1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
*DECK SHISN3
SUBROUTINE SHISN3 (IPLIB,IPTRK,IFTRAK,LEVEL,NGRO,NBISO,NBM,NREG,
1 NUN,CDOOR,INRS,NBNRS,IMPX,ISONAM,MIX,DEN,SN,SB,LSHI,IPHASE,MAT,
2 VOL,KEYFLX,LEAKSW,TITR,START,SIGT,SIGT3,NOCONV,BIEFF,LGC)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one multidimensional self-shielding iteration using the
* generalized Stamm'ler algorithm with Nordheim (PIC) approximation.
*
*Copyright:
* Copyright (C) 2004 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB pointer to the internal microscopic cross section library
* (L_LIBRARY signature).
* IPTRK pointer to the tracking (L_TRACK signature).
* IFTRAK unit number of the sequential binary tracking file.
* LEVEL type of self-shielding model (=1 original Stamm'ler model
* with Nordheim approximation; =2 Stamm'ler model with Nordheim
* approximation and Riemann integration method).
* NGRO number of energy groups.
* NBISO number of isotopes present in the calculation domain.
* NBM number of mixtures in the macrolib.
* NREG number of volumes.
* NUN number of unknowns in the flux or source vector in one
* energy group.
* CDOOR name of the geometry/solution module.
* INRS index of the resonant isotope under consideration.
* NBNRS number of totaly correlated resonant regions.
* IMPX print flag.
* ISONAM alias name of isotopes.
* MIX mix number of each isotope (can be zero).
* DEN density of each isotope.
* LSHI resonant region number associated with each isotope.
* Infinite dilution will be assumed if LSHI(i)=0.
* IPHASE type of flux solution (=1 use a native flux solution door;
* =2 use collision probabilities).
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* KEYFLX pointers of fluxes in unknown vector.
* LEAKSW leakage flag (.TRUE. only if leakage is present on the outer
* surface).
* TITR title.
* START beginning-of-iteration flag (.TRUE. if SHISN3 is called
* for the first time).
* SIGT3 transport correction.
* NOCONV mixture convergence flag. (.TRUE. if mixture IBM
* is not converged in group L).
* BIEFF Livolant-Jeanpierre normalization flag (.TRUE. to
* activate).
* LGC Goldstein-Cohen approximation flag (.TRUE. to activate).
*
*Parameters: input/output
* SN on input, estimate of the dilution cross section in each
* energy group of each isotope. A value of 1.0e10 is used
* for infinitedilution.
* On output, computed dilution cross section in each energy
* group of each isotope.
* SIGT total macroscopic cross sections as modified by Shiba.
*
*Parameters: output
* SB dilution cross section as used in Livolant-Jeanpierre
* normalization.
*
*Reference:
* A. Hebert, Revisiting the Stamm'ler Self-Shielding Method, Presented
* at the 25th CNS annnual conference, June 6-9, Toronto, 2004.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
PARAMETER (NALPHA=9,NRAT=(NALPHA+1)/2)
TYPE(C_PTR) IPLIB,IPTRK
INTEGER IFTRAK,LEVEL,NGRO,NBISO,NBM,NREG,NUN,INRS,NBNRS,IMPX,
1 ISONAM(3,NBISO),MIX(NBISO),LSHI(NBISO),IPHASE,MAT(NREG),
2 KEYFLX(NREG)
REAL DEN(NBISO),SN(NGRO,NBISO),SB(NGRO,NBISO),VOL(NREG),
1 SIGT(NBM,NGRO),SIGT3(NBM,NGRO)
CHARACTER CDOOR*12,TITR*72
LOGICAL LEAKSW,START,NOCONV(NBM,NGRO),BIEFF,LGC
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) KPLIB
CHARACTER HSMG*131,CGRPNM*12
LOGICAL LOGDO
REAL FACT(NALPHA),SIGX(NALPHA)
COMPLEX SUM
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IRES,ISONR,NPSYS
REAL, ALLOCATABLE, DIMENSION(:) :: GAR,GAS,SIGE,VST,DIST,FUN,DILG
REAL, ALLOCATABLE, DIMENSION(:,:) :: SIG0,SIG3,TOTAL,DILUT,GC
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: PICX
LOGICAL, ALLOCATABLE, DIMENSION(:) :: MASKI
COMPLEX, ALLOCATABLE, DIMENSION(:,:) :: COEF,DENOM
COMPLEX*16, ALLOCATABLE, DIMENSION(:,:,:) :: XCOEF,XDENO
TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) :: IPISO
*----
* DATA STATEMENTS
*----
DATA FACT/0.01,0.03162278,0.1,0.3162278,1.0,3.162278,10.0,
1 31.62278,100.0/
*----
* SCRATCH STORAGE ALLOCATION
* SIG0 macroscopic xs of the resonant isotopes as interpolated.
* SIG3 macroscopic transport correction.
*----
ALLOCATE(IRES(NBM),ISONR(NBNRS),NPSYS(NGRO))
ALLOCATE(SIG0(NBM,NGRO),SIG3(NBM,NGRO),TOTAL(NGRO,NBNRS),
1 GAR(NGRO),GAS(NGRO),SIGE(NGRO),DILUT(NALPHA,NGRO),
2 GC(NGRO,NBNRS),VST(NBNRS),DIST(NBNRS))
ALLOCATE(PICX(NALPHA,NBNRS,NGRO))
ALLOCATE(MASKI(NBISO))
ALLOCATE(COEF(NRAT,NGRO),DENOM(NRAT,NGRO))
ALLOCATE(XCOEF(NRAT,NBNRS,NGRO),XDENO(NRAT,NBNRS,NGRO))
ALLOCATE(IPISO(NBISO))
*----
* FIND THE RESONANT MIXTURE NUMBERS AND THE CORRELATED ISOTOPES
* ASSOCIATED WITH REGION INRS
*----
IRS=0
DO 30 IBM=1,NBM
LOGDO=.FALSE.
DO 10 I=1,NREG
LOGDO=LOGDO.OR.(MAT(I).EQ.IBM)
10 CONTINUE
IF(.NOT.LOGDO) GO TO 30
DO 20 ISO=1,NBISO
IF((MIX(ISO).EQ.IBM).AND.(LSHI(ISO).EQ.INRS)) THEN
IRS=IRS+1
ISONR(IRS)=ISO
GO TO 30
ENDIF
20 CONTINUE
30 CONTINUE
IF(IRS.NE.NBNRS) CALL XABORT('SHISN3: INVALID VALUE OF NBNRS.')
IRES(:NBM)=0
DO 40 IRS=1,NBNRS
ISO=ISONR(IRS)
IRES(MIX(ISO))=IRS
40 CONTINUE
*----
* SET THE LCM MICROLIB ISOTOPEWISE DIRECTORIES.
*----
CALL LIBIPS(IPLIB,NBISO,IPISO)
*----
* UNLOAD MICROSCOPIC X-S FROM LCM TO SCRATCH STORAGE. SET THE
* GOLDSTEIN-COHEN TO ONE IN LEVEL 2 CALCULATIONS.
*----
DO 50 IRS=1,NBNRS
ISO=ISONR(IRS)
KPLIB=IPISO(ISO) ! set ISO-th isotope
CALL LCMGET(KPLIB,'NTOT0',TOTAL(1,IRS))
GC(:NGRO,IRS)=1.0
50 CONTINUE
*
VST(:NBNRS)=0.0
DO 60 I=1,NREG
IF(MAT(I).EQ.0) GO TO 60
IND=IRES(MAT(I))
IF(IND.GT.0) VST(IND)=VST(IND)+VOL(I)
60 CONTINUE
*
NPSYS(:NGRO)=0
DO 110 LLL=1,NGRO
LOGDO=.FALSE.
DO 70 IRS=1,NBNRS
LOGDO=LOGDO.OR.NOCONV(MIX(ISONR(IRS)),LLL)
70 CONTINUE
IF(LOGDO) THEN
NPSYS(LLL)=LLL
*
* COMPUTE THE LIGHT AND RESONANT COMPONENTS OF THE MACROSCOPIC
* CROSS SECTIONS IN EACH RESONANT MIXTURE.
DO 80 IRS=1,NBNRS
ISO=ISONR(IRS)
IBM=MIX(ISO)
SIGT(IBM,LLL)=SIGT(IBM,LLL)-TOTAL(LLL,IRS)*DEN(ISO)
80 CONTINUE
DO 90 IBM=1,NBM
SIG0(IBM,LLL)=0.0
SIG3(IBM,LLL)=SIGT3(IBM,LLL)
90 CONTINUE
DO 100 IRS=1,NBNRS
ISO=ISONR(IRS)
SIG0(MIX(ISO),LLL)=TOTAL(LLL,IRS)*DEN(ISO)
SIG3(MIX(ISO),LLL)=0.0
100 CONTINUE
IF(IMPX.GE.10) THEN
WRITE (6,400) LLL,(SIG0(I,LLL),I=1,NBM)
WRITE (6,410) LLL,(SIGT(I,LLL),I=1,NBM)
WRITE (6,420) LLL,(SIGT3(I,LLL),I=1,NBM)
ENDIF
ENDIF
110 CONTINUE
*----
* SET UP VECTORS SIGE AND SB.
*----
CALL LCMSIX(IPLIB,'SHIBA',1)
*
SIGE(:NGRO)=0.0
ALLOCATE(FUN(NUN*NGRO))
CALL LCMSIX(IPLIB,'--AVERAGE--',1)
CALL SHIDST(IPLIB,NPSYS,IPTRK,IFTRAK,CDOOR,IMPX,NBM,NREG,NUN,
1 NGRO,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IRES,SIG0,SIGT,SIGT3(1,1),
2 TITR,FUN,SIGE)
CALL LCMSIX(IPLIB,' ',2)
DO 130 LLL=1,NGRO
IF(NPSYS(LLL).NE.0) THEN
DO 120 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 120
IND=IRES(IBM)
IF(IND.GT.0) THEN
IOF=(LLL-1)*NUN+KEYFLX(I)
ISO=ISONR(IND)
IF(NOCONV(IBM,LLL)) SB(LLL,ISO)=FUN(IOF)/
1 SIG0(IBM,LLL)
ENDIF
120 CONTINUE
ENDIF
130 CONTINUE
DEALLOCATE(FUN)
*----
* SET UP VECTORS DILUT AND SIGX.
*----
IF(START) THEN
* USE A VERY CHEAP APPROXIMATION TO START ITERATIONS.
DO 145 LLL=1,NGRO
DO 140 IALP=1,NALPHA
SIGX(IALP)=0.0
DILUT(IALP,LLL)=SIGE(LLL)
140 CONTINUE
145 CONTINUE
ELSE
AVDEN=0.0
VOLTOT=0.0
DO 150 IRS=1,NBNRS
AVDEN=AVDEN+DEN(ISONR(IRS))*VST(IRS)
VOLTOT=VOLTOT+VST(IRS)
150 CONTINUE
AVDEN=AVDEN/VOLTOT
DO 160 IRS=1,NBNRS
ISO=ISONR(IRS)
DIST(IRS)=DEN(ISO)/AVDEN
160 CONTINUE
DO 220 IALP=1,NALPHA
DO 190 LLL=1,NGRO
IF(NPSYS(LLL).NE.0) THEN
SIGX(IALP)=FACT(IALP)*SIGE(LLL)
DO 170 IBM=1,NBM
SIG0(IBM,LLL)=0.0
SIG3(IBM,LLL)=SIGT3(IBM,LLL)
170 CONTINUE
DO 180 IRS=1,NBNRS
ISO=ISONR(IRS)
SIG0(MIX(ISO),LLL)=SIGX(IALP)*DIST(IRS)
SIG3(MIX(ISO),LLL)=0.0
180 CONTINUE
ENDIF
190 CONTINUE
ALLOCATE(DILG(NGRO),FUN(NUN*NGRO))
WRITE(CGRPNM,'(8H--BAND--,I4.4)') IALP
CALL LCMSIX(IPLIB,CGRPNM,1)
CALL SHIDST(IPLIB,NPSYS,IPTRK,IFTRAK,CDOOR,IMPX,NBM,NREG,NUN,
1 NGRO,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IRES,SIG0,SIGT,SIG3(1,1),
2 TITR,FUN,DILG)
CALL LCMSIX(IPLIB,' ',2)
DO 210 LLL=1,NGRO
IF(NPSYS(LLL).NE.0) THEN
DILUT(IALP,LLL)=DILG(LLL)
DO 200 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 200
IND=IRES(IBM)
IF(IND.GT.0) THEN
IOF=(LLL-1)*NUN+KEYFLX(I)
PICX(IALP,IND,LLL)=FUN(IOF)/SIG0(IBM,LLL)
ENDIF
200 CONTINUE
ENDIF
210 CONTINUE
DEALLOCATE(FUN,DILG)
220 CONTINUE
ENDIF
CALL LCMSIX(IPLIB,' ',2)
*----
* COMPUTE AVERAGE MACROSCOPIC DILUTION X-S USING A N-TERM RATIONAL
* APPROXIMATION.
*----
DO 260 LLL=1,NGRO
IF(NPSYS(LLL).NE.0) THEN
DO 230 IALP=1,NALPHA
SIGX(IALP)=FACT(IALP)*SIGE(LLL)
230 CONTINUE
* **********************************************************
CALL SHIRAT(IMPX,NRAT,SIGX,DILUT(1,LLL),LLL,A,COEF(1,LLL),
1 DENOM(1,LLL))
* **********************************************************
*
* COMPUTE THE PIC BASE POINTS FOR A N-TERM RATIONAL APPROXIMATION
IF(START) THEN
DO 245 IRS=1,NBNRS
DO 240 I=1,NRAT
XCOEF(I,IRS,LLL)=COEF(I,LLL)
XDENO(I,IRS,LLL)=DENOM(I,LLL)
240 CONTINUE
245 CONTINUE
ELSE
CALL SHIDIL(NRAT,NALPHA,NBNRS,COEF(1,LLL),DENOM(1,LLL),
1 DILUT(1,LLL),PICX(1,1,LLL),SIGX,DIST,VST,IMPX,LLL,
2 XCOEF(1,1,LLL),XDENO(1,1,LLL))
ENDIF
IF(.NOT.START.AND.BIEFF) THEN
DO 255 IRS=1,NBNRS
ISO=ISONR(IRS)
IF(NOCONV(MIX(ISO),LLL)) THEN
SIGRES=TOTAL(LLL,IRS)*DEN(ISO)
IF(NBNRS.EQ.1) THEN
SUM=0.0
DO 250 I=1,NRAT
SUM=SUM+COEF(I,LLL)/(SIGRES+DENOM(I,LLL))
250 CONTINUE
PX0=REAL(SUM)
ELSE
PX0=SB(LLL,ISO)
ENDIF
SB(LLL,ISO)=(1.0/PX0-SIGRES)/DEN(ISO)
IF(SB(LLL,ISO).LT.0.0) THEN
WRITE (HSMG,515) (ISONAM(I0,ISO),I0=1,3),SB(LLL,ISO),
1 LLL
CALL XABORT(HSMG)
ENDIF
ENDIF
255 CONTINUE
ENDIF
ENDIF
260 CONTINUE
*----
* APPLY A GOLDSTEIN-COHEN CORRECTION SIMILAR TO THE CORRECTION USED
* IN SHISN2.
*----
IF((.NOT.START).AND.LGC) THEN
DO 295 IRS=1,NBNRS
ISO=ISONR(IRS)
KPLIB=IPISO(ISO) ! set ISO-th isotope
CALL LCMLEN(KPLIB,'NGOLD',LENGT,ITYLCM)
IF(LENGT.EQ.NGRO) THEN
IF(IMPX.GE.5) WRITE (6,390) (ISONAM(I0,ISO),I0=1,3)
CALL LCMGET(KPLIB,'NGOLD',GC(1,IRS))
ENDIF
IF(LEVEL.EQ.2) GO TO 295
DO 290 JSO=1,NBISO
IF((MIX(JSO).EQ.MIX(ISO)).AND.(JSO.NE.ISO).AND.
1 (LSHI(JSO).NE.0)) THEN
KPLIB=IPISO(JSO) ! set JSO-th isotope
CALL LCMLEN(KPLIB,'NGOLD',LENGT,ITYLCM)
IF(LENGT.EQ.NGRO) THEN
CALL LCMGET(KPLIB,'SIGS00',GAS)
CALL LCMGET(KPLIB,'NGOLD',GAR)
DO 280 LLL=1,NGRO
IF((NOCONV(MIX(JSO),LLL)).AND.(GAR(LLL).NE.1.0)) THEN
DDD=(1.0-GAR(LLL))*GAS(LLL)*DEN(JSO)
DO 270 I=1,NRAT
XDENO(I,IRS,LLL)=XDENO(I,IRS,LLL)-DDD
270 CONTINUE
ENDIF
280 CONTINUE
ENDIF
ENDIF
290 CONTINUE
295 CONTINUE
ENDIF
*----
* COMPUTE THE DILUTION PARAMETERS (BARN) FOR EACH RESONANT ISOTOPE IN
* RESONANT MIXTURE INRS
*----
CALL SHIEQU(IPLIB,LEVEL,NGRO,NBISO,NBM,NBNRS,NRAT,MIX,ISONAM,
1 NOCONV,ISONR,GC,COEF,DENOM,XCOEF,XDENO,DEN,IMPX,SN)
*
DO 320 LLL=1,NGRO
LOGDO=.FALSE.
DO 300 IRS=1,NBNRS
LOGDO=LOGDO.OR.NOCONV(MIX(ISONR(IRS)),LLL)
300 CONTINUE
IF(LOGDO) THEN
DO 310 IRS=1,NBNRS
ISO=ISONR(IRS)
IBM=MIX(ISO)
IF(START.OR.(.NOT.BIEFF)) THEN
SB(LLL,ISO)=SN(LLL,ISO)
ELSE IF(SB(LLL,ISO).LT.0.97*SN(LLL,ISO)) THEN
WRITE (6,520)(ISONAM(I0,ISO),I0=1,3),SB(LLL,ISO)/
1 SN(LLL,ISO),0.97,LLL
SB(LLL,ISO)=0.97*SN(LLL,ISO)
ENDIF
SIGT(IBM,LLL)=SIGT(IBM,LLL)+TOTAL(LLL,IRS)*DEN(ISO)
310 CONTINUE
ENDIF
320 CONTINUE
*----
* SAVE THE GROUP- AND ISOTOPE-DEPENDENT DILUTIONS
*----
CALL LCMPUT(IPLIB,'ISOTOPESDSB',NBISO*NGRO,2,SB)
CALL LCMPUT(IPLIB,'ISOTOPESDSN',NBISO*NGRO,2,SN)
*----
* COMPUTE THE SELF-SHIELDED MICROSCOPIC CROSS SECTIONS AND UPDATE
* VECTOR SIGT
*----
DO 330 ISO=1,NBISO
LOGDO=START.OR.(DEN(ISO).NE.0.)
MASKI(ISO)=(LSHI(ISO).EQ.INRS).AND.LOGDO
330 CONTINUE
IMPX2=MAX(0,IMPX-1)
CALL LIBLIB (IPLIB,NBISO,MASKI,IMPX2)
DO 345 IRS=1,NBNRS
ISO=ISONR(IRS)
IBM=MIX(ISO)
KPLIB=IPISO(ISO) ! set ISO-th isotope
CALL LCMGET(KPLIB,'NTOT0',GAR)
DO 340 LLL=1,NGRO
TOTAL(LLL,IRS)=TOTAL(LLL,IRS)-GAR(LLL)
SIGT(IBM,LLL)=SIGT(IBM,LLL)-DEN(ISO)*TOTAL(LLL,IRS)
340 CONTINUE
345 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(IPISO)
DEALLOCATE(XDENO,XCOEF)
DEALLOCATE(DENOM,COEF)
DEALLOCATE(MASKI)
DEALLOCATE(PICX)
DEALLOCATE(DIST,VST,GC,DILUT,SIGE,GAS,GAR,TOTAL,SIG3,SIG0)
DEALLOCATE(NPSYS,ISONR,IRES)
RETURN
*
390 FORMAT(/53H SHISN3: GOLDSTEIN AND COHEN APPROXIMATION USED FOR I,
1 8HSOTOPE ',3A4,2H'.)
400 FORMAT(//51H TOTAL MACROSCOPIC CROSS SECTIONS OF THE RESONANT M,
1 31HATERIALS IN EACH MIXTURE (GROUP,I5,2H):/(1X,1P,11E11.3))
410 FORMAT(//51H TOTAL MACROSCOPIC CROSS SECTIONS OF THE OTHER MATE,
1 28HRIALS IN EACH MIXTURE (GROUP,I5,2H):/(1X,1P,11E11.3))
420 FORMAT(//1X,'TRANSPORT CORRECTION CROSS SECTIONS OF THE OTHER ',
1'MATERIALS IN EACH MIXTURE (GROUP',I5,'):'/(1X,1P,11E11.3))
515 FORMAT(30HSHISN3: THE RESONANT ISOTOPE ',3A4,14H' HAS A NEGATI,
1 22HVE L-J CROSS-SECTION (,1P,E14.4,0P,10H) IN GROUP,I4,1H.)
520 FORMAT(54H SHISN3: THE L-J EQUIVALENCE FACTOR OF RESONANT ISOTOP,
1 3HE ',3A4,18H' WAS CHANGED FROM,F6.3,3H TO,F5.2,9H IN GROUP,I4,
2 1H.)
END
|