1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
*DECK SNFBC1
SUBROUTINE SNFBC1(LX,NMAT,IELEM,NLF,NSCT,U,MAT,VOL,TOTAL,
1 NCODE,ZCODE,QEXT,LFIXUP,LSHOOT,ISBS,NBS,ISBSM,BS,WX,CST,
2 ISADPTX,NUN,FUNKNO,MN,DN)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one inner iteration for solving SN equations in 1D slab
* geometry. Albedo boundary conditions.
*
*Copyright:
* Copyright (C) 2020 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert, A. A. Calloo and C. Bienvenue
*
*Parameters: input
* LX number of regions.
* NMAT number of material mixtures.
* IELEM measure of order of the spatial approximation polynomial:
* =1 constant - default for HODD;
* =2 linear - default for DG;
* >3 higher orders.
* NLF number of $\\mu$ levels.
* NSCT number of Legendre components in the flux:
* =1: isotropic sources;
* =2: linearly anisotropic sources.
* U base points in $\\mu$ of the SN quadrature.
* W weights of the SN quadrature.
* MN moment-to-discrete matrix.
* DN discrete-to-moment matrix.
* MAT material mixture index in each region.
* VOL volumes of each region.
* TOTAL macroscopic total cross sections.
* NCODE boundary condition indices.
* ZCODE albedos.
* QEXT Legendre components of the fixed source.
* LFIXUP flag to enable negative flux fixup.
* LSHOOT flag to enable/disable shooting method.
* ISBS flag to indicate the presence or not of boundary fixed
* sources.
* NBS number of boundary fixed sources.
* ISBSM flag array to indicate the presence or not of boundary fixed
* source in each unit surface.
* BS boundary source array with their intensities.
* WX spatial closure relation weighting factors.
* CST constants for the polynomial approximations.
* ISADPTX flag to enable/disable spatial adaptive flux calculations.
* NUN total number of unknowns in vector FUNKNO
*
*Parameters: input/output
* FUNKNO Legendre components of the flux and boundary fluxes.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER LX,NMAT,IELEM,NLF,NSCT,MAT(LX),NCODE(2),ISBS,NBS,
1 ISBSM(2*ISBS,NLF*ISBS),NUN
LOGICAL LFIXUP,LSHOOT,ISADPTX
REAL U(NLF),VOL(LX),TOTAL(0:NMAT),ZCODE(2),QEXT(IELEM,NSCT,LX),
1 FUNKNO(NUN),BS(NBS*ISBS),WX(IELEM+1),CST(IELEM),MN(NLF,NSCT),
2 DN(NSCT,NLF)
*----
* LOCAL VARIABLES
*----
REAL WX0(IELEM+1)
DOUBLE PRECISION XNI,XNI1,XNI2,XNIA,XNIB,XNIA1,XNIA2,XNIB1,XNIB2
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: Q
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: Q2
PARAMETER(RLOG=1.0E-8)
LOGICAL ISSHOOT,ISFIX
*----
* ALLOCATABLE ARRAYS
*----
ALLOCATE(Q(IELEM),Q2(IELEM,IELEM+1))
*----
* LENGTH OF FUNKNO COMPONENTS (IN ORDER)
*----
LFLX=IELEM*LX*NSCT
LXNI=NLF
*----
* INNER ITERATION
*----
FUNKNO(1:LFLX)=0.0
XNI=0.0D0
XNI1=0.0D0
XNI2=0.0D0
XNIA=0.0D0
XNIA2=0.0D0
WX0=WX
! SHOOTING METHOD (ONLY IF THERE IS A NON-VACUUM RIGHT
! BOUNDARY CONDITION.
ISSHOOT=(ZCODE(2).NE.0.0).AND.LSHOOT
IF(ISSHOOT) THEN
NS=6
ELSE
NS=2
ENDIF
! LOOP OVER ALL DIRECTIONS
DO 200 M0=1,NLF/2
! LOOP FOR SHOOTING METHOD
DO 500 IS=1,NS
! CHOOSE DIRECTION
IF(MOD(IS,2).EQ.0) THEN
M=NLF-M0+1 ! FORWARD
ELSE
M=M0 ! BACKWARD
ENDIF
! SHOOTING METHOD BOUNDARY CONDITIONS.
IF(ISSHOOT) THEN
! 1ST BACKWARD SWEEP
IF(IS.EQ.1) THEN
XNI=0.0D0
XNI1=0.0D0
XNI2=0.0D0
! 1ST FORWARD SWEEP
ELSEIF(IS.EQ.2) THEN
XNIA1=0.0D0
IF(NCODE(1).EQ.4) THEN
XNIA1=REAL(XNI)
XNI=0.0D0
ELSE
XNI=ZCODE(1)*REAL(XNI)
ENDIF
! 2ND BACKWARD SWEEP
ELSEIF(IS.EQ.3) THEN
XNIA2=0.0D0
XNIA=0.0D0
IF(NCODE(1).EQ.4) THEN
XNIA2=REAL(XNI)
ELSE
XNIA=REAL(XNI)
ENDIF
XNI=1.0D0
! 2ND FORWARD SWEEP
ELSEIF(IS.EQ.4) THEN
IF(NCODE(1).EQ.4) THEN
XNIB1=REAL(XNI)
XNI1=XNIA1/(1.0D0+XNIA1-XNIB1)
XNI=1.0D0
ELSE
XNI=ZCODE(1)*REAL(XNI)
ENDIF
! 3RD BACKWARD SWEEP
ELSEIF(IS.EQ.5) THEN
IF(NCODE(1).EQ.4) THEN
XNIB2=REAL(XNI)
XNI2=XNIA2/(1.0D0+XNIA2-XNIB2)
XNI=XNI1
ELSE
XNIB=REAL(XNI)
XNI=ZCODE(2)*XNIA/(1.0D0+ZCODE(2)*(XNIA-XNIB))
ENDIF
! 3RD FORWARD SWEEP
ELSEIF(IS.EQ.6) THEN
XNI=ZCODE(1)*XNI
IF(NCODE(1).EQ.4) XNI=XNI2
ENDIF
! NO SHOOTING METHOD BOUNDARY CONDITIONS
ELSE
IF(.NOT.LSHOOT) THEN
IF(U(M).GT.0.0) THEN
IF(NCODE(1).NE.4) FUNKNO(LFLX+M)=FUNKNO(LFLX+NLF-M+1)
ELSE
IF(NCODE(2).NE.4) FUNKNO(LFLX+M)=FUNKNO(LFLX+NLF-M+1)
ENDIF
XNI=0.0D0
ELSE
IF(IS.EQ.1) THEN
XNI=0.0D0
ELSE
XNI=ZCODE(1)*XNI
ENDIF
ENDIF
ENDIF
! X-BOUNDARIES CONDITIONS (NO SHOOTING)
IF(.NOT.LSHOOT) THEN
IF(U(M).GT.0.0) THEN
XNI=FUNKNO(LFLX+M)*ZCODE(1)
ELSE
XNI=FUNKNO(LFLX+M)*ZCODE(2)
ENDIF
ENDIF
! BOUNDARY FIXED SOURCES
IF(U(M).GT.0.0) THEN
IF(ISBS.EQ.1.AND.ISBSM(1,M).NE.0) XNI=XNI+BS(ISBSM(1,M))
ELSE
IF(ISBS.EQ.1.AND.ISBSM(2,M).NE.0) XNI=XNI+BS(ISBSM(2,M))
ENDIF
! SWEEPING OVER ALL VOXELS
DO 30 I0=1,LX
I=I0
IF(U(M).LT.0.0) I=LX+1-I0
! DATA
IBM=MAT(I)
SIGMA=TOTAL(IBM)
! SOURCE DENSITY TERM
DO IEL=1,IELEM
Q(IEL)=0.0
DO L=1,NSCT
Q(IEL)=Q(IEL)+QEXT(IEL,L,I)*MN(M,L)
ENDDO
ENDDO
ISFIX=.FALSE.
DO WHILE (.NOT.ISFIX) ! LOOP FOR ADAPTIVE CALCULATION
! FLUX MOMENTS CALCULATIONS
Q2(:IELEM,:IELEM+1)=0.0D0
DO II=1,IELEM
DO JJ=1,IELEM
! MOMENT COEFFICIENTS
IF(II.EQ.JJ) THEN
Q2(II,JJ)=SIGMA*VOL(I)+CST(II)**2*WX(JJ+1)*ABS(U(M))
ELSEIF(II.LT.JJ) THEN
IF(MOD(II+JJ,2).EQ.1) THEN
Q2(II,JJ)=CST(II)*CST(JJ)*WX(JJ+1)*U(M)
ELSE
Q2(II,JJ)=CST(II)*CST(JJ)*WX(JJ+1)*ABS(U(M))
ENDIF
ELSE
IF(MOD(II+JJ,2).EQ.1) THEN
Q2(II,JJ)=CST(II)*CST(JJ)*(WX(JJ+1)-2.0D0)*U(M)
ELSE
Q2(II,JJ)=CST(II)*CST(JJ)*WX(JJ+1)*ABS(U(M))
ENDIF
ENDIF
ENDDO
ENDDO
! SOURCE TERMS
DO II=1,IELEM
IF(MOD(II,2).EQ.1) THEN
Q2(II,IELEM+1)=Q(II)*VOL(I)+CST(II)*(1-WX(1))*ABS(U(M))*XNI
ELSE
Q2(II,IELEM+1)=Q(II)*VOL(I)-CST(II)*(1+WX(1))*U(M)*XNI
ENDIF
ENDDO
CALL ALSBD(IELEM,1,Q2,IER,IELEM)
IF(IER.NE.0) CALL XABORT('SNFBC1: SINGULAR MATRIX.')
! ADAPTIVE CORRECTION OF WEIGHTING PARAMETERS
IF(ISADPTX) THEN
CALL SNADPT(IELEM,IELEM,1,Q2(:IELEM,IELEM+1),XNI,
1 1.0,WX,ISFIX)
ELSE
ISFIX=.TRUE.
ENDIF
END DO ! END OF ADAPTIVE LOOP
! CLOSURE RELATIONS
IF(IELEM.EQ.1.AND.LFIXUP.AND.(Q2(1,2).LE.RLOG)) Q2(1,2)=0.0D0
XNI=WX(1)*XNI
DO II=1,IELEM
IF(MOD(II,2).EQ.1) THEN
XNI=XNI+CST(II)*WX(II+1)*Q2(II,IELEM+1)
ELSE
XNI=XNI+CST(II)*WX(II+1)*Q2(II,IELEM+1)*SIGN(1.0,U(M))
ENDIF
ENDDO
IF(IELEM.EQ.1.AND.LFIXUP.AND.(XNI.LE.RLOG)) XNI=0.0D0
WX=WX0
IF(ISSHOOT.AND.IS.LT.5) GO TO 30
! SAVE LEGENDRE MOMENT OF THE FLUX
DO L=1,NSCT
DO IEL=1,IELEM
IOF=(I-1)*NSCT*IELEM+(L-1)*IELEM+IEL
FUNKNO(IOF)=FUNKNO(IOF)+REAL(Q2(IEL,IELEM+1))*DN(L,M)
ENDDO
ENDDO
30 CONTINUE ! END OF X-LOOP
! SAVE BOUNDARIES FLUX
IF(.NOT.LSHOOT) FUNKNO(LFLX+M)=REAL(XNI)
500 CONTINUE ! END OF SHOOTING METHOD LOOP
200 CONTINUE ! END OF DIRECTION LOOP
DEALLOCATE(Q,Q2)
RETURN
END
|