summaryrefslogtreecommitdiff
path: root/Dragon/src/SNFBH2.F
blob: 6ff2f01312eb5ea3813ac9f9dc4558f6a66327f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
*DECK SNFBH2
      SUBROUTINE SNFBH2(NUN,NGEFF,IMPX,INCONV,NGIND,NHEX,ISPLH,SIDE,
     1 IELEM,NM,NMX,NMY,NMAT,NPQ,NSCT,MAT,VOL,TOTAL,QEXT,LFIXUP,DU,DE,W,
     2 DB,DA,MN,DN,WX,WY,CST,ISADPT,LOZSWP,COORDMAP,FUNKNO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one inner iteration for solving SN equations in 2D hexagonal
* geometry for the HODD/DG method. Energy-angle multithreading. VOID
* boundary conditions. Boltzmann (BTE) discretization.

*
*Copyright:
* Copyright (C) 2025 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert, A. A. Calloo and C. Bienvenue
*
*Parameters: input
* NUN      total number of unknowns in vector FUNKNO.
* NGEFF    number of energy groups processed in parallel.
* IMPX     print flag (equal to zero for no print).
* INCONV   energy group convergence flag (set to .FALSE. if converged).
* NGIND    energy group indices assign to the NGEFF set.
* NHEX     number of hexagons in X-Y plane.
* ISPLH    splitting option for hexagons.
* SIDE     side of an hexagon.
* IELEM    measure of order of the spatial approximation polynomial:
*          =1 constant - default for HODD;
*          =2 linear - default for DG;
*          >3 higher orders.
* NM       number of moments in space and energy for flux components
* NMX      number of moments for X axis boundaries components
* NMY      number of moments for Y axis boundaries components
* NMAT     number of material mixtures.
* NPQ      number of SN directions in four octants (including zero-weight
*          directions).
* NSCT     maximum number of spherical harmonics moments of the flux.
* MAT      material mixture index in each region.
* VOL      volumes of each region.
* TOTAL    macroscopic total cross sections.
* QEXT     Legendre components of the fixed source.
* LFIXUP   flag to enable negative flux fixup.
* DU       first direction cosines ($\\mu$).
* DE       second direction cosines ($\\eta$).
* W        weights.
* DB       diamond-scheme parameter.
* DA       diamond-scheme parameter.
* MN       moment-to-discrete matrix.
* DN       discrete-to-moment matrix.
* WX       spatial X axis closure relation weighting factors.
* WY       spatial Y axis closure relation weighting factors.
* CST      constants for the polynomial approximations.
* ISADPT   flag to enable/disable adaptive flux calculations.
* LOZSWP   lozenge sweep order depending on direction.
* COORDMAP coordinate map - mapping the hexagons from the indices 
*          within the DRAGON geometry to a Cartesian axial coordinate
*          array (see redblobgames.com website).
*
*Parameters: input/output
* FUNKNO  Legendre components of the flux and boundary fluxes.
*
*Comments:
* 1. The direction of the axes I, J and D for the surface boundary 
*    fluxes are shown in the diagram below. This means that 
*    i) lozenge A has I- and D-boundaries (instead of I and J)
*    i) lozenge B has I- and J-boundaries
*    i) lozenge C has D- and J-boundaries (instead of I and J)
*
*                                  ^
*                         j-axis   |
*                                  |          ^
*                              _________     /    d-axis
*                             /       / \   /
*                            /   B   /   \
*                           /       /     \
*                          (-------(   A   )
*                           \       \     /
*                            \  C    \   / 
*                             \_______\_/   \
*                                            \   i-axis
*                                             ^
*
*-----------------------------------------------------------------------
#if defined(_OPENMP)
      USE omp_lib
#endif
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NUN,NGEFF,IMPX,NGIND(NGEFF),NHEX,ISPLH,IELEM,NM,NMX,
     1 NMY,NMAT,NPQ,NSCT,MAT(ISPLH,ISPLH,3,NHEX),LOZSWP(3,6),
     2 COORDMAP(3,NHEX)
      LOGICAL INCONV(NGEFF)
      REAL SIDE,VOL(ISPLH,ISPLH,3,NHEX),TOTAL(0:NMAT,NGEFF),
     1 QEXT(NUN,NGEFF),DU(NPQ),DE(NPQ),W(NPQ),
     2 DB(ISPLH,ISPLH,3,NHEX,NPQ),DA(ISPLH,ISPLH,3,NHEX,NPQ),
     3 MN(NPQ,NSCT),DN(NSCT,NPQ),FUNKNO(NUN,NGEFF),WX(IELEM+1),
     3 WY(IELEM+1),CST(IELEM)
      LOGICAL LFIXUP,ISADPT(2)
*----
*  LOCAL VARIABLES
*----
      INTEGER :: NPQD(6),IIND(6),P,DCOORD
      REAL :: JAC(2,2,3), MUH, ETAH, AAA, BBB, CCC, DDD, MUHTEMP,
     1 ETAHTEMP, WX0(IELEM+1),WY0(IELEM+1)
      DOUBLE PRECISION :: Q(NM), Q2(NM,NM+1), V,THETA, XNI(NMX),
     1 XNJ(NMY)
      PARAMETER(IUNOUT=6,RLOG=1.0E-8,PI=3.141592654)
      LOGICAL :: LHEX(NHEX)
      LOGICAL ISFIX(2)
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: INDANG
      INTEGER, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: TMPMAT
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:) :: FLUX
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: FLUX_G
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: TMPXNI,
     > TMPXNJ, TMPXND
*----
*  MAP MATERIAL VALUES TO CARTESIAN AXIAL COORDINATE MAP
*----
      NRINGS=INT((SQRT(  REAL((4*NHEX-1)/3)  )+1.)/2.)
      NCOL=2*NRINGS -1
      ALLOCATE(TMPMAT(ISPLH,ISPLH,3,NCOL,NCOL))
      TMPMAT(:,:,:,:,:) = -1
      DO IHEX_DOM=1,NHEX
         TMPMAT(:,:,:,COORDMAP(1,IHEX_DOM),COORDMAP(2,IHEX_DOM)) = 
     >         MAT(:,:,:,IHEX_DOM)
      ENDDO
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(INDANG(NPQ,6))
      ALLOCATE(FLUX(NM,NSCT,3*ISPLH**2,NHEX))
      ALLOCATE(FLUX_G(NM,NSCT,3*ISPLH**2,NHEX,NGEFF))
      ALLOCATE(TMPXNI(IELEM,ISPLH,NCOL))
      ALLOCATE(TMPXNJ(IELEM,ISPLH,NCOL))
      ALLOCATE(TMPXND(IELEM,ISPLH,NCOL))
*----
*  CONSTRUCT JACOBIAN MATRIX FOR EACH LOZENGE
*----
      JAC = RESHAPE((/ 1., -SQRT(3.), 1., SQRT(3.), 2., 0., 1.,
     >    SQRT(3.), 2., 0., -1., SQRT(3.) /), SHAPE(JAC))
      JAC = (SIDE/2.)*JAC
*----
*  LENGTH OF FUNKNO COMPONENTS (IN ORDER)
*----
      LFLX=3*NM*(ISPLH**2)*NHEX*NSCT
*----
*  SET DODECANT SWAPPING ORDER
*----
      NPQD(:6)=0
      INDANG(:NPQ,:6)=0
      IIND(:6)=0
      DO M=1,NPQ
        VU=DU(M)
        VE=DE(M)
        IF(W(M).EQ.0) CYCLE
        THETA=0.0D0
        IF(VE.GT.0.0)THEN
          IF(VU.EQ.0.0)THEN
            THETA = PI/2
          ELSEIF(VU.GT.0.0)THEN
            THETA = ATAN(ABS(VE/VU))
          ELSEIF(VU.LT.0.0)THEN
            THETA = PI - ATAN(ABS(VE/VU))
          ENDIF
        ELSEIF(VE.LT.0.0)THEN
          IF(VU.EQ.0.0)THEN
            THETA = 3*PI/2
          ELSEIF(VU.LT.0.0)THEN
            THETA = PI + ATAN(ABS(VE/VU))
          ELSEIF(VU.GT.0.0)THEN
            THETA = 2.*PI - ATAN(ABS(VE/VU))
          ENDIF
        ENDIF
        IND=0
        IF((THETA.GT.0.0).AND.(THETA.LT.(PI/3.)))THEN
          IND=1
        ELSEIF((THETA.GT.(PI/3.)).AND.(THETA.LT.(2.*PI/3.)))THEN
          IND=2
        ELSEIF((THETA.GT.(2.*PI/3.)).AND.(THETA.LT.(PI)))THEN
          IND=3
        ELSEIF((THETA.GT.(PI)).AND.(THETA.LT.(4.*PI/3.)))THEN
          IND=4
        ELSEIF((THETA.GT.(4.*PI/3.)).AND.(THETA.LT.(5.*PI/3.)))THEN
          IND=5
        ELSEIF((THETA.GT.(5.*PI/3.)).AND.(THETA.LT.(2.*PI)))THEN
          IND=6
        ENDIF
        ! Assume IIND(I)=I in hexagonal geometry
        IIND(IND)=IND
        NPQD(IND)=NPQD(IND)+1
        INDANG(NPQD(IND),IND)=M
      ENDDO
*----
*  MAIN LOOP OVER DODECANTS
*----

      FLUX_G(:NM,:NSCT,:3*ISPLH**2,:NHEX,:NGEFF)=0.0D0
      WX0=WX
      WY0=WY

      DO JND=1,6
      IND=IIND(JND)
      ! Needed because of S2 LS (4 dir. for 6 sextants)
      IF(IND.EQ.0) CYCLE

*----
*  MAIN SWAPPING LOOPS FOR SN FLUX CALCULATION
*  LOOP OVER ENERGY AND ANGLES
*----

*$OMP  PARALLEL DO 
*$OMP+ PRIVATE(ITID,FLUX,M,IG,XNI,XNJ,Q,Q2,IOF,IER,II,JJ,IEL,I,J,P)
*$OMP+ PRIVATE(IPQD,IBM,SIGMA,V,ISFIX,IX,JX,IY,JY,AAA,BBB,CCC,DDD)
*$OMP+ PRIVATE(LHEX,IHEX,IIHEX,DCOORD,ILOZLOOP,ILOZ,IL,I2,JL,J2)
*$OMP+ PRIVATE(MUHTEMP,MUH,ETAHTEMP,ETAH,I3,I_FETCH,III,JJJ,IIM,JIM)
*$OMP+ PRIVATE(TMPXNI,TMPXNJ,TMPXND)
*$OMP+ FIRSTPRIVATE(WX,WY,WX0,WY0) SHARED(FUNKNO)
*$OMP+ REDUCTION(+:FLUX_G) COLLAPSE(2)

      ! LOOP FOR GROUPS TO EXECUTE IN PARALLEL
      DO IG=1,NGEFF

      ! LOOP OVER ALL DIRECTIONS
      DO IPQD=1,NPQD(IND)
      IF(.NOT.INCONV(IG)) CYCLE
      M=INDANG(IPQD,IND)
      IF(W(M).EQ.0.0) CYCLE

      ! GET AND PRINT THREAD NUMBER
#if defined(_OPENMP)
      ITID=omp_get_thread_num()
#else
      ITID=0
#endif
      IF(IMPX.GT.5) WRITE(IUNOUT,400) ITID,NGIND(IG),IPQD

      ! INITIALIZE FLUXES AND BOUNDARY FLUXES
      FLUX(:NM,:NSCT,:3*ISPLH**2,:NHEX)=0.0D0
      TMPXNI(:IELEM,:ISPLH,:NCOL)=0.0D0
      TMPXNJ(:IELEM,:ISPLH,:NCOL)=0.0D0
      TMPXND(:IELEM,:ISPLH,:NCOL)=0.0D0

      ! LOOP OVER CARTESIAN MAP OF HEXAGONAL DOMAIN
      DO JJJ=1,NCOL
      JIM=JJJ
      ! Account for different sweep direction depending on angle 
      IF((IND.EQ.1).OR.(IND.EQ.2).OR.(IND.EQ.3)) JIM=NCOL+1-JIM
        
      DO III=1,NCOL
      IIM=III
      ! Account for different sweep direction depending on angle 
      IF((IND.EQ.2).OR.(IND.EQ.3).OR.(IND.EQ.4)) IIM=NCOL+1-IIM

      ! For IND 3 or 6, Cartesian axial coordinate map is swept 
      ! vertically instead of horizontally. IM suffix is for 'IMmutable'
      I=IIM
      J=JIM
      IF((IND.EQ.3).OR.(IND.EQ.6))THEN
        I=JIM
        J=IIM
      ENDIF

      ! If within corners of Cartesian axial coordinate map (where
      ! there are no hexagons), skip loop
      IF(TMPMAT(1,1,1,I,J).EQ.-1) CYCLE

      ! Find DRAGON geometry hexagonal index using I and J
      LHEX=(COORDMAP(1,:).EQ.I .AND. COORDMAP(2,:).EQ.J)
      IHEX=0
      DO IIHEX=1,NHEX
        IF(LHEX(IIHEX)) THEN
          IHEX=IIHEX
          EXIT
        ENDIF
      ENDDO
      IF(IHEX.EQ.0) CALL XABORT('SNFTH1: IHEX FAILURE.')
      ! Find D coordinate
      DCOORD = ABS(COORDMAP(3,IHEX))-NRINGS

      ! LOOP OVER LOZENGES
      DO ILOZLOOP=1,3
      ILOZ=LOZSWP(ILOZLOOP,IND)

      ! Get Jacobian elements values
      AAA = JAC(1,1,ILOZ)
      BBB = JAC(1,2,ILOZ)
      CCC = JAC(2,1,ILOZ)
      DDD = JAC(2,2,ILOZ)


      ! LOOP OVER SUBMESH WITHIN EACH LOZENGE
      DO IL=1,ISPLH
      I2=IL
      ! Account for different sweep direction depending on angle 
      IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
        IF((IND.EQ.2).OR.(IND.EQ.3).OR.(IND.EQ.4)) I2=ISPLH+1-I2
      ELSEIF(ILOZ.EQ.3)THEN
        IF((IND.EQ.3).OR.(IND.EQ.4).OR.(IND.EQ.5)) I2=ISPLH+1-I2
      ENDIF

      DO JL=1,ISPLH
      J2=JL
      ! Account for different sweep direction depending on angle 
      IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
        IF((IND.EQ.4).OR.(IND.EQ.5).OR.(IND.EQ.6)) J2=ISPLH+1-J2
      ELSEIF(ILOZ.EQ.1)THEN
        IF((IND.EQ.3).OR.(IND.EQ.4).OR.(IND.EQ.5)) J2=ISPLH+1-J2
      ENDIF

      ! READ IN XNI AND XNJ DEPENDING ON LOZENGE
      I_FETCH=0
      IF((ILOZ.EQ.1))THEN
        ! Read boundary fluxes in reverse for lozenge A since affine
        ! transformation of lozenges causes the D and I directions
        ! of lozenges C and A respectively to be reversed
        I_FETCH=ISPLH+1-I2
        XNI(:) = TMPXNI(:,J2,J)
        XNJ(:) = TMPXND(:,I_FETCH,DCOORD)
      ELSEIF((ILOZ.EQ.2))THEN
        XNI(:) = TMPXNI(:,J2,J)
        XNJ(:) = TMPXNJ(:,I2,I)
      ELSEIF((ILOZ.EQ.3))THEN
        XNI(:) = TMPXND(:,J2,DCOORD)
        XNJ(:) = TMPXNJ(:,I2,I)
      ENDIF

      ! DATA
      IBM=MAT(I2,J2,ILOZ,IHEX)
      ! Skip loop if virtual element 
      IF(IBM.EQ.0) CYCLE
      SIGMA=TOTAL(IBM,IG)
      V=VOL(I2,J2,ILOZ,IHEX)

      ! COMPUTE ADJUSTED DIRECTION COSINES
      MUHTEMP  =  DA(I2,J2,ILOZ,IHEX,M)
      ETAHTEMP =  DB(I2,J2,ILOZ,IHEX,M)
      MUH = (MUHTEMP*DDD) - (ETAHTEMP*BBB)
      ETAH = (-MUHTEMP*CCC) + (ETAHTEMP*AAA)

      ! SOURCE DENSITY TERM
      DO IEL=1,NM
      Q(IEL)=0.0D0
      DO P=1,NSCT
      IOF=((((((IHEX-1)*3+(ILOZ-1))*ISPLH+(J2-1))*ISPLH+
     1   (I2-1))*NSCT+(P-1))*NM)+IEL
      Q(IEL)=Q(IEL)+QEXT(IOF,IG)*MN(M,P)
      ENDDO
      ENDDO

      ISFIX=.FALSE.
      DO WHILE (.NOT.ALL(ISFIX)) ! LOOP FOR ADAPTIVE CALCULATION

      ! FLUX MOMENT COEFFICIENTS MATRIX
      Q2(:NM,:NM+1)=0.0D0
      
      DO IY=1,IELEM
      DO JY=1,IELEM
      DO IX=1,IELEM
      DO JX=1,IELEM
        II=IELEM*(IY-1)+IX
        JJ=IELEM*(JY-1)+JX

        ! DIAGONAL TERMS
        IF(II.EQ.JJ) THEN
          Q2(II,JJ)=SIGMA*V
     1              +CST(IX)**2*WX(JX+1)*ABS(MUH)
     2              +CST(IY)**2*WY(JY+1)*ABS(ETAH)

        ! UPPER DIAGONAL TERMS
        ELSEIF(II.LT.JJ) THEN
          ! X-SPACE TERMS
          IF(IY.EQ.JY) THEN
          IF(MOD(IX+JX,2).EQ.1) THEN
            Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*MUH
          ELSE
            Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(MUH)
          ENDIF
          ! Y-SPACE TERMS
          ELSEIF(IX.EQ.JX) THEN
          IF(MOD(IY+JY,2).EQ.1) THEN
            Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ETAH
          ELSE
            Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ABS(ETAH)
          ENDIF
          ENDIF

        ! UNDER DIAGONAL TERMS
        ELSE
          ! X-SPACE TERMS
          IF(IY.EQ.JY) THEN
          IF(MOD(IX+JX,2).EQ.1) THEN
            Q2(II,JJ)=CST(IX)*CST(JX)*(WX(JX+1)-2)*MUH
          ELSE
            Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(MUH)
          ENDIF 
          ! Y-SPACE TERMS
          ELSEIF(IX.EQ.JX) THEN
          IF(MOD(IY+JY,2).EQ.1) THEN
            Q2(II,JJ)=CST(IY)*CST(JY)*(WY(JY+1)-2)*ETAH
          ELSE
            Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ABS(ETAH)
          ENDIF
          ENDIF

        ENDIF
      ENDDO
      ENDDO
      ENDDO
      ENDDO

      ! FLUX SOURCE VECTOR
      DO IY=1,IELEM
      DO IX=1,IELEM
        II=IELEM*(IY-1)+IX
        Q2(II,NM+1)=Q(II)*V
        ! X-SPACE TERMS
        IF(MOD(IX,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IX)*(1-WX(1))
     1                *XNI(IY)*ABS(MUH)
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)-CST(IX)*(1+WX(1))
     1                *XNI(IY)*MUH
        ENDIF
        ! Y-SPACE TERMS
        IF(MOD(IY,2).EQ.1) THEN
          Q2(II,NM+1)=Q2(II,NM+1)+CST(IY)*(1-WY(1))
     1                *XNJ(IX)*ABS(ETAH)
        ELSE
          Q2(II,NM+1)=Q2(II,NM+1)-CST(IY)*(1+WY(1))
     1                *XNJ(IX)*ETAH
        ENDIF
      ENDDO
      ENDDO

      CALL ALSBD(NM,1,Q2,IER,NM)
      IF(IER.NE.0) CALL XABORT('SNFBH2: SINGULAR MATRIX.')

      ! ADAPTIVE CORRECTION OF WEIGHTING PARAMETERS
      IF(ANY(ISADPT)) THEN
        IF(ISADPT(1)) THEN
          CALL SNADPT(IELEM,NM,IELEM,Q2(1:IELEM:1,NM+1),
     1    XNI(:NMX),1.0,WX,ISFIX(1))
        ELSE
          ISFIX(1)=.TRUE.
        ENDIF
        IF(ISADPT(2)) THEN
          CALL SNADPT(IELEM,NM,IELEM,Q2(1:NM:IELEM,NM+1),
     1    XNJ(:NMY),1.0,WY,ISFIX(2))
        ELSE
          ISFIX(2)=.TRUE.
        ENDIF
      ELSE
        ISFIX=.TRUE.
      ENDIF

      END DO ! END OF ADAPTIVE LOOP

      ! CLOSURE RELATIONS
      IF(IELEM.EQ.1.AND.LFIXUP.AND.(Q2(1,2).LE.RLOG)) Q2(1,2)=0.0
      ! Read XNI/XNI into TMPXNI/J/D
      IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
        TMPXNI(:NMX,J2,J)=WX(1)*XNI(:NMX)
      ELSE
        TMPXND(:NMX,J2,DCOORD)=WX(1)*XNI(:NMX)
      ENDIF
      IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
        TMPXNJ(:NMY,I2,I)=WY(1)*XNJ(:NMY)
      ELSE
        I3=I_FETCH
        TMPXND(:NMY,I3,DCOORD)=WY(1)*XNJ(:NMY)
      ENDIF
      DO IY=1,IELEM
      DO IX=1,IELEM
        II=IELEM*(IY-1)+IX
        ! X-SPACE
        ! Assign I-boundary fluxes if lozenges A or B
        IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
        IF(MOD(IX,2).EQ.1) THEN
          TMPXNI(IY,J2,J)=TMPXNI(IY,J2,J)+CST(IX)*WX(IX+1)
     1                 *Q2(II,NM+1)
        ELSE
          TMPXNI(IY,J2,J)=TMPXNI(IY,J2,J)+CST(IX)*WX(IX+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,MUH)
        ENDIF
        ENDIF
        ! Y-SPACE
        ! Assign J-boundary fluxes if lozenges B or C
        IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
        IF(MOD(IY,2).EQ.1) THEN
          TMPXNJ(IX,I2,I)=TMPXNJ(IX,I2,I)+CST(IY)*WY(IY+1)
     1                 *Q2(II,NM+1)
        ELSE
          TMPXNJ(IX,I2,I)=TMPXNJ(IX,I2,I)+CST(IY)*WY(IY+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,ETAH)
        ENDIF
        ENDIF
        ! D-SPACE
        ! Assign D-boundary fluxes if lozenge A using XNJ
        IF((ILOZ.EQ.1))THEN
        I3=I_FETCH
        IF(MOD(IY,2).EQ.1) THEN
          TMPXND(IX,I3,DCOORD)=TMPXND(IX,I3,DCOORD)+CST(IY)*WY(IY+1)
     1                 *Q2(II,NM+1)
        ELSE
          TMPXND(IX,I3,DCOORD)=TMPXND(IX,I3,DCOORD)+CST(IY)*WY(IY+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,ETAH)
        ENDIF
        ENDIF
        ! Assign D-boundary fluxes if lozenge C using XNI
        IF((ILOZ.EQ.3))THEN
        IF(MOD(IX,2).EQ.1) THEN
          TMPXND(IY,J2,DCOORD)=TMPXND(IY,J2,DCOORD)+CST(IX)*WX(IX+1)
     1                 *Q2(II,NM+1)
        ELSE
          TMPXND(IY,J2,DCOORD)=TMPXND(IY,J2,DCOORD)+CST(IX)*WX(IX+1)
     1                 *Q2(II,NM+1)*SIGN(1.0,MUH)
        ENDIF
        ENDIF
      ENDDO
      ENDDO
      ! FLIP GRADIENTS IF NECESSARY
      DO IY=1,IELEM
        IF((MOD(IY,2).EQ.0).AND.(ILOZ.EQ.3).AND.(IL.EQ.ISPLH))
     1    TMPXND(IY,J2,DCOORD)=TMPXND(IY,J2,DCOORD)*(-1)
      ENDDO
      I3=I_FETCH
      DO IX=1,IELEM
        IF((MOD(IX,2).EQ.0).AND.(ILOZ.EQ.1).AND.(JL.EQ.ISPLH))
     1    TMPXND(IX,I3,DCOORD)=TMPXND(IX,I3,DCOORD)*(-1)
      ENDDO
      ! LFIXUP
      IF(IELEM.EQ.1.AND.LFIXUP)THEN
        IF((ILOZ.EQ.1).OR.(ILOZ.EQ.2))THEN
          IF(TMPXNI(1,J2,J).LE.RLOG) TMPXNI(1,J2,J)=0.0
        ELSE
          IF(TMPXND(1,J2,DCOORD).LE.RLOG) TMPXND(1,J2,DCOORD)=0.0
        ENDIF
        IF((ILOZ.EQ.2).OR.(ILOZ.EQ.3))THEN
          IF(TMPXNJ(1,I2,I).LE.RLOG) TMPXNJ(1,I2,I)=0.0
        ELSE
          I3=I_FETCH
          IF(TMPXND(1,I3,DCOORD).LE.RLOG) TMPXND(1,I3,DCOORD)=0.0
        ENDIF
      ENDIF
      WX=WX0
      WY=WY0

      ! SAVE LEGENDRE MOMENT OF THE FLUX
      IOF=((ILOZ-1)*ISPLH+(J2-1))*ISPLH+I2
      DO P=1,NSCT
      DO IEL=1,NM
      FLUX(IEL,P,IOF,IHEX)=FLUX(IEL,P,IOF,IHEX)+Q2(IEL,NM+1)*DN(P,M)
      ENDDO
      ENDDO

      ENDDO ! END OF WITHIN LOZENGE J-LOOP
      ENDDO ! END OF WITHIN LOZENGE I-LOOP

      ENDDO ! END OF LOZENGE LOOP

      ENDDO ! END OF I COLUMNS OF CARTESIAN MAP LOOP
      ENDDO ! END OF J COLUMNS OF CARTESIAN MAP LOOP

      ! SAVE FLUX INFORMATION
      FLUX_G(:,:,:,:,IG)=FLUX_G(:,:,:,:,IG)+FLUX(:,:,:,:)

      ENDDO ! END OF DIRECTION LOOP
      ENDDO ! END OF ENERGY LOOP
*$OMP END PARALLEL DO
      ENDDO ! END OF OCTANT LOOP

      ! SAVE FLUX INFORMATION
      DO IG=1,NGEFF
        IF(.NOT.INCONV(IG)) CYCLE
        FUNKNO(:LFLX,IG)=
     1  RESHAPE(REAL(FLUX_G(:IELEM**2,:NSCT,:3*ISPLH**2,:NHEX,IG)),
     2   (/ LFLX /) )
      ENDDO

      ! CALL XABORT('SNFBH2: testing')

*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(FLUX_G,FLUX,INDANG,TMPXNI,TMPXNJ,TMPXND,TMPMAT)
      RETURN
  400 FORMAT(16H SNFBH2: thread=,I8,12H --->(group=,I4,7H angle=,I4,1H))
      END