1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
*DECK SHISN2
SUBROUTINE SHISN2 (IPLIB,IPTRK,IFTRAK,NGRO,NBISO,NBM,NREG,NUN,
1 CDOOR,NRES,NBM2,IMPX,ISONAM,MIX,DEN,SN,SB,LSHI,IPHASE,MAT,VOL,
2 KEYFLX,LEAKSW,TITR,START,SIGT,SIGT3,NOCONV,BIEFF,LGC,SIGE)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one multidimensional self-shielding iteration using the
* generalized Stamm'ler algorithm without Nordheim (PIC) approximation.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB pointer to the internal microscopic cross section library
* (L_LIBRARY signature).
* IPTRK pointer to the tracking (L_TRACK signature).
* IFTRAK unit number of the sequential binary tracking file.
* NGRO number of energy groups.
* NBISO number of isotopes present in the calculation domain.
* NBM number of mixtures in the macrolib.
* NREG number of volumes.
* NUN number of unknowns in the flux or source vector in one
* energy group.
* CDOOR name of the geometry/solution module.
* NRES number of resonant mixtures.
* NBM2 number of resonant isotopes.
* IMPX print flag.
* ISONAM alias name of isotopes.
* MIX mix number of each isotope (can be zero).
* DEN density of each isotope.
* LSHI resonant region number associated with each isotope.
* Infinite dilution will be assumed if LSHI(i)=0.
* IPHASE type of flux solution (=1 use a native flux solution door;
* =2 use collision probabilities).
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* KEYFLX pointers of fluxes in unknown vector.
* LEAKSW leakage flag (.TRUE. only if leakage is present on the outer
* surface).
* TITR title.
* START beginning-of-iteration flag (.TRUE. if SHISN2 is called
* for the first time).
* SIGT3 transport correction.
* NOCONV mixture convergence flag (.TRUE. if mixture IBM
* is not converged in group L).
* BIEFF Livolant-Jeanpierre normalization flag (.TRUE. to
* activate).
* LGC Goldstein-Cohen approximation flag (.TRUE. to activate).
*
*Parameters: output
* SN on input, estimate of the dilution cross section in each
* energy group of each isotope. A value of 1.0e10 is used
* for infinite dilution.
* On output, computed dilution cross section in each energy
* group of each isotope.
* SIGT total macroscopic cross sections as modified by Shiba.
*
*Parameters: output
* SB dilution cross section as used in Livolant-Jeanpierre
* normalization.
* SIGE computed macroscopic dilution cross section in each resonant
* mixture and each energy group.
*
*Reference:
* A. Hebert and G. Marleau, Generalization of the Stamm'ler Method
* for the Self-Shielding of Resonant isotopes in Arbitrary Geometries,
* Nucl. Sci. Eng. 108, 230 (1991).
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
PARAMETER (NALPHA=5)
TYPE(C_PTR) IPLIB,IPTRK
INTEGER IFTRAK,NGRO,NBISO,NBM,NREG,NUN,NRES,NBM2,IMPX,
1 ISONAM(3,NBISO),MIX(NBISO),LSHI(NBISO),IPHASE,MAT(NREG),
2 KEYFLX(NREG)
REAL DEN(NBISO),SN(NGRO,NBISO),SB(NGRO,NBISO),VOL(NREG),
1 SIGT(NBM,NGRO),SIGT3(NBM,NGRO),SIGE(NRES,NGRO)
CHARACTER CDOOR*12,TITR*72,CGRPNM*12
LOGICAL LEAKSW,START,NOCONV(NBM,NGRO),BIEFF,LGC
*----
* LOCAL VARIABLES
*----
CHARACTER HSMG*131
LOGICAL LOGDO
COMPLEX COEF(3),DENOM(3),EAV
PARAMETER (NRAT=(NALPHA+1)/2)
TYPE(C_PTR) KPLIB
REAL FACT(NALPHA),SIGX(NALPHA)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IRES,MIX2,IRNBM,NPSYS
REAL, ALLOCATABLE, DIMENSION(:) :: GAR,SIGRES,DILAV,FUN
REAL, ALLOCATABLE, DIMENSION(:,:) :: SIG0,SIG1,SIG3,TOTAL,SIGOLD,
1 DILUT
LOGICAL, ALLOCATABLE, DIMENSION(:) :: MASKI
TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) :: IPISO
*----
* DATA STATEMENTS
*----
DATA FACT/0.01,0.1,1.0,10.0,100.0/
*----
* SCRATCH STORAGE ALLOCATION
* SIG0 macroscopic xs of the resonant isotopes as interpolated.
* SIG1 macroscopic xs of the resonant isotopes at various SIGX.
* SIG3 macroscopic transport correction.
*----
ALLOCATE(IRES(NBM),MIX2(NBISO),IRNBM(NBM),NPSYS(NGRO))
ALLOCATE(SIG0(NBM,NGRO),SIG1(NBM,NGRO),SIG3(NBM,NGRO),
1 TOTAL(NGRO,NBM2),SIGOLD(NGRO,NBM2),GAR(NGRO),SIGRES(NBM),
2 DILAV(NGRO),DILUT(NALPHA,NGRO))
ALLOCATE(MASKI(NBISO))
ALLOCATE(IPISO(NBISO))
*----
* SET THE LCM MICROLIB ISOTOPEWISE DIRECTORIES.
*----
CALL LIBIPS(IPLIB,NBISO,IPISO)
*----
* UNLOAD MICROSCOPIC X-S FROM LCM TO SCRATCH STORAGE
*----
IBM=0
DO 20 ISO=1,NBISO
MIX2(ISO)=0
IF(LSHI(ISO).GT.0) THEN
IBM=IBM+1
MIX2(ISO)=IBM
KPLIB=IPISO(ISO) ! set ISO-th isotope
CALL LCMGET(KPLIB,'NTOT0',TOTAL(1,IBM))
CALL LCMLEN(KPLIB,'NGOLD',LENGT,ITYLCM)
IF((LENGT.EQ.NGRO).AND.(.NOT.START).AND.LGC) THEN
IF(IMPX.GE.5) WRITE (6,390) (ISONAM(I0,ISO),I0=1,3)
CALL LCMGET(KPLIB,'SIGS00',SIGOLD(1,IBM))
CALL LCMGET(KPLIB,'NGOLD',GAR)
DO 10 LLL=1,NGRO
SIGOLD(LLL,IBM)=(1.0-GAR(LLL))*SIGOLD(LLL,IBM)
10 CONTINUE
ELSE
SIGOLD(:NGRO,IBM)=0.0
ENDIF
ENDIF
20 CONTINUE
*----
* LOOP OVER RESONANT REGIONS. THE CP ARE STORED ON DIRECTORY SHIBA
*----
CALL LCMSIX(IPLIB,'SHIBA',1)
DO 260 INRS=1,NRES
*----
* FIND THE RESONANT MIXTURE NUMBERS (IRNBM) ASSOCIATED WITH REGION INRS
*----
NBNRS=0
DO 50 IBM=1,NBM
IRES(IBM)=0
DO 40 ISO=1,NBISO
IF((MIX(ISO).EQ.IBM).AND.(LSHI(ISO).EQ.INRS)) THEN
NBNRS=NBNRS+1
IRNBM(NBNRS)=IBM
IRES(IBM)=1
GO TO 50
ENDIF
40 CONTINUE
50 CONTINUE
IF(NBNRS.EQ.0) THEN
IF(START.AND.(IMPX.GE.1)) WRITE(6,385) 'SHISN2',INRS
GO TO 260
ELSE IF(START.AND.(NBNRS.GT.1).AND.(IMPX.GE.5)) THEN
WRITE (6,380) NBNRS,INRS
ENDIF
*
NPSYS(:NGRO)=0
DO 120 LLL=1,NGRO
LOGDO=.FALSE.
DO 60 I=1,NBNRS
LOGDO=LOGDO.OR.NOCONV(IRNBM(I),LLL)
60 CONTINUE
IF(LOGDO) THEN
NPSYS(LLL)=LLL
*
* COMPUTE THE LIGHT AND RESONANT COMPONENTS OF THE MACROSCOPIC
* CROSS SECTIONS IN EACH RESONANT MIXTURE.
DO 80 I=1,NBNRS
SIGRES(I)=0.0
DO 70 ISO=1,NBISO
IF((MIX(ISO).EQ.IRNBM(I)).AND.(LSHI(ISO).EQ.INRS)) THEN
SIGRES(I)=SIGRES(I)+TOTAL(LLL,MIX2(ISO))*DEN(ISO)
ENDIF
70 CONTINUE
SIGT(IRNBM(I),LLL)=SIGT(IRNBM(I),LLL)-SIGRES(I)
80 CONTINUE
DO 90 IBM=1,NBM
SIG0(IBM,LLL)=0.0
SIG1(IBM,LLL)=0.0
SIG3(IBM,LLL)=SIGT3(IBM,LLL)
90 CONTINUE
DO 110 I=1,NBNRS
SIG0(IRNBM(I),LLL)=SIGRES(I)
SIG3(IRNBM(I),LLL)=0.0
110 CONTINUE
IF(IMPX.GE.10) THEN
WRITE (6,400) LLL,(SIG0(I,LLL),I=1,NBM)
WRITE (6,410) LLL,(SIGT(I,LLL),I=1,NBM)
WRITE (6,420) LLL,(SIGT3(I,LLL),I=1,NBM)
ENDIF
ENDIF
120 CONTINUE
*----
* SET UP VECTORS DILUT AND SIGX.
*----
DILAV(:NGRO)=0.0
IF(START) THEN
* USE A VERY CHEAP APPROXIMATION TO START ITERATIONS.
ALLOCATE(FUN(NUN*NGRO))
CALL LCMSIX(IPLIB,'--AVERAGE--',1)
CALL SHIDST (IPLIB,NPSYS,IPTRK,IFTRAK,CDOOR,IMPX,NBM,NREG,
1 NUN,NGRO,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IRES,SIG0,SIGT,
2 SIGT3(1,1),TITR,FUN,DILAV)
CALL LCMSIX(IPLIB,' ',2)
DEALLOCATE(FUN)
DO 135 LLL=1,NGRO
DO 130 IALP=1,NALPHA
DILUT(IALP,LLL)=DILAV(LLL)
130 CONTINUE
135 CONTINUE
ELSE
DO 165 IALP=1,NALPHA
DO 150 LLL=1,NGRO
IF(NPSYS(LLL).NE.0) THEN
DO 140 I=1,NBNRS
SIG1(IRNBM(I),LLL)=FACT(IALP)*SIGE(INRS,LLL)
140 CONTINUE
ENDIF
150 CONTINUE
ALLOCATE(FUN(NUN*NGRO))
WRITE(CGRPNM,'(8H--BAND--,I4.4)') IALP
CALL LCMSIX(IPLIB,CGRPNM,1)
CALL SHIDST (IPLIB,NPSYS,IPTRK,IFTRAK,CDOOR,IMPX,NBM,NREG,
1 NUN,NGRO,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IRES,SIG1,SIGT,
2 SIG3(1,1),TITR,FUN,DILAV)
CALL LCMSIX(IPLIB,' ',2)
DEALLOCATE(FUN)
DO 160 LLL=1,NGRO
DILUT(IALP,LLL)=DILAV(LLL)
160 CONTINUE
165 CONTINUE
ENDIF
*----
* COMPUTE AVERAGE MACROSCOPIC DILUTION X-S (SIGE) USING A THREE-TERM
* RATIONAL APPROXIMATION.
*----
DO 200 LLL=1,NGRO
IF(NPSYS(LLL).NE.0) THEN
DO 170 IALP=1,NALPHA
SIGX(IALP)=FACT(IALP)*SIGE(INRS,LLL)
170 CONTINUE
IMPX2=IMPX
IF(START) IMPX2=MAX(0,IMPX-10)
* **********************************************************
CALL SHIRAT(IMPX2,NRAT,SIGX,DILUT(1,LLL),LLL,A,COEF,DENOM)
* **********************************************************
EAV=(COEF(1)*SQRT(DENOM(1))+COEF(2)*SQRT(DENOM(2))+
1 COEF(3)*SQRT(DENOM(3)))**2
SIGE(INRS,LLL)=REAL(EAV)
IF((.NOT.START).AND.(BIEFF).AND.(NBNRS.EQ.1)) THEN
* COMPUTE DILAV FOR THE L-J NORMALIZATION.
SIGXX=SIG0(IRNBM(1),LLL)
PXX=REAL(COEF(1)/(SIGXX+DENOM(1))+COEF(2)/(SIGXX+DENOM(2))
1 +COEF(3)/(SIGXX+DENOM(3)))
DILAV(LLL)=1.0/PXX-SIGXX
ENDIF
*----
* COMPUTE THE ISOTOPE DILUTION MICROSCOPIC CROSS SECTIONS (SN) USED
* FOR LIBRARY INTERPOLATION.
*----
DO 190 ISO=1,NBISO
IF((LSHI(ISO).EQ.INRS).AND.(IRES(MIX(ISO)).EQ.1).AND.
1 (DEN(ISO).NE.0.)) THEN
SUM=0.0
DO 180 JSO=1,NBISO
IBM=MIX(JSO)
IF((LSHI(JSO).EQ.INRS).AND.(IBM.EQ.MIX(ISO)).AND.
1 (ISO.NE.JSO)) SUM=SUM+(TOTAL(LLL,MIX2(JSO))-
2 SIGOLD(LLL,MIX2(JSO)))*DEN(JSO)
180 CONTINUE
SN(LLL,ISO)=REAL(COEF(1)*SQRT(DENOM(1)+SUM)+COEF(2)*
1 SQRT(DENOM(2)+SUM)+COEF(3)*SQRT(DENOM(3)+SUM))**2/DEN(ISO)
IF(SN(LLL,ISO).LE.0.0) THEN
WRITE (HSMG,510) (ISONAM(I0,ISO),I0=1,3),SN(LLL,ISO),LLL
CALL XABORT(HSMG)
ENDIF
ELSE IF((LSHI(ISO).EQ.INRS).AND.(IRES(MIX(ISO)).EQ.1).AND.
1 (DEN(ISO).EQ.0.)) THEN
SN(LLL,ISO)=1.0E10
ENDIF
190 CONTINUE
IF((.NOT.START).AND.(IMPX.GE.10)) THEN
DO 195 I=1,NBNRS
PP=A-SIGT(IRNBM(I),LLL)
QQ=SIGE(INRS,LLL)-SIGT(IRNBM(I),LLL)
IF(ABS(PP).GT.1.0E-4*SIGT(IRNBM(I),LLL)) THEN
BEL=QQ/PP
ELSE
BEL=0.0
ENDIF
WRITE (6,610) I,SIGE(INRS,LLL),BEL
195 CONTINUE
ENDIF
ENDIF
200 CONTINUE
*----
* COMPUTE THE ISOTOPE DILUTION MICROSCOPIC CROSS SECTIONS (SB) USED
* IN L-J NORMALIZATION.
*----
IF((.NOT.START).AND.(BIEFF).AND.(NBNRS.GT.1)) THEN
* COMPUTE DILAV FOR THE L-J NORMALIZATION.
ALLOCATE(FUN(NUN*NGRO))
CALL LCMSIX(IPLIB,'--AVERAGE--',1)
CALL SHIDST (IPLIB,NPSYS,IPTRK,IFTRAK,CDOOR,IMPX,NBM,NREG,
1 NUN,NGRO,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IRES,SIG0,SIGT,
2 SIGT3(1,1),TITR,FUN,DILAV)
CALL LCMSIX(IPLIB,' ',2)
DEALLOCATE(FUN)
ENDIF
DO 250 LLL=1,NGRO
IF(NPSYS(LLL).NE.0) THEN
DO 220 ISO=1,NBISO
IF((LSHI(ISO).EQ.INRS).AND.(IRES(MIX(ISO)).EQ.1).AND.
1 (DEN(ISO).NE.0.)) THEN
SUM=0.0
DO 210 JSO=1,NBISO
IBM=MIX(JSO)
IF((LSHI(JSO).EQ.INRS).AND.(IBM.EQ.MIX(ISO)).AND.
1 (ISO.NE.JSO)) SUM=SUM+TOTAL(LLL,MIX2(JSO))*DEN(JSO)
210 CONTINUE
IF(START.OR.(.NOT.BIEFF)) THEN
SB(LLL,ISO)=SN(LLL,ISO)
ELSE
SB(LLL,ISO)=(DILAV(LLL)+SUM)/DEN(ISO)
IF(SB(LLL,ISO).LT.0.0) THEN
WRITE (HSMG,515) (ISONAM(I0,ISO),I0=1,3),SB(LLL,ISO),
1 LLL
CALL XABORT(HSMG)
ELSE IF(SB(LLL,ISO).LT.SN(LLL,ISO)) THEN
IF(SB(LLL,ISO).LT.0.99*SN(LLL,ISO)) WRITE (6,520)
1 (ISONAM(I0,ISO),I0=1,3),SB(LLL,ISO)/SN(LLL,ISO),LLL
SB(LLL,ISO)=SN(LLL,ISO)
ENDIF
ENDIF
ELSE IF((LSHI(ISO).EQ.INRS).AND.(IRES(MIX(ISO)).EQ.1).AND.
1 (DEN(ISO).EQ.0.)) THEN
SB(LLL,ISO)=1.0E10
ENDIF
220 CONTINUE
*
* RESTORE SIGT ARRAY.
DO 240 I=1,NBNRS
SIGRES(I)=0.0
DO 230 ISO=1,NBISO
IF((MIX(ISO).EQ.IRNBM(I)).AND.(LSHI(ISO).EQ.INRS)) THEN
SIGRES(I)=SIGRES(I)+TOTAL(LLL,MIX2(ISO))*DEN(ISO)
ENDIF
230 CONTINUE
SIGT(IRNBM(I),LLL)=SIGT(IRNBM(I),LLL)+SIGRES(I)
240 CONTINUE
ENDIF
250 CONTINUE
260 CONTINUE
CALL LCMSIX(IPLIB,' ',2)
*----
* SAVE THE GROUP- AND ISOTOPE-DEPENDENT DILUTIONS
*----
CALL LCMPUT(IPLIB,'ISOTOPESDSB',NBISO*NGRO,2,SB)
CALL LCMPUT(IPLIB,'ISOTOPESDSN',NBISO*NGRO,2,SN)
*----
* COMPUTE THE SELF-SHIELDED MICROSCOPIC CROSS SECTIONS AND UPDATE
* VECTOR SIGT
*----
DO 290 ISO=1,NBISO
LOGDO=START.OR.(DEN(ISO).NE.0.)
MASKI(ISO)=(LSHI(ISO).GT.0).AND.LOGDO
290 CONTINUE
IMPX2=MAX(0,IMPX-1)
CALL LIBLIB (IPLIB,NBISO,MASKI,IMPX2)
DO 320 ISO=1,NBISO
IBM=MIX(ISO)
IF((LSHI(ISO).GT.0).AND.(IBM.GT.0).AND.(DEN(ISO).NE.0.)) THEN
KPLIB=IPISO(ISO) ! set ISO-th isotope
CALL LCMGET(KPLIB,'NTOT0',GAR)
DO 300 LLL=1,NGRO
TOTAL(LLL,MIX2(ISO))=TOTAL(LLL,MIX2(ISO))-GAR(LLL)
300 CONTINUE
DO 310 LLL=1,NGRO
IF(NOCONV(IBM,LLL)) SIGT(IBM,LLL)=SIGT(IBM,LLL)-DEN(ISO)*
1 TOTAL(LLL,MIX2(ISO))
310 CONTINUE
ENDIF
320 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(IPISO)
DEALLOCATE(MASKI)
DEALLOCATE(DILUT,DILAV,SIGRES,GAR,SIGOLD,TOTAL,SIG3,SIG1,SIG0)
DEALLOCATE(NPSYS,IRNBM,MIX2,IRES)
RETURN
*
380 FORMAT(/16H SHISN2: MERGING,I3,30H RESONANT MIXTURES IN RESONANT,
1 14H REGION NUMBER,I3,1H.)
385 FORMAT(A6,1X,': RESONANT REGION =',I10,1X,'NOT USED.')
390 FORMAT(/53H SHISN2: GOLDSTEIN AND COHEN APPROXIMATION USED FOR I,
1 8HSOTOPE ',3A4,2H'.)
400 FORMAT(1X,'TOTAL MACROSCOPIC CROSS SECTIONS OF THE RESONANT ',
1'MATERIALS IN EACH MIXTURE (GROUP',I5,'):'/(1X,1P,11E11.3))
410 FORMAT(1X,'TOTAL MACROSCOPIC CROSS SECTIONS OF THE OTHER ',
1'MATERIALS IN EACH MIXTURE (GROUP',I5,'):'/(1X,1P,11E11.3))
420 FORMAT(//1X,'TRANSPORT CORRECTION CROSS SECTIONS OF THE OTHER ',
1'MATERIALS IN EACH MIXTURE (GROUP',I5,'):'/(1X,1P,11E11.3))
510 FORMAT(30HSHISN2: THE RESONANT ISOTOPE ',3A4,14H' HAS A NEGATI,
1 27HVE DILUTION CROSS-SECTION (,1P,E14.4,0P,10H) IN GROUP,I4,1H.)
515 FORMAT(30HSHISN2: THE RESONANT ISOTOPE ',3A4,14H' HAS A NEGATI,
1 22HVE L-J CROSS-SECTION (,1P,E14.4,0P,10H) IN GROUP,I4,1H.)
520 FORMAT(54H SHISN2: THE L-J EQUIVALENCE FACTOR OF RESONANT ISOTOP,
1 3HE ',3A4,18H' WAS CHANGED FROM,F6.3,16H TO 1.0 IN GROUP,I4,1H.)
610 FORMAT(8X,8HAVERAGE(,I2,1H),1P,E13.5/8X,11HBELL FACTOR,E13.5)
END
|