summaryrefslogtreecommitdiff
path: root/Dragon/src/SNFBC1.f
blob: fa89ac3e39dc89ec193195d61c51a8637f8f28cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
*DECK SNFBC1
      SUBROUTINE SNFBC1(LX,NMAT,IELEM,NLF,NSCT,U,MAT,VOL,TOTAL,
     1 NCODE,ZCODE,QEXT,LFIXUP,LSHOOT,ISBS,NBS,ISBSM,BS,WX,CST,
     2 ISADPTX,NUN,FUNKNO,MN,DN)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one inner iteration for solving SN equations in 1D slab
* geometry. Albedo boundary conditions.
*
*Copyright:
* Copyright (C) 2020 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert, A. A. Calloo and C. Bienvenue
*
*Parameters: input
* LX      number of regions.
* NMAT    number of material mixtures.
* IELEM   measure of order of the spatial approximation polynomial:
*         =1 constant - default for HODD;
*         =2 linear - default for DG;
*         >3 higher orders.
* NLF     number of $\\mu$ levels.
* NSCT    number of Legendre components in the flux:
*         =1: isotropic sources;
*         =2: linearly anisotropic sources.
* U       base points in $\\mu$ of the SN quadrature.
* W       weights of the SN quadrature.
* MN      moment-to-discrete matrix.
* DN      discrete-to-moment matrix.
* MAT     material mixture index in each region.
* VOL     volumes of each region.
* TOTAL   macroscopic total cross sections.
* NCODE   boundary condition indices.
* ZCODE   albedos.
* QEXT    Legendre components of the fixed source.
* LFIXUP  flag to enable negative flux fixup.
* LSHOOT  flag to enable/disable shooting method.
* ISBS    flag to indicate the presence or not of boundary fixed
*         sources.
* NBS     number of boundary fixed sources.
* ISBSM   flag array to indicate the presence or not of boundary fixed
*         source in each unit surface.
* BS      boundary source array with their intensities.
* WX      spatial closure relation weighting factors.
* CST     constants for the polynomial approximations.
* ISADPTX flag to enable/disable spatial adaptive flux calculations.
* NUN     total number of unknowns in vector FUNKNO   
*
*Parameters: input/output
* FUNKNO  Legendre components of the flux and boundary fluxes.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER LX,NMAT,IELEM,NLF,NSCT,MAT(LX),NCODE(2),ISBS,NBS,
     1 ISBSM(2*ISBS,NLF*ISBS),NUN
      LOGICAL LFIXUP,LSHOOT,ISADPTX
      REAL U(NLF),VOL(LX),TOTAL(0:NMAT),ZCODE(2),QEXT(IELEM,NSCT,LX),
     1 FUNKNO(NUN),BS(NBS*ISBS),WX(IELEM+1),CST(IELEM),MN(NLF,NSCT),
     2 DN(NSCT,NLF)
*----
*  LOCAL VARIABLES
*----
      REAL WX0(IELEM+1)
      DOUBLE PRECISION XNI,XNI1,XNI2,XNIA,XNIB,XNIA1,XNIA2,XNIB1,XNIB2
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: Q
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: Q2
      PARAMETER(RLOG=1.0E-8)
      LOGICAL ISSHOOT,ISFIX
*----
*  ALLOCATABLE ARRAYS
*----
      ALLOCATE(Q(IELEM),Q2(IELEM,IELEM+1))
*----
*  LENGTH OF FUNKNO COMPONENTS (IN ORDER)
*----
      LFLX=IELEM*LX*NSCT
      LXNI=NLF
*----
*  INNER ITERATION
*----

      FUNKNO(1:LFLX)=0.0
      XNI=0.0D0
      XNI1=0.0D0
      XNI2=0.0D0
      XNIA=0.0D0
      XNIA2=0.0D0
      WX0=WX

      ! SHOOTING METHOD (ONLY IF THERE IS A NON-VACUUM RIGHT
      ! BOUNDARY CONDITION.
      ISSHOOT=(ZCODE(2).NE.0.0).AND.LSHOOT
      IF(ISSHOOT) THEN
        NS=6
      ELSE
        NS=2
      ENDIF

      ! LOOP OVER ALL DIRECTIONS
      DO 200 M0=1,NLF/2

      ! LOOP FOR SHOOTING METHOD
      DO 500 IS=1,NS

      ! CHOOSE DIRECTION
      IF(MOD(IS,2).EQ.0) THEN
        M=NLF-M0+1 ! FORWARD
      ELSE
        M=M0       ! BACKWARD
      ENDIF

      ! SHOOTING METHOD BOUNDARY CONDITIONS.
      IF(ISSHOOT) THEN
        ! 1ST BACKWARD SWEEP
        IF(IS.EQ.1) THEN
          XNI=0.0D0
          XNI1=0.0D0
          XNI2=0.0D0
        ! 1ST FORWARD SWEEP
        ELSEIF(IS.EQ.2) THEN
          XNIA1=0.0D0
          IF(NCODE(1).EQ.4) THEN
          XNIA1=REAL(XNI)
          XNI=0.0D0
          ELSE
          XNI=ZCODE(1)*REAL(XNI)
          ENDIF
        ! 2ND BACKWARD SWEEP
        ELSEIF(IS.EQ.3) THEN
          XNIA2=0.0D0
          XNIA=0.0D0
          IF(NCODE(1).EQ.4) THEN
          XNIA2=REAL(XNI)
          ELSE
          XNIA=REAL(XNI)
          ENDIF
          XNI=1.0D0
        ! 2ND FORWARD SWEEP
        ELSEIF(IS.EQ.4) THEN
          IF(NCODE(1).EQ.4) THEN
          XNIB1=REAL(XNI)
          XNI1=XNIA1/(1.0D0+XNIA1-XNIB1)
          XNI=1.0D0
          ELSE
          XNI=ZCODE(1)*REAL(XNI)
          ENDIF
        ! 3RD BACKWARD SWEEP
        ELSEIF(IS.EQ.5) THEN
          IF(NCODE(1).EQ.4) THEN
          XNIB2=REAL(XNI)
          XNI2=XNIA2/(1.0D0+XNIA2-XNIB2)
          XNI=XNI1
          ELSE
          XNIB=REAL(XNI)
          XNI=ZCODE(2)*XNIA/(1.0D0+ZCODE(2)*(XNIA-XNIB))
          ENDIF
        ! 3RD FORWARD SWEEP
        ELSEIF(IS.EQ.6) THEN
          XNI=ZCODE(1)*XNI
          IF(NCODE(1).EQ.4) XNI=XNI2
          ENDIF
      ! NO SHOOTING METHOD BOUNDARY CONDITIONS
      ELSE
        IF(.NOT.LSHOOT) THEN
        IF(U(M).GT.0.0) THEN
          IF(NCODE(1).NE.4) FUNKNO(LFLX+M)=FUNKNO(LFLX+NLF-M+1)
        ELSE
          IF(NCODE(2).NE.4) FUNKNO(LFLX+M)=FUNKNO(LFLX+NLF-M+1)
        ENDIF
        XNI=0.0D0
        ELSE
        IF(IS.EQ.1) THEN
          XNI=0.0D0
        ELSE
          XNI=ZCODE(1)*XNI
        ENDIF
        ENDIF
      ENDIF

      ! X-BOUNDARIES CONDITIONS (NO SHOOTING)
      IF(.NOT.LSHOOT) THEN
        IF(U(M).GT.0.0) THEN
          XNI=FUNKNO(LFLX+M)*ZCODE(1)
        ELSE
          XNI=FUNKNO(LFLX+M)*ZCODE(2)
        ENDIF
      ENDIF

      ! BOUNDARY FIXED SOURCES
      IF(U(M).GT.0.0) THEN
        IF(ISBS.EQ.1.AND.ISBSM(1,M).NE.0) XNI=XNI+BS(ISBSM(1,M))
      ELSE
        IF(ISBS.EQ.1.AND.ISBSM(2,M).NE.0) XNI=XNI+BS(ISBSM(2,M))
      ENDIF
      
      ! SWEEPING OVER ALL VOXELS
      DO 30 I0=1,LX
      I=I0
      IF(U(M).LT.0.0) I=LX+1-I0
      
      ! DATA
      IBM=MAT(I)
      SIGMA=TOTAL(IBM)

      ! SOURCE DENSITY TERM
      DO IEL=1,IELEM
        Q(IEL)=0.0
        DO L=1,NSCT
          Q(IEL)=Q(IEL)+QEXT(IEL,L,I)*MN(M,L)
        ENDDO
      ENDDO

      ISFIX=.FALSE.
      DO WHILE (.NOT.ISFIX) ! LOOP FOR ADAPTIVE CALCULATION

      ! FLUX MOMENTS CALCULATIONS
      Q2(:IELEM,:IELEM+1)=0.0D0
      DO II=1,IELEM
      DO JJ=1,IELEM

        ! MOMENT COEFFICIENTS
        IF(II.EQ.JJ) THEN
          Q2(II,JJ)=SIGMA*VOL(I)+CST(II)**2*WX(JJ+1)*ABS(U(M))
        ELSEIF(II.LT.JJ) THEN
          IF(MOD(II+JJ,2).EQ.1) THEN
            Q2(II,JJ)=CST(II)*CST(JJ)*WX(JJ+1)*U(M)
          ELSE
            Q2(II,JJ)=CST(II)*CST(JJ)*WX(JJ+1)*ABS(U(M))
          ENDIF
        ELSE
          IF(MOD(II+JJ,2).EQ.1) THEN
            Q2(II,JJ)=CST(II)*CST(JJ)*(WX(JJ+1)-2.0D0)*U(M)
          ELSE
            Q2(II,JJ)=CST(II)*CST(JJ)*WX(JJ+1)*ABS(U(M))
          ENDIF
        ENDIF 
      ENDDO
      ENDDO

      ! SOURCE TERMS
      DO II=1,IELEM
        IF(MOD(II,2).EQ.1) THEN
          Q2(II,IELEM+1)=Q(II)*VOL(I)+CST(II)*(1-WX(1))*ABS(U(M))*XNI
        ELSE
          Q2(II,IELEM+1)=Q(II)*VOL(I)-CST(II)*(1+WX(1))*U(M)*XNI
        ENDIF
      ENDDO
      
      CALL ALSBD(IELEM,1,Q2,IER,IELEM)
      IF(IER.NE.0) CALL XABORT('SNFBC1: SINGULAR MATRIX.')

      ! ADAPTIVE CORRECTION OF WEIGHTING PARAMETERS
      IF(ISADPTX) THEN
         CALL SNADPT(IELEM,IELEM,1,Q2(:IELEM,IELEM+1),XNI,
     1   1.0,WX,ISFIX)
      ELSE
        ISFIX=.TRUE. 
      ENDIF

      END DO ! END OF ADAPTIVE LOOP

      ! CLOSURE RELATIONS
      IF(IELEM.EQ.1.AND.LFIXUP.AND.(Q2(1,2).LE.RLOG)) Q2(1,2)=0.0D0
      XNI=WX(1)*XNI
      DO II=1,IELEM
        IF(MOD(II,2).EQ.1) THEN
          XNI=XNI+CST(II)*WX(II+1)*Q2(II,IELEM+1)
        ELSE
          XNI=XNI+CST(II)*WX(II+1)*Q2(II,IELEM+1)*SIGN(1.0,U(M))
        ENDIF
      ENDDO
      IF(IELEM.EQ.1.AND.LFIXUP.AND.(XNI.LE.RLOG)) XNI=0.0D0
      WX=WX0
       
      IF(ISSHOOT.AND.IS.LT.5) GO TO 30

      ! SAVE LEGENDRE MOMENT OF THE FLUX
      DO L=1,NSCT
        DO IEL=1,IELEM
          IOF=(I-1)*NSCT*IELEM+(L-1)*IELEM+IEL
          FUNKNO(IOF)=FUNKNO(IOF)+REAL(Q2(IEL,IELEM+1))*DN(L,M)
        ENDDO
      ENDDO

   30 CONTINUE ! END OF X-LOOP

      ! SAVE BOUNDARIES FLUX
      IF(.NOT.LSHOOT) FUNKNO(LFLX+M)=REAL(XNI)

  500 CONTINUE ! END OF SHOOTING METHOD LOOP 
  200 CONTINUE ! END OF DIRECTION LOOP

      DEALLOCATE(Q,Q2)
      RETURN
      END