summaryrefslogtreecommitdiff
path: root/Dragon/src/SHISN3.f
blob: c82e61c7bd4f3227eb6fd970793719a531303293 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
*DECK SHISN3
      SUBROUTINE SHISN3 (IPLIB,IPTRK,IFTRAK,LEVEL,NGRO,NBISO,NBM,NREG,
     1 NUN,CDOOR,INRS,NBNRS,IMPX,ISONAM,MIX,DEN,SN,SB,LSHI,IPHASE,MAT,
     2 VOL,KEYFLX,LEAKSW,TITR,START,SIGT,SIGT3,NOCONV,BIEFF,LGC)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one multidimensional self-shielding iteration using the
* generalized Stamm'ler algorithm with Nordheim (PIC) approximation.
*
*Copyright:
* Copyright (C) 2004 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB   pointer to the internal microscopic cross section library
*         (L_LIBRARY signature).
* IPTRK   pointer to the tracking (L_TRACK signature).
* IFTRAK  unit number of the sequential binary tracking file.
* LEVEL   type of self-shielding model (=1 original Stamm'ler model
*         with Nordheim approximation; =2 Stamm'ler model with Nordheim
*         approximation and Riemann integration method).
* NGRO    number of energy groups.
* NBISO   number of isotopes present in the calculation domain.
* NBM     number of mixtures in the macrolib.
* NREG    number of volumes.
* NUN     number of unknowns in the flux or source vector in one
*         energy group.
* CDOOR   name of the geometry/solution module.
* INRS    index of the resonant isotope under consideration.
* NBNRS   number of totaly correlated resonant regions.
* IMPX    print flag.
* ISONAM  alias name of isotopes.
* MIX     mix number of each isotope (can be zero).
* DEN     density of each isotope.
* LSHI    resonant region number associated with each isotope.
*         Infinite dilution will be assumed if LSHI(i)=0.
* IPHASE  type of flux solution (=1 use a native flux solution door;
*         =2 use collision probabilities).
* MAT     index-number of the mixture type assigned to each volume.
* VOL     volumes.
* KEYFLX  pointers of fluxes in unknown vector.
* LEAKSW  leakage flag (.TRUE. only if leakage is present on the outer
*         surface).
* TITR    title.
* START   beginning-of-iteration flag (.TRUE. if SHISN3 is called
*         for the first time).
* SIGT3   transport correction.
* NOCONV  mixture convergence flag. (.TRUE. if mixture IBM
*         is not converged in group L).
* BIEFF   Livolant-Jeanpierre normalization flag (.TRUE. to
*         activate).
* LGC     Goldstein-Cohen approximation flag (.TRUE. to activate).
*
*Parameters: input/output
* SN      on input, estimate of the dilution cross section in each 
*         energy group of each isotope. A value of 1.0e10 is used 
*         for infinitedilution.
*         On output, computed dilution cross section in each energy 
*         group of each isotope.
* SIGT    total macroscopic cross sections as modified by Shiba.
*
*Parameters: output
* SB      dilution cross section as used in Livolant-Jeanpierre
*         normalization.
*
*Reference:
* A. Hebert, Revisiting the Stamm'ler Self-Shielding Method, Presented
* at the 25th CNS annnual conference, June 6-9, Toronto, 2004.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      PARAMETER (NALPHA=9,NRAT=(NALPHA+1)/2)
      TYPE(C_PTR) IPLIB,IPTRK
      INTEGER IFTRAK,LEVEL,NGRO,NBISO,NBM,NREG,NUN,INRS,NBNRS,IMPX,
     1 ISONAM(3,NBISO),MIX(NBISO),LSHI(NBISO),IPHASE,MAT(NREG),
     2 KEYFLX(NREG)
      REAL DEN(NBISO),SN(NGRO,NBISO),SB(NGRO,NBISO),VOL(NREG),
     1 SIGT(NBM,NGRO),SIGT3(NBM,NGRO)
      CHARACTER CDOOR*12,TITR*72
      LOGICAL LEAKSW,START,NOCONV(NBM,NGRO),BIEFF,LGC
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) KPLIB
      CHARACTER HSMG*131,CGRPNM*12
      LOGICAL LOGDO
      REAL FACT(NALPHA),SIGX(NALPHA)
      COMPLEX SUM
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: IRES,ISONR,NPSYS
      REAL, ALLOCATABLE, DIMENSION(:) :: GAR,GAS,SIGE,VST,DIST,FUN,DILG
      REAL, ALLOCATABLE, DIMENSION(:,:) :: SIG0,SIG3,TOTAL,DILUT,GC
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: PICX
      LOGICAL, ALLOCATABLE, DIMENSION(:) :: MASKI
      COMPLEX, ALLOCATABLE, DIMENSION(:,:) :: COEF,DENOM
      COMPLEX*16, ALLOCATABLE, DIMENSION(:,:,:) :: XCOEF,XDENO
      TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) :: IPISO
*----
*  DATA STATEMENTS
*----
      DATA FACT/0.01,0.03162278,0.1,0.3162278,1.0,3.162278,10.0,
     1 31.62278,100.0/
*----
*  SCRATCH STORAGE ALLOCATION
*   SIG0    macroscopic xs of the resonant isotopes as interpolated.
*   SIG3    macroscopic transport correction.
*----
      ALLOCATE(IRES(NBM),ISONR(NBNRS),NPSYS(NGRO))
      ALLOCATE(SIG0(NBM,NGRO),SIG3(NBM,NGRO),TOTAL(NGRO,NBNRS),
     1 GAR(NGRO),GAS(NGRO),SIGE(NGRO),DILUT(NALPHA,NGRO),
     2 GC(NGRO,NBNRS),VST(NBNRS),DIST(NBNRS))
      ALLOCATE(PICX(NALPHA,NBNRS,NGRO))
      ALLOCATE(MASKI(NBISO))
      ALLOCATE(COEF(NRAT,NGRO),DENOM(NRAT,NGRO))
      ALLOCATE(XCOEF(NRAT,NBNRS,NGRO),XDENO(NRAT,NBNRS,NGRO))
      ALLOCATE(IPISO(NBISO))
*----
*  FIND THE RESONANT MIXTURE NUMBERS AND THE CORRELATED ISOTOPES
*  ASSOCIATED WITH REGION INRS
*----
      IRS=0
      DO 30 IBM=1,NBM
      LOGDO=.FALSE.
      DO 10 I=1,NREG
      LOGDO=LOGDO.OR.(MAT(I).EQ.IBM)
   10 CONTINUE
      IF(.NOT.LOGDO) GO TO 30
      DO 20 ISO=1,NBISO
      IF((MIX(ISO).EQ.IBM).AND.(LSHI(ISO).EQ.INRS)) THEN
         IRS=IRS+1
         ISONR(IRS)=ISO
         GO TO 30
      ENDIF
   20 CONTINUE
   30 CONTINUE
      IF(IRS.NE.NBNRS) CALL XABORT('SHISN3: INVALID VALUE OF NBNRS.')
      IRES(:NBM)=0
      DO 40 IRS=1,NBNRS
      ISO=ISONR(IRS)
      IRES(MIX(ISO))=IRS
   40 CONTINUE
*----
*  SET THE LCM MICROLIB ISOTOPEWISE DIRECTORIES.
*----
      CALL LIBIPS(IPLIB,NBISO,IPISO)
*----
*  UNLOAD MICROSCOPIC X-S FROM LCM TO SCRATCH STORAGE. SET THE
*  GOLDSTEIN-COHEN TO ONE IN LEVEL 2 CALCULATIONS.
*----
      DO 50 IRS=1,NBNRS
      ISO=ISONR(IRS)
      KPLIB=IPISO(ISO) ! set ISO-th isotope
      CALL LCMGET(KPLIB,'NTOT0',TOTAL(1,IRS))
      GC(:NGRO,IRS)=1.0
   50 CONTINUE
*
      VST(:NBNRS)=0.0
      DO 60 I=1,NREG
      IF(MAT(I).EQ.0) GO TO 60
      IND=IRES(MAT(I))
      IF(IND.GT.0) VST(IND)=VST(IND)+VOL(I)
   60 CONTINUE
*
      NPSYS(:NGRO)=0
      DO 110 LLL=1,NGRO
      LOGDO=.FALSE.
      DO 70 IRS=1,NBNRS
      LOGDO=LOGDO.OR.NOCONV(MIX(ISONR(IRS)),LLL)
   70 CONTINUE
      IF(LOGDO) THEN
         NPSYS(LLL)=LLL
*
*        COMPUTE THE LIGHT AND RESONANT COMPONENTS OF THE MACROSCOPIC
*        CROSS SECTIONS IN EACH RESONANT MIXTURE.
         DO 80 IRS=1,NBNRS
         ISO=ISONR(IRS)
         IBM=MIX(ISO)
         SIGT(IBM,LLL)=SIGT(IBM,LLL)-TOTAL(LLL,IRS)*DEN(ISO)
   80    CONTINUE
         DO 90 IBM=1,NBM
         SIG0(IBM,LLL)=0.0
         SIG3(IBM,LLL)=SIGT3(IBM,LLL)
   90    CONTINUE
         DO 100 IRS=1,NBNRS
         ISO=ISONR(IRS)
         SIG0(MIX(ISO),LLL)=TOTAL(LLL,IRS)*DEN(ISO)
         SIG3(MIX(ISO),LLL)=0.0
  100    CONTINUE
         IF(IMPX.GE.10) THEN
            WRITE (6,400) LLL,(SIG0(I,LLL),I=1,NBM)
            WRITE (6,410) LLL,(SIGT(I,LLL),I=1,NBM)
            WRITE (6,420) LLL,(SIGT3(I,LLL),I=1,NBM)
         ENDIF
      ENDIF
  110 CONTINUE
*----
*  SET UP VECTORS SIGE AND SB.
*----
      CALL LCMSIX(IPLIB,'SHIBA',1)
*
      SIGE(:NGRO)=0.0
      ALLOCATE(FUN(NUN*NGRO))
      CALL LCMSIX(IPLIB,'--AVERAGE--',1)
      CALL SHIDST(IPLIB,NPSYS,IPTRK,IFTRAK,CDOOR,IMPX,NBM,NREG,NUN,
     1 NGRO,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IRES,SIG0,SIGT,SIGT3(1,1),
     2 TITR,FUN,SIGE)
      CALL LCMSIX(IPLIB,' ',2)
      DO 130 LLL=1,NGRO
      IF(NPSYS(LLL).NE.0) THEN
         DO 120 I=1,NREG
         IBM=MAT(I)
         IF(IBM.EQ.0) GO TO 120
         IND=IRES(IBM)
         IF(IND.GT.0) THEN
            IOF=(LLL-1)*NUN+KEYFLX(I)
            ISO=ISONR(IND)
            IF(NOCONV(IBM,LLL)) SB(LLL,ISO)=FUN(IOF)/
     1      SIG0(IBM,LLL)
         ENDIF
  120    CONTINUE
      ENDIF
  130 CONTINUE
      DEALLOCATE(FUN)
*----
*  SET UP VECTORS DILUT AND SIGX.
*----
      IF(START) THEN
*        USE A VERY CHEAP APPROXIMATION TO START ITERATIONS.
         DO 145 LLL=1,NGRO
         DO 140 IALP=1,NALPHA
         SIGX(IALP)=0.0
         DILUT(IALP,LLL)=SIGE(LLL)
  140    CONTINUE
  145    CONTINUE
      ELSE
         AVDEN=0.0
         VOLTOT=0.0
         DO 150 IRS=1,NBNRS
         AVDEN=AVDEN+DEN(ISONR(IRS))*VST(IRS)
         VOLTOT=VOLTOT+VST(IRS)
  150    CONTINUE
         AVDEN=AVDEN/VOLTOT
         DO 160 IRS=1,NBNRS
         ISO=ISONR(IRS)
         DIST(IRS)=DEN(ISO)/AVDEN
  160    CONTINUE
         DO 220 IALP=1,NALPHA
         DO 190 LLL=1,NGRO
         IF(NPSYS(LLL).NE.0) THEN
            SIGX(IALP)=FACT(IALP)*SIGE(LLL)
            DO 170 IBM=1,NBM
            SIG0(IBM,LLL)=0.0
            SIG3(IBM,LLL)=SIGT3(IBM,LLL)
  170       CONTINUE
            DO 180 IRS=1,NBNRS
            ISO=ISONR(IRS)
            SIG0(MIX(ISO),LLL)=SIGX(IALP)*DIST(IRS)
            SIG3(MIX(ISO),LLL)=0.0
  180       CONTINUE
         ENDIF
  190    CONTINUE
         ALLOCATE(DILG(NGRO),FUN(NUN*NGRO))
         WRITE(CGRPNM,'(8H--BAND--,I4.4)') IALP
         CALL LCMSIX(IPLIB,CGRPNM,1)
         CALL SHIDST(IPLIB,NPSYS,IPTRK,IFTRAK,CDOOR,IMPX,NBM,NREG,NUN,
     1   NGRO,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IRES,SIG0,SIGT,SIG3(1,1),
     2   TITR,FUN,DILG)
         CALL LCMSIX(IPLIB,' ',2)
         DO 210 LLL=1,NGRO
         IF(NPSYS(LLL).NE.0) THEN
            DILUT(IALP,LLL)=DILG(LLL)
            DO 200 I=1,NREG
            IBM=MAT(I)
            IF(IBM.EQ.0) GO TO 200
            IND=IRES(IBM)
            IF(IND.GT.0) THEN
               IOF=(LLL-1)*NUN+KEYFLX(I)
               PICX(IALP,IND,LLL)=FUN(IOF)/SIG0(IBM,LLL)
            ENDIF
  200       CONTINUE
         ENDIF
  210    CONTINUE
         DEALLOCATE(FUN,DILG)
  220    CONTINUE
      ENDIF
      CALL LCMSIX(IPLIB,' ',2)
*----
*  COMPUTE AVERAGE MACROSCOPIC DILUTION X-S USING A N-TERM RATIONAL
*  APPROXIMATION.
*----
      DO 260 LLL=1,NGRO
      IF(NPSYS(LLL).NE.0) THEN
         DO 230 IALP=1,NALPHA
         SIGX(IALP)=FACT(IALP)*SIGE(LLL)
  230    CONTINUE
*        **********************************************************
         CALL SHIRAT(IMPX,NRAT,SIGX,DILUT(1,LLL),LLL,A,COEF(1,LLL),
     1   DENOM(1,LLL))
*        **********************************************************
*
*        COMPUTE THE PIC BASE POINTS FOR A N-TERM RATIONAL APPROXIMATION
         IF(START) THEN
            DO 245 IRS=1,NBNRS
            DO 240 I=1,NRAT
            XCOEF(I,IRS,LLL)=COEF(I,LLL)
            XDENO(I,IRS,LLL)=DENOM(I,LLL)
  240       CONTINUE
  245       CONTINUE
         ELSE
            CALL SHIDIL(NRAT,NALPHA,NBNRS,COEF(1,LLL),DENOM(1,LLL),
     1      DILUT(1,LLL),PICX(1,1,LLL),SIGX,DIST,VST,IMPX,LLL,
     2      XCOEF(1,1,LLL),XDENO(1,1,LLL))
         ENDIF
         IF(.NOT.START.AND.BIEFF) THEN
            DO 255 IRS=1,NBNRS
            ISO=ISONR(IRS)
            IF(NOCONV(MIX(ISO),LLL)) THEN
               SIGRES=TOTAL(LLL,IRS)*DEN(ISO)
               IF(NBNRS.EQ.1) THEN
                  SUM=0.0
                  DO 250 I=1,NRAT
                  SUM=SUM+COEF(I,LLL)/(SIGRES+DENOM(I,LLL))
  250             CONTINUE
                  PX0=REAL(SUM)
               ELSE
                  PX0=SB(LLL,ISO)
               ENDIF
               SB(LLL,ISO)=(1.0/PX0-SIGRES)/DEN(ISO)
               IF(SB(LLL,ISO).LT.0.0) THEN
                  WRITE (HSMG,515) (ISONAM(I0,ISO),I0=1,3),SB(LLL,ISO),
     1            LLL
                  CALL XABORT(HSMG)
               ENDIF
            ENDIF
  255       CONTINUE
         ENDIF
      ENDIF
  260 CONTINUE
*----
*  APPLY A GOLDSTEIN-COHEN CORRECTION SIMILAR TO THE CORRECTION USED
*  IN SHISN2.
*----
      IF((.NOT.START).AND.LGC) THEN
         DO 295 IRS=1,NBNRS
         ISO=ISONR(IRS)
         KPLIB=IPISO(ISO) ! set ISO-th isotope
         CALL LCMLEN(KPLIB,'NGOLD',LENGT,ITYLCM)
         IF(LENGT.EQ.NGRO) THEN
            IF(IMPX.GE.5) WRITE (6,390) (ISONAM(I0,ISO),I0=1,3)
            CALL LCMGET(KPLIB,'NGOLD',GC(1,IRS))
         ENDIF
         IF(LEVEL.EQ.2) GO TO 295
         DO 290 JSO=1,NBISO
         IF((MIX(JSO).EQ.MIX(ISO)).AND.(JSO.NE.ISO).AND.
     1   (LSHI(JSO).NE.0)) THEN
            KPLIB=IPISO(JSO) ! set JSO-th isotope
            CALL LCMLEN(KPLIB,'NGOLD',LENGT,ITYLCM)
            IF(LENGT.EQ.NGRO) THEN
               CALL LCMGET(KPLIB,'SIGS00',GAS)
               CALL LCMGET(KPLIB,'NGOLD',GAR)
               DO 280 LLL=1,NGRO
               IF((NOCONV(MIX(JSO),LLL)).AND.(GAR(LLL).NE.1.0)) THEN
                  DDD=(1.0-GAR(LLL))*GAS(LLL)*DEN(JSO)
                  DO 270 I=1,NRAT
                  XDENO(I,IRS,LLL)=XDENO(I,IRS,LLL)-DDD
  270             CONTINUE
               ENDIF
  280          CONTINUE
            ENDIF
         ENDIF
  290    CONTINUE
  295    CONTINUE
      ENDIF
*----
*  COMPUTE THE DILUTION PARAMETERS (BARN) FOR EACH RESONANT ISOTOPE IN
*  RESONANT MIXTURE INRS
*----
      CALL SHIEQU(IPLIB,LEVEL,NGRO,NBISO,NBM,NBNRS,NRAT,MIX,ISONAM,
     1 NOCONV,ISONR,GC,COEF,DENOM,XCOEF,XDENO,DEN,IMPX,SN)
*
      DO 320 LLL=1,NGRO
      LOGDO=.FALSE.
      DO 300 IRS=1,NBNRS
      LOGDO=LOGDO.OR.NOCONV(MIX(ISONR(IRS)),LLL)
  300 CONTINUE
      IF(LOGDO) THEN
         DO 310 IRS=1,NBNRS
         ISO=ISONR(IRS)
         IBM=MIX(ISO)
         IF(START.OR.(.NOT.BIEFF)) THEN
            SB(LLL,ISO)=SN(LLL,ISO)
         ELSE IF(SB(LLL,ISO).LT.0.97*SN(LLL,ISO)) THEN
            WRITE (6,520)(ISONAM(I0,ISO),I0=1,3),SB(LLL,ISO)/
     1      SN(LLL,ISO),0.97,LLL
            SB(LLL,ISO)=0.97*SN(LLL,ISO)
         ENDIF
         SIGT(IBM,LLL)=SIGT(IBM,LLL)+TOTAL(LLL,IRS)*DEN(ISO)
  310    CONTINUE
      ENDIF
  320 CONTINUE
*----
*  SAVE THE GROUP- AND ISOTOPE-DEPENDENT DILUTIONS
*----
      CALL LCMPUT(IPLIB,'ISOTOPESDSB',NBISO*NGRO,2,SB)
      CALL LCMPUT(IPLIB,'ISOTOPESDSN',NBISO*NGRO,2,SN)
*----
*  COMPUTE THE SELF-SHIELDED MICROSCOPIC CROSS SECTIONS AND UPDATE
*  VECTOR SIGT
*----
      DO 330 ISO=1,NBISO
      LOGDO=START.OR.(DEN(ISO).NE.0.)
      MASKI(ISO)=(LSHI(ISO).EQ.INRS).AND.LOGDO
  330 CONTINUE
      IMPX2=MAX(0,IMPX-1)
      CALL LIBLIB (IPLIB,NBISO,MASKI,IMPX2)
      DO 345 IRS=1,NBNRS
      ISO=ISONR(IRS)
      IBM=MIX(ISO)
      KPLIB=IPISO(ISO) ! set ISO-th isotope
      CALL LCMGET(KPLIB,'NTOT0',GAR)
      DO 340 LLL=1,NGRO
      TOTAL(LLL,IRS)=TOTAL(LLL,IRS)-GAR(LLL)
      SIGT(IBM,LLL)=SIGT(IBM,LLL)-DEN(ISO)*TOTAL(LLL,IRS)
  340 CONTINUE
  345 CONTINUE
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(IPISO)
      DEALLOCATE(XDENO,XCOEF)
      DEALLOCATE(DENOM,COEF)
      DEALLOCATE(MASKI)
      DEALLOCATE(PICX)
      DEALLOCATE(DIST,VST,GC,DILUT,SIGE,GAS,GAR,TOTAL,SIG3,SIG0)
      DEALLOCATE(NPSYS,ISONR,IRES)
      RETURN
*
  390 FORMAT(/53H SHISN3: GOLDSTEIN AND COHEN APPROXIMATION USED FOR I,
     1 8HSOTOPE ',3A4,2H'.)
  400 FORMAT(//51H TOTAL MACROSCOPIC CROSS SECTIONS OF THE RESONANT M,
     1 31HATERIALS IN EACH MIXTURE (GROUP,I5,2H):/(1X,1P,11E11.3))
  410 FORMAT(//51H TOTAL MACROSCOPIC CROSS SECTIONS OF THE OTHER MATE,
     1 28HRIALS IN EACH MIXTURE (GROUP,I5,2H):/(1X,1P,11E11.3))
  420 FORMAT(//1X,'TRANSPORT CORRECTION CROSS SECTIONS OF THE OTHER ',
     1'MATERIALS IN EACH MIXTURE (GROUP',I5,'):'/(1X,1P,11E11.3))
  515 FORMAT(30HSHISN3: THE RESONANT ISOTOPE ',3A4,14H' HAS A NEGATI,
     1 22HVE L-J CROSS-SECTION (,1P,E14.4,0P,10H) IN GROUP,I4,1H.)
  520 FORMAT(54H SHISN3: THE L-J EQUIVALENCE FACTOR OF RESONANT ISOTOP,
     1 3HE ',3A4,18H' WAS CHANGED FROM,F6.3,3H TO,F5.2,9H IN GROUP,I4,
     2 1H.)
      END