPLH*3*NHEX,LZ,NPQ),
     3 DA(1,LZ,NPQ),FUNKNO(NUN,NGEFF),WX(IELEM+1),WY(IELEM+1),
     4 WZ(IELEM+1),CST(IELEM),MN(NPQ,NSCT),DN(NSCT,NPQ)
      LOGICAL LFIXUP,ISADPT(3)
*----
*  LOCAL VARIABLES
*----
      INTEGER :: NPQD(12),IIND(12),P,DCOORD
      REAL :: JAC(2,2,3),MUH,ETAH,XIH,AAA,BBB,CCC,DDD,MUHTEMP,ETAHTEMP,
     1 WX0(IELEM+1),WY0(IELEM+1),WZ0(IELEM+1)
      DOUBLE PRECISION :: V,Q(NM),Q2(NM,NM+1),THETA,XNI(NMX),
     > XNJ(NMY),XNK(NMZ)
      PARAMETER(IUNOUT=6,RLOG=1.0E-8,PI=3.141592654)
      LOGICAL ISFIX(3),LHEX(NHEX)
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: INDANG
      INTEGER, ALLOCATABLE, DIMENSION(:,:,:,:,:,:) :: TMPMAT
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: FLUX
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:,:) :: FLUX_G
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: TMPXNI,
     > TMPXNJ, TMPXND
      DOUBLE PRECISION,ALLOCATABLE, DIMENSION(:,:,:,:,:) :: TMPXNK
*----
*  MAP MATERIAL VALUES TO CARTESIAN AXIAL COORDINATE MAP
*----
      NRINGS=INT((SQRT(  REAL((4*NHEX-1)/3)  )+1.)/2.)
      NCOL=2*NRINGS -1
      ALLOCATE(TMPMAT(ISPLH,ISPLH,3,NCOL,NCOL,LZ))
      TMPMAT(:,:,:,:,:,:) = -1
      DO K=1,LZ
        DO IHEX_XY=1,NHEX
          TMPMAT(:,:,:,COORDMAP(1,IHEX_XY),COORDMAP(2,IHEX_XY),K) = 
     >         MAT(:,:,:,IHEX_XY,K)
        ENDDO
      ENDDO
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(INDANG(NPQ,12))
      ALLOCATE(FLUX(NM,NSCT,3*ISPLH**2,NHEX,LZ))
      ALLOCATE(FLUX_G(NM,NSCT,3*ISPLH**2,NHEX,LZ,NGEFF))
      ALLOCATE(TMPXNI(NMX,ISPLH,NCOL))
      ALLOCATE(TMPXNJ(NMY,ISPLH,NCOL))
      ALLOCATE(TMPXND(NMX,ISPLH,NCOL))
      ALLOCATE(TMPXNK(NMZ,ISPLH,ISPLH,3,NHEX))
*----
*  CONSTRUCT JACOBIAN MATRIX FOR EACH LOZENGE
*----
      JAC = RESHAPE((/ 1., -SQRT(3.), 1., SQRT(3.), 2., 0., 1.,
     >    SQRT(3.), 2., 0., -1., SQRT(3.) /), SHAPE(JAC))
      JAC = (SIDE/2.)*JAC
*----
*  LENGTH OF FUNKNO COMPONENTS (IN ORDER)
*----
      LFLX=3*NM*(ISPLH**2)*NHEX*LZ*NSCT
      L5=3*NMZ*(ISPLH**2)*NHEX
*----
*  SET DODECANT SWAPPING ORDER.
*----
      NPQD(:12)=0
      INDANG(:NPQ,:12)=0
      IIND(:12)=0
      DO M=1,NPQ
        VU=DU(M)
        VE=DE(M)
        VZ=DZ(M)
        IF(W(M).EQ.0) CYCLE
        THETA=0.0D0
        IF(VE.GT.0.0)THEN
          IF(VU.EQ.0.0)THEN
            THETA = PI/2
          ELSEIF(VU.GT.0.0)THEN
            THETA = ATAN(ABS(VE/VU))
          ELSEIF(VU.LT.0.0)THEN
            THETA = PI - ATAN(ABS(VE/VU))
          ENDIF
        ELSEIF(VE.LT.0.0)THEN
          IF(VU.EQ.0.0)THEN
            THETA = 3*PI/2
          ELSEIF(VU.LT.0.0)THEN
            THETA = PI + ATAN(ABS(VE/VU))
          ELSEIF(VU.GT.0.0)THEN
            THETA = 2.*PI - ATAN(ABS(VE/VU))
          ENDIF
        ENDIF
        ! UNFOLD DODECANTS
        IND=0
        IF(VZ.GE.0.0)THEN
          IF((THETA.GT.0.0).AND.(THETA.LT.(PI/3.)))THEN
            IND=1
          ELSEIF((THETA.GT.(PI/3.)).AND.(THETA.LT.(2.*PI/3.)))THEN
            IND=2
          ELSEIF((THETA.GT.(2.*PI/3.)).AND.(THETA.LT.(PI)))THEN
            IND=3
          ELSEIF((THETA.GT.(PI)).AND.(THETA.LT.(4.*PI/3.)))THEN
            IND=4
          ELSEIF((THETA.GT.(4.*PI/3.)).AND.(THETA.LT.(5.*PI/3.)))THEN
            IND=5
          ELSEIF((THETA.GT.(5.*PI/3.)).AND.(THETA.LT.(2.*PI)))THEN
            IND=6
          ENDIF
        ELSEIF(VZ.LT.0.0)THEN
          IF((THETA.GT.0.0).AND.(THETA.LT.(PI/3.)))THEN
            IND=7
          ELSEIF((THETA.GT.(PI/3.)).AND.(THETA.LT.(2.*PI/3.)))THEN
            IND=8
          ELSEIF((THETA.GT.(2.*PI/3.)).AND.(THETA.LT.(PI)))THEN
            IND=9
          ELSEIF((THETA.GT.(PI)).AND.(THETA.LT.(4.*PI/3.)))THEN
            IND=10
          ELSEIF((THETA.GT.(4.*PI/3.)).AND.(THETA.LT.(5.*PI/3.)))THEN
            IND=11
          ELSEIF((THETA.GT.(5.*PI/3.)).AND.(THETA.LT.(2.*PI)))THEN
            IND=12
          ENDIF
        ENDIF
        ! Assume IIND(I)=I in hexagonal geometry
        IIND(IND)=IND
        NPQD(IND)=NPQD(IND)+1
        INDANG(NPQD(IND),IND)=M
      ENDDO
*----
*  MAIN LOOP OVER DODECANTS.
*----

      FLUX_G(:NM,:NSCT,:3*ISPLH**2,:NHEX,:LZ,:NGEFF)=0.0D0
      WX0=WX
      WY0=WY
      WZ0=WZ

      DO JND=1,12
      IND=IIND(JND)
      IND_XY=MOD(IND-1,6)+1
      ! Needed because of S2 LS (8 dir. for 12 dodecants)
      IF(IND.EQ.0) CYCLE
*----
*  PRELIMINARY LOOPS FOR SETTING BOUNDARY CONDITIONS.
*----

      IF((NCODE(5).NE.1).or.(NCODE(6).NE.1))THEN
*$OMP  PARALLEL DO
*$OMP+ PRIVATE(M,IG,VZ,M1,IOF,JOF,IPQD)
*$OMP+ SHARED(FUNKNO) COLLAPSE(2)

      DO IG=1,NGEFF
      DO IPQD=1,NPQD(IND)
      IF(.NOT.INCONV(IG)) CYCLE
      M=INDANG(IPQD,IND)

      VZ=DZ(M)
      ! Z-BOUNDARY
      IF(VZ.GT.0.0)THEN
        M1=MRMZ(M)
        IF(NCODE(5).NE.4)THEN
          IOF=(M-1)*(L5)
          JOF=(M1-1)*(L5)
          FUNKNO(LFLX+IOF+1:LFLX+IOF+L5,IG)=
     >      FUNKNO(LFLX+JOF+1:LFLX+JOF+L5,IG)
        ENDIF
      ELSEIF(VZ.LT.0.0)THEN
        M1=MRMZ(M)
        IF(NCODE(6).NE.4)THEN
          IOF=(M-1)*(L5)
          JOF=(M1-1)*(L5)
          FUNKNO(LFLX+IOF+1:LFLX+IOF+L5,IG)=
     >      FUNKNO(LFLX+JOF+1:LFLX+JOF+L5,IG)
        ENDIF
      ENDIF
*
      ENDDO
      ENDDO

*$OMP END PARALLEL DO
      ENDIF

      ! CALL XABORT('SNFBH3: testing 1 ')
*----
*  MAIN SWAPPING LOOPS FOR SN FLUX CALCULATION
*  LOOP OVER ENERGY AND ANGLES
*----

*$OMP  PARALLEL DO 
*$OMP+ PRIVATE(ITID,FLUX,M,IG,XNI,XNJ,XNK,Q,Q2,IOF,IER,II,JJ,I,J,K,K0)
*$OMP+ PRIVATE(IPQD,IBM,SIGMA,V,ISFIX,IX,JX,IY,JY,IZ,JZ,AAA,BBB,CCC,DDD)
*$OMP+ PRIVATE(IIX,IIY,IIZ,P,IEL)
*$OMP+ PRIVATE(LHEX,IHEX_XY,IIHEX,DCOORD,ILOZLOOP,ILOZ,IL,I2,JL,J2)
*$OMP+ PRIVATE(MUHTEMP,MUH,ETAHTEMP,ETAH,XIH,I3,I_FETCH,III,JJJ,IIM,JIM)
*$OMP+ PRIVATE(TMPXNI,TMPXNJ,TMPXND,TMPXNK)
*$OMP+ FIRSTPRIVATE(WX,WY,WZ,WX0,WY0,WZ0) SHARED(FUNKNO,IND)
*$OMP+ REDUCTION(+:FLUX_G) COLLAPSE(2)      
      ! LOOP FOR GROUPS TO EXECUTE IN PARALLEL
      DO IG=1,NGEFF

      ! LOOP OVER ALL DIRECTIONS
      DO IPQD=1,NPQD(IND)
      IF(.NOT.INCONV(IG)) CYCLE
      M=INDANG(IPQD,IND)
      IF(W(M).EQ.0.0) CYCLE

      ! GET AND PRINT THREAD NUMBER 
#if defined(_OPENMP)
      ITID=omp_get_thread_num()
#else
      ITID=0
#endif
      IF(IMPX.GT.5) WRITE(IUNOUT,500) ITID,NGIND(IG),IPQD

      ! INITIALIZE FLUX AND Z-BOUNDARY FLUXES
      FLUX(:NM,:NSCT,:3*ISPLH**2,:NHEX,:LZ)=0.0D0
      TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX)=0.0D0

      ! PICK UP BOUNDARY ELEMENTS
      IF((NCODE(5).NE.1).or.(NCODE(6).NE.1))THEN
        IOF=(M-1)*(L5) + 1
        TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX)=
     >    RESHAPE(FUNKNO(LFLX+IOF:LFLX+IOF+L5,IG),
     >    (/NMZ,ISPLH,ISPLH,3,NHEX/))
      ENDIF
      ! ACCOUNT FOR ALBEDO IN BOUNDARY ELEMENTS
      IF(IND.LT.7) THEN
        TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX)=
     >    TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX)*ZCODE(5)
      ELSE
        TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX)=
     >    TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX)*ZCODE(6)
      ENDIF

*----
*  LOOP OVER Z-AXIS PLANES
*----

      DO K0=1,LZ
      K=K0
      IF(IND.GE.7) K=LZ+1-K0

      ! INITIALIZE I,J,D-BOUNDARY FLUXES
      TMPXNI(:NMX,:ISPLH,:NCOL)=0.0D0
      TMPXNJ(:NMY,:ISPLH,:NCOL)=0.0D0
      TMPXND(:NMX,:ISPLH,:NCOL)=0.0D0

*----
*  LOOP OVER CARTESIAN MAP OF HEXAGONAL DOMAIN
*----

      DO JJJ=1,NCOL
      JIM=JJJ
      ! Account for different sweep direction depending on angle 
      IF((IND_XY.EQ.1).OR.(IND_XY.EQ.2).OR.(IND_XY.EQ.3)) JIM=NCOL+1-JIM
        
      DO III=1,NCOL
      IIM=III
      ! Account for different sweep direction depending on angle 
      IF((IND_XY.EQ.2).OR.(IND_XY.EQ.3).OR.(IND_XY.EQ.4)) IIM=NCOL+1-IIM

      ! For IND_XY 3 or 6, Cartesian axial coordinate map is swept 
      ! vertically instead of horizontally. IM suffix is for 'IMmutable'
      I=IIM
      J=JIM
      IF((IND_XY.EQ.3).OR.(IND_XY.EQ.6))THEN
        I=JIM
        J=IIM
      ENDIF

      ! If within corners of Cartesian axial coordinate map (where
      ! there are no hexagons), skip loop
      IF(TMPMAT(1,1,1,I,J,K).EQ.-1) CYCLE

      ! Find in X-Y plane DRAGON geometry hexagonal index using I and J
      LHEX=(COORDMAP(1,:).EQ.I .AND. COORDMAP(2,:).EQ.J)
      IHEX_XY=0
      DO IIHEX=1,NHEX
        IF(LHEX(IIHEX)) THEN
          IHEX_XY=IIHEX
          EXIT
        ENDIF
      ENDDO
      IF(IHEX_XY.EQ.0) CALL XABORT('SNFBH3: IHEX_XY FAILURE.')
      ! Find D coordinate
      DCOORD = ABS(COORDMAP(3,IHEX_XY))-NRINGS

*----
*  LOOP OVER LOZENGES
*----

      DO ILOZLOOP=1,3
      ILOZ=LOZSWP(ILOZLOOP,IND_XY)

      ! Get Jacobian elements values
      AAA = JAC(1,1,ILOZ)
      BBB = JAC(1,2,ILOZ)
      CCC = JAC(2,1,ILOZ)
      DDD = JAC(2,2,ILOZ)

      ! CALL XABORT('SNFBH3: testing 19 ')
*----
*  LOOP OVER SUBMESH WITHIN EACH LOZENGE
*----
      DO IL=1,ISPLH
      I2=IL
      ! Account for different sweep direction depending on angle 
      IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
        IF((IND_XY.EQ.2).OR.(IND_XY.EQ.3).OR.(IND_XY.EQ.4))I2=ISPLH+1-I2
      ELSEIF(ILOZ.EQ.3)THEN
        IF((IND_XY.EQ.3).OR.(IND_XY.EQ.4).OR.(IND_XY.EQ.5))I2=ISPLH+1-I2
      ENDIF

      DO JL=1,ISPLH
      J2=JL
      ! Account for different sweep direction depending on angle 
      IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
        IF((IND_XY.EQ.4).OR.(IND_XY.EQ.5).OR.(IND_XY.EQ.6))J2=ISPLH+1-J2
      ELSEIF(ILOZ.EQ.1)THEN
        IF((IND_XY.EQ.3).OR.(IND_XY.EQ.4).OR.(IND_XY.EQ.5))J2=ISPLH+1-J2
      ENDIF
      ! READ IN XNI AND XNJ DEPENDING ON LOZENGE
      I_FETCH=0
      IF((ILOZ.EQ.1))THEN
        ! Read boundary fluxes in reverse for lozenge A since affine
        ! transformation of lozenges causes the D and I directions
        ! of lozenges C and A respectively to be reversed
        I_FETCH=ISPLH+1-I2
        XNI(:) = TMPXNI(:,J2,J)
        XNJ(:) = TMPXND(:,I_FETCH,DCOORD)
      ELSEIF((ILOZ.EQ.2))THEN
        XNI(:) = TMPXNI(:,J2,J)
        XNJ(:) = TMPXNJ(:,I2,I)
      ELSEIF((ILOZ.EQ.3))THEN
        XNI(:) = TMPXND(:,J2,DCOORD)
        XNJ(:) = TMPXNJ(:,I2,I)
      ENDIF
      XNK(:) = TMPXNK(:,I2,J2,ILOZ,IHEX_XY)

      ! DATA
      IBM=MAT(I2,J2,ILOZ,IHEX_XY,K)
      ! Skip loop if virtual element
      IF(IBM.EQ.0) CYCLE
      SIGMA=TOTAL(IBM,IG)
      V=VOL(I2,J2,ILOZ,IHEX_XY,K)

      ! COMPUTE ADJUSTED DIRECTION COSINES
      MUHTEMP  =  DA(1,K,M)
      ETAHTEMP =  DB(1,K,M)
      MUH = (MUHTEMP*DDD) - (ETAHTEMP*BBB)
      ETAH = (-MUHTEMP*CCC) + (ETAHTEMP*AAA)
      XIH  = DC(1,1,M)

      ! IF(IND.EQ.12) CALL XABORT('SNFBH3: testing 60 ')
    !   WRITE(*,*) (((((((K-1)*NHEX+(IHEX_XY-1))*3+(ILOZ-1))*ISPLH+
    !  >  (J2-1))*ISPLH+(I2-1))*NSCT+(2-1))*NM)+1
    !   WRITE(*,*) K, NHEX, IHEX_XY, ILOZ, ISPLH, J2, I2, NSCT, NM
    !   CALL XABORT('SNFBH3: testing 2')
      ! SOURCE DENSITY TERM
      DO IEL=1,NM
      Q(IEL)=0.0D0
      DO P=1,NSCT
      IOF=(((((((K-1)*NHEX+(IHEX_XY-1))*3+(ILOZ-1))*ISPLH+(J2-1))*
     >  ISPLH+(I2-1))*NSCT+(P-1))*NM)+IEL
      Q(IEL)=Q(IEL)+QEXT(IOF,IG)*MN(M,P)
      ENDDO
      ENDDO

      ! CALL XABORT('SNFBH3: testing 17 ')
      ISFIX=.FALSE.
      DO WHILE (.NOT.ALL(ISFIX)) ! LOOP FOR ADAPTIVE CALCULATION

      ! FLUX MOMENT COEFFICIENTS MATRIX
      Q2(:NM,:NM+1)=0.0D0
      DO IZ=1,IELEM
      DO JZ=1,IELEM
      DO IY=1,IELEM
      DO JY=1,IELEM
      DO IX=1,IELEM
      DO JX=1,IELEM

        II=IELEM**2*(IZ-1)+IELEM*(IY-1)+IX
        JJ=IELEM**2*(JZ-1)+IELEM*(JY-1)+JX

        ! IF(IPQD.EQ.3) CALL XABORT('SNFBH3: testing 69 ')
      ! CALL XABORT('SNFBH3: testing 17 ')
        ! DIAGONAL TERMS
        IF(II.EQ.JJ) THEN
          Q2(II,JJ)=SIGMA*V
     1              +CST(IX)**2*WX(JX+1)*ABS(MUH)
     2              +CST(IY)**2*WY(JY+1)*ABS(ETAH)
     3              +CST(IZ)**2*WZ(JZ+1)*ABS(XIH)

        ! IF(IND.EQ.12) CALL XABORT('SNFBH3: testing 70 ')
      ! CALL XABORT('SNFBH3: testing 191 ')
        ! UPPER DIAGONAL TERMS
        ELSEIF(II.LT.JJ) THEN
          ! CALL XABORT('SNFBH3: testing 1919 ')
          IF(IZ.EQ.JZ) THEN
            IF(IY.EQ.JY) THEN
              ! X-SPACE TERMS
              IF(MOD(IX+JX,2).EQ.1) THEN
                Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*MUH
              ELSE
                Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(MUH)
              ENDIF
            ELSEIF(IX.EQ.JX) THEN
              ! Y-SPACE TERMS
              IF(MOD(IY+JY,2).EQ.1) THEN
                Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ETAH
              ELSE
                Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ABS(ETAH)
              ENDIF
            ENDIF
          ELSEIF(IY.EQ.JY.AND.IX.EQ.JX) THEN
            ! Z-SPACE TERMS
            IF(MOD(IZ+JZ,2).EQ.1) THEN
              Q2(II,JJ)=CST(IZ)*CST(JZ)*WZ(JZ+1)*XIH
            ELSE
              Q2(II,JJ)=CST(IZ)*CST(JZ)*WZ(JZ+1)*ABS(XIH)
            ENDIF
          ENDIF
        ! IF(IND.EQ.12) CALL XABORT('SNFBH3: testing 75 ')
      ! CALL XABORT('SNFBH3: testing 19 ')

         ! UNDER DIAGONAL TERMS
        ELSE
          ! CALL XABORT('SNFBH3: testing 1920 ')
          IF(IZ.EQ.JZ) THEN
            IF(IY.EQ.JY) THEN
              ! X-SPACE TERMS
              IF(MOD(IX+JX,2).EQ.1) THEN
                Q2(II,JJ)=CST(IX)*CST(JX)*(WX(JX+1)-2)*MUH
              ELSE
                Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(MUH)
              ENDIF
            ELSEIF(IX.EQ.JX) THEN
              ! Y-SPACE TERMS
              IF(MOD(IY+JY,2).EQ.1) THEN
                Q2(II,JJ)=CST(IY)*CST(JY)*(WY(JY+1)-2)*ETAH
              ELSE
                Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ABS(ETAH)
              ENDIF
            ENDIF
          ELSEIF(IY.EQ.JY.AND.IX.EQ.JX) THEN
            ! Z-SPACE TERMS
            IF(MOD(IZ+JZ,2).EQ.1) THEN
              Q2(II,JJ)=CST(IZ)*CST(JZ)*(WZ(JZ+1)-2)*XIH
            ELSE
              Q2(II,JJ)=CST(IZ)*CST(JZ)*WZ(JZ+1)*ABS(XIH)
            ENDIF
          ENDIF
        ENDIF
      ENDDO
      ENDDO
      ENDDO
      ENDDO
      ENDDO
      ENDDO

      ! FLUX SOURCE VECTOR
      DO IZ=1,IELEM
      DO IY=1,IELEM
      DO IX=1,IELEM
        II=IELEM**2*(IZ-1)+IELEM*(IY-1)+IX
        IIX=IELEM*(IZ-1)+IY
        IIY=IELEM*(IZ-1)+IX
        IIZ=IELEM*(IY-1)+IX
        Q2(II,NM+1)=Q(II)*V
        ! X-SPACE TERMS
        IF(MOD(IX,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IX)*(1-WX(1))
     1                *XNI(IIX)*ABS(MUH)
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)-CST(IX)*(1+WX(1))
     1                *XNI(IIX)*MUH
        ENDIF
        ! Y-SPACE TERMS
        IF(MOD(IY,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IY)*(1-WY(1))
     1                *XNJ(IIY)*ABS(ETAH)
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)-CST(IY)*(1+WY(1))
     1                *XNJ(IIY)*ETAH
        ENDIF
        ! Z-SPACE TERMS
        IF(MOD(IZ,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IZ)*(1-WZ(1))
     1                *XNK(IIZ)*ABS(XIH)
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)-CST(IZ)*(1+WZ(1))
     1                *XNK(IIZ)*XIH
        ENDIF
      ENDDO
      ENDDO
      ENDDO

      CALL ALSBD(NM,1,Q2,IER,NM)
      IF(IER.NE.0) CALL XABORT('SNFBH3: SINGULAR MATRIX.')

      ! ADAPTIVE CORRECTION OF WEIGHTING PARAMETERS
      IF(ANY(ISADPT)) THEN
        IF(ISADPT(1)) THEN
          CALL SNADPT(IELEM,NM,IELEM**2,Q2(1:IELEM:1,NM+1),
     1    XNI(:NMX),1.0,WX,ISFIX(1))
        ELSE
          ISFIX(1)=.TRUE.
        ENDIF
        IF(ISADPT(2)) THEN
          CALL SNADPT(IELEM,NM,IELEM**2,Q2(1:IELEM**2:IELEM,NM+1),
     1    XNJ(:NMY),1.0,WY,ISFIX(2))
        ELSE
          ISFIX(2)=.TRUE.
        ENDIF
        IF(ISADPT(3)) THEN
          CALL SNADPT(IELEM,NM,IELEM**2,Q2(1:NM:IELEM**2,NM+1),
     1    XNK(:NMZ),1.0,WZ,ISFIX(3))
        ELSE
          ISFIX(3)=.TRUE.
        ENDIF
      ELSE
        ISFIX=.TRUE.
      ENDIF

      END DO ! END OF ADAPTIVE LOOP

      ! CLOSURE RELATIONS
      IF(IELEM.EQ.1.AND.LFIXUP.AND.(Q2(1,2).LE.RLOG)) Q2(1,2)=0.0
      ! Read XNI/XNI/XNK into TMPXNI/J/D/K
      IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
        TMPXNI(:NMX,J2,J)=WX(1)*XNI(:NMX)
      ELSE
        TMPXND(:NMX,J2,DCOORD)=WX(1)*XNI(:NMX)
      ENDIF
      IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
        TMPXNJ(:NMY,I2,I)=WY(1)*XNJ(:NMY)
      ELSE
        I3=I_FETCH
        TMPXND(:NMY,I3,DCOORD)=WY(1)*XNJ(:NMY)
      ENDIF
      TMPXNK(:NMZ,I2,J2,ILOZ,IHEX_XY)=WZ(1)*XNK(:NMZ)
      DO IZ=1,IELEM
      DO IY=1,IELEM
      DO IX=1,IELEM
        II=IELEM**2*(IZ-1)+IELEM*(IY-1)+IX
        IIX=IELEM*(IZ-1)+IY
        IIY=IELEM*(IZ-1)+IX
        IIZ=IELEM*(IY-1)+IX
        ! X-SPACE
        ! Assign I-boundary fluxes if lozenges A or B
        IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
        IF(MOD(IX,2).EQ.1) THEN
          TMPXNI(IIX,J2,J)=TMPXNI(IIX,J2,J)+CST(IX)*WX(IX+1)
     1                 *Q2(II,NM+1)
        ELSE
          TMPXNI(IIX,J2,J)=TMPXNI(IIX,J2,J)+CST(IX)*WX(IX+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,MUH)
        ENDIF
        ENDIF
        ! Y-SPACE
        ! Assign J-boundary fluxes if lozenges B or C
        IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
        IF(MOD(IY,2).EQ.1) THEN
          TMPXNJ(IIY,I2,I)=TMPXNJ(IIY,I2,I)+CST(IY)*WY(IY+1)
     1                 *Q2(II,NM+1)
        ELSE
          TMPXNJ(IIY,I2,I)=TMPXNJ(IIY,I2,I)+CST(IY)*WY(IY+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,ETAH)
        ENDIF
        ENDIF
        ! D-SPACE
        ! Assign D-boundary fluxes if lozenge A using XNJ
        IF((ILOZ.EQ.1))THEN
        I3=I_FETCH
        IF(MOD(IY,2).EQ.1) THEN
          TMPXND(IIY,I3,DCOORD)=TMPXND(IIY,I3,DCOORD)+CST(IY)*WY(IY+1)
     1                 *Q2(II,NM+1)
        ELSE
          TMPXND(IIY,I3,DCOORD)=TMPXND(IIY,I3,DCOORD)+CST(IY)*WY(IY+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,ETAH)
        ENDIF
        ENDIF
        ! Assign D-boundary fluxes if lozenge C using XNI
        IF((ILOZ.EQ.3))THEN
        IF(MOD(IX,2).EQ.1) THEN
          TMPXND(IIX,J2,DCOORD)=TMPXND(IIX,J2,DCOORD)+CST(IX)*WX(IX+1)
     1                 *Q2(II,NM+1)
        ELSE
          TMPXND(IIX,J2,DCOORD)=TMPXND(IIX,J2,DCOORD)+CST(IX)*WX(IX+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,MUH)
        ENDIF
        ENDIF
        ! Z-SPACE
        IF(MOD(IZ,2).EQ.1) THEN
          TMPXNK(IIZ,I2,J2,ILOZ,IHEX_XY)=TMPXNK(IIZ,I2,J2,ILOZ,IHEX_XY)
     1                 +CST(IZ)*WZ(IZ+1)*Q2(II,NM+1)
        ELSE
          TMPXNK(IIZ,I2,J2,ILOZ,IHEX_XY)=TMPXNK(IIZ,I2,J2,ILOZ,IHEX_XY)
     1                 +CST(IZ)*WZ(IZ+1)*Q2(II,NM+1)*SIGN(1.0,XIH)
        ENDIF
      ENDDO
      ENDDO
      ENDDO
      ! FLIP GRADIENTS IF NECESSARY
      DO IZ=1,IELEM
      DO IY=1,IELEM
        IIX=IELEM*(IZ-1)+IY
        IF((MOD(IY,2).EQ.0).AND.(ILOZ.EQ.3).AND.(IL.EQ.ISPLH))
     1    TMPXND(IIX,J2,DCOORD)=TMPXND(IIX,J2,DCOORD)*(-1)
      ENDDO
      ENDDO
      I3=I_FETCH
      DO IZ=1,IELEM
      DO IX=1,IELEM
        IIY=IELEM*(IZ-1)+IX
        IF((MOD(IX,2).EQ.0).AND.(ILOZ.EQ.1).AND.(JL.EQ.ISPLH))
     1    TMPXND(IIY,I3,DCOORD)=TMPXND(IIY,I3,DCOORD)*(-1)
      ENDDO
      ENDDO
      ! LFIXUP
      IF(IELEM.EQ.1.AND.LFIXUP)THEN
        IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
          IF(TMPXNI(1,J2,J).LE.RLOG) TMPXNI(1,J2,J)=0.0
        ELSE
          IF(TMPXND(1,J2,DCOORD).LE.RLOG) TMPXND(1,J2,DCOORD)=0.0
        ENDIF
        IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
          IF(TMPXNJ(1,I2,I).LE.RLOG) TMPXNJ(1,I2,I)=0.0
        ELSE
          I3=I_FETCH
          IF(TMPXND(1,I3,DCOORD).LE.RLOG) TMPXND(1,I3,DCOORD)=0.0
        ENDIF
        IF(TMPXNK(1,I2,J2,ILOZ,IHEX_XY).LE.RLOG) 
     1   TMPXNK(1,I2,J2,ILOZ,IHEX_XY)=0.0
      ENDIF
      WX=WX0
      WY=WY0
      WZ=WZ0

      ! SAVE LEGENDRE MOMENT OF THE FLUX
      IOF=((ILOZ-1)*ISPLH+(J2-1))*ISPLH+I2
      DO P=1,NSCT
      DO IEL=1,NM
      FLUX(IEL,P,IOF,IHEX_XY,K) = FLUX(IEL,P,IOF,IHEX_XY,K)
     1   +Q2(IEL,NM+1)*DN(P,M)
      ENDDO
      ENDDO

      ENDDO ! END OF WITHIN LOZENGE J-LOOP
      ENDDO ! END OF WITHIN LOZENGE I-LOOP

      ENDDO ! END OF LOZENGE LOOP

      ENDDO ! END OF I COLUMNS OF CARTESIAN MAP LOOP
      ENDDO ! END OF J COLUMNS OF CARTESIAN MAP LOOP
      ENDDO ! END OF Z-LOOP

      ! SAVE FLUX INFORMATION
      FLUX_G(:,:,:,:,:,IG)=FLUX_G(:,:,:,:,:,IG)+FLUX(:,:,:,:,:)

      ! SAVE K-BOUNDARY CONDITIONS IF NOT VOID B.C.
      IF((NCODE(5).NE.1).or.(NCODE(6).NE.1))THEN
        IOF=(M-1)*(L5)
        FUNKNO(LFLX+IOF+1:LFLX+IOF+L5,IG)=
     >  RESHAPE(REAL(TMPXNK(:NMZ,:ISPLH,:ISPLH,:3,:NHEX)),
     >  (/L5/))
      ENDIF

      ENDDO ! END OF DIRECTION LOOP
      ENDDO ! END OF ENERGY LOOP
*$OMP END PARALLEL DO
      ENDDO ! END OF OCTANT LOOP

      ! SAVE FLUX INFORMATION
      DO IG=1,NGEFF
        IF(.NOT.INCONV(IG)) CYCLE
        FUNKNO(:LFLX,IG)=
     1  RESHAPE(REAL(FLUX_G(:NM,:NSCT,:3*ISPLH**2,:NHEX,:LZ,IG)),
     2  (/LFLX/))
      ENDDO
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(FLUX_G,FLUX,INDANG,TMPXNI,TMPXNJ,TMPXND,TMPXNK,TMPMAT)
      RETURN
  500 FORMAT(16H SNFBH3: thread=,I8,12H --->(group=,I4,7H angle=,I4,1H))
      END