summaryrefslogtreecommitdiff
path: root/Dragon/src/SHIRAT.f
blob: 7388478d3c77993f86f9b4d2b192755d23e5ff3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
*DECK SHIRAT
      SUBROUTINE SHIRAT(IMPX,NRAT,SIGX,DILUT,IGRP,SA,COEF,DENOM)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the NRAT-terms rational approximation coefficients for
* the SIGX-dependent fuel-to-fuel reduced collision probability in a
* closed cell.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IMPX    print flag (no print if IMPX.lt.10).
* NRAT    number of terms in the pij rational approximation.
* SIGX    interpolation values for the resonant cross section of
*         the heavy nuclide.
* DILUT   interpolated macroscopic escape cross sections corresponding
*         to SIGX values.
* IGRP    group index.
*
*Parameters: output
* SA      asymptotic macroscopic escape cross section.
* COEF    numerator coefficients for the rational approximation
*         of fuel-to-fuel reduced collision probability.
* DENOM   denominator coefficients for the rational approximation
*         of fuel-to-fuel reduced collision probability.
*
*-----------------------------------------------------------------------
*
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER IMPX,NRAT,IGRP
      REAL SIGX(2*NRAT-1),DILUT(2*NRAT-1),SA
      COMPLEX COEF(NRAT),DENOM(NRAT)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (NMAX=11,EPSRID=1.0D-5,NORIN=(NMAX-1)/2)
      COMPLEX*16 E1,E2,E3,AAA,BBB,SQ1,TEST,D,E,SQRTM3,SIGXI,DD,
     1 CDENOM(NORIN+1)
      PARAMETER (SQRTM3=(0.0,1.73205080756888))
      DOUBLE PRECISION A(0:NORIN),B(0:NORIN),C(0:NORIN+1)
      CHARACTER HSMG*131
      REAL EPS,PREC
      COMPLEX EAV
      LOGICAL LFAIL
*
      IF(2*NRAT-1.GT.NMAX) CALL XABORT('SHIRAT: INCREASE NMAX.')
      DO 10 I=2,NRAT
      COEF(I)=0.0
      DENOM(I)=1.0
   10 CONTINUE
      EPS=0.0
      DO 15 I=1,2*NRAT-1,2
      EPS=MAX(EPS,ABS(DILUT(I)-DILUT(NRAT))/ABS(DILUT(I)))
   15 CONTINUE
      IF(EPS.LT.5.0E-4) THEN
         SA=DILUT(NRAT)
         COEF(1)=1.0
         DENOM(1)=DILUT(NRAT)
         IF(IMPX.GE.10) WRITE (6,110) SA
         RETURN
      ENDIF
*
      CALL ALPLSF(1,2*NRAT-1,SIGX,DILUT,EPSRID,.FALSE.,NOR,A,B,PREC)
      SA=REAL(A(NOR))
      QQ=A(1)+B(0)
      RR=A(0)
      IF(NOR.EQ.0) THEN
*        1-TERM RATIONAL APPROXIMATION.
         COEF(1)=1.0
         DENOM(1)=CMPLX(A(0),KIND=KIND(DENOM))
      ELSE IF(NOR.EQ.1) THEN
*        2-TERMS RATIONAL APPROXIMATION.
         AAA=QQ*QQ-4.0D0*RR
         AAA=SQRT(AAA)
         E1=0.5D0*(QQ+AAA)
         E2=0.5D0*(QQ-AAA)
         IF(ABS(DBLE(E1*E2)-RR).GT.1.0E-3*ABS(RR)) THEN
            WRITE (HSMG,'(42HSHIRAT: INTERPOLATION ALGORITHM FAILURE 1,,
     1      6H COEF=,1P,3E11.3)') QQ,RR,DBLE(E1*E2)
            CALL XABORT(HSMG)
         ENDIF
*
         COEF(1)=CMPLX((B(0)-E1)/(E2-E1))
         COEF(2)=CMPLX((B(0)-E2)/(E1-E2))
         DENOM(1)=CMPLX(E1)
         DENOM(2)=CMPLX(E2)
      ELSE IF(NOR.EQ.2) THEN
*        3-TERMS RATIONAL APPROXIMATION.
         PP=A(2)+B(1)
         AA=(3.0D0*QQ-PP**2)/3.0D0
         BB=(2.0D0*PP**3-9.0D0*PP*QQ+27.0D0*RR)/27.0D0
         SQ1=BB**2/4.0D0+AA**3/27.0D0
         TEST=BB/2.0D0-SQRT(SQ1)
         IF(DBLE(TEST).EQ.0.0) THEN
            AAA=0.0D0
         ELSE IF(DBLE(TEST).GT.0.0) THEN
            AAA=-(TEST)**(1.0D0/3.0D0)
         ELSE
            AAA=(-TEST)**(1.0D0/3.0D0)
         ENDIF
         TEST=BB/2.0D0+SQRT(SQ1)
         IF(DBLE(TEST).EQ.0.0) THEN
            BBB=0.0D0
         ELSE IF(DBLE(TEST).GT.0.0) THEN
            BBB=-(TEST)**(1.0D0/3.0D0)
         ELSE
            BBB=(-TEST)**(1.0D0/3.0D0)
         ENDIF
         E1=-(AAA+BBB-PP/3.0D0)
         E2=-(-(AAA+BBB)/2.0D0+(AAA-BBB)*SQRTM3/2.0D0-PP/3.0D0)
         E3=-(-(AAA+BBB)/2.0D0-(AAA-BBB)*SQRTM3/2.0D0-PP/3.0D0)
         IF(ABS(DBLE(E1*E2*E3)-RR).GT.1.0E-3*ABS(RR)) THEN
            WRITE (HSMG,'(42HSHIRAT: INTERPOLATION ALGORITHM FAILURE 2,,
     1      6H COEF=,1P,4E11.3)') PP,QQ,RR,DBLE(E1*E2*E3)
            CALL XABORT(HSMG)
         ENDIF
*
         SQ1=(0.5D0*B(1))**2-B(0)
         D=0.5D0*B(1)+SQRT(SQ1)
         E=0.5D0*B(1)-SQRT(SQ1)
         COEF(1)=CMPLX((D-E1)*(E-E1)/(E2-E1)/(E3-E1))
         COEF(2)=CMPLX((D-E2)*(E-E2)/(E1-E2)/(E3-E2))
         COEF(3)=CMPLX((D-E3)*(E-E3)/(E1-E3)/(E2-E3))
         DENOM(1)=CMPLX(E1)
         DENOM(2)=CMPLX(E2)
         DENOM(3)=CMPLX(E3)
      ELSE IF(NOR.GE.3) THEN
*        (NOR+1) TERMS RATIONAL APPROXIMATION.
         NORP1=NOR+1
         SGN=1.0D0
         C(0)=A(0)
         DO 25 I=2,NORP1
         SGN=-SGN
         C(I-1)=SGN*(B(I-2)+A(I-1))
   25    CONTINUE
         C(NORP1)=-SGN
         CALL ALROOT(C,NORP1,CDENOM,LFAIL)
         IF(LFAIL) CALL XABORT('SHIRAT: ROOT FINDING FAILURE.')
         DO 50 I=1,NORP1
         SIGXI=CDENOM(I)
         DENOM(I)=CMPLX(SIGXI)
         DD=SIGXI**(NORP1-1)
         SGN=1.0D0
         DO 30 J=NORP1-1,1,-1
         SGN=-SGN
         DD=DD+SGN*B(J-1)*SIGXI**(J-1)
   30    CONTINUE
         DO 40 J=1,NORP1
         IF(J.NE.I) DD=DD/(SIGXI-CDENOM(J))
   40    CONTINUE
         COEF(I)=CMPLX(DD)
   50    CONTINUE
      ELSE
         CALL XABORT('SHIRAT: PADE COLLOCATION FAILURE.')
      ENDIF
      IF(IMPX.GE.10) THEN
         WRITE (6,80) IGRP,(COEF(I),I=1,NOR+1)
         WRITE (6,90) (DENOM(I),I=1,NOR+1)
         WRITE (6,100)
         X=1.0D0
         DO 70 I=1,2*NRAT-1
         Z1=0.0D0
         Z2=0.0D0
         DO 60 J=0,NOR
         Z1=Z1+A(J)*X
         Z2=Z2+B(J)*X
         X=X*SIGX(I)
   60    CONTINUE
         WRITE (6,'(1X,I5,1P,3E13.5)') I,SIGX(I),DILUT(I),Z1/Z2
   70    CONTINUE
         WRITE (6,110) SA
      ENDIF
      EAV=0.0
      DO 75 I=1,NRAT
      EAV=EAV+COEF(I)*SQRT(DENOM(I))
   75 CONTINUE
      EAV=EAV*EAV
      IF(REAL(EAV).LT.0.0) THEN
         NALPHA=2*NRAT-1
         WRITE (6,120) (SIGX(I),I=1,NALPHA)
         WRITE (6,130) (DILUT(I),I=1,NALPHA)
         WRITE (6,80) IGRP,(COEF(I),I=1,NRAT)
         WRITE (6,90) (DENOM(I),I=1,NRAT)
         WRITE (HSMG,'(41HSHIRAT: RATIONAL EXPANSION FAILURE. EAV=(,
     1   1P,E10.3,1H,,E10.3,33H) HAS NEGATIVE REAL PART IN GROUP,I4,
     2   1H.)') EAV,IGRP
         CALL XABORT(HSMG)
      ELSE IF(ABS(AIMAG(EAV)).GT.5.0E-3*REAL(EAV)) THEN
         NALPHA=2*NRAT-1
         WRITE (6,120) (SIGX(I),I=1,NALPHA)
         WRITE (6,130) (DILUT(I),I=1,NALPHA)
         WRITE (6,80) IGRP,(COEF(I),I=1,NRAT)
         WRITE (6,90) (DENOM(I),I=1,NRAT)
         WRITE (6,'(/42H SHIRAT: RATIONAL EXPANSION WARNING. EAV=(,
     1   1P,E10.3,1H,,E10.3,35H) HAS LARGE IMAGINARY PART IN GROUP,
     2   I4,1H.)') EAV,IGRP
      ENDIF
      RETURN
*
   80 FORMAT(//52H RATIONAL APPROXIMATION COEFFICIENTS FOR FUEL-TO-FUE,
     1 59HL REDUCED COLLISION PROBABILITIES OF THE CLOSED CELL (GROUP,
     2 I5,2H):/1P,9X,10HNUMERATOR ,3(2H (,E11.4,1H,,E11.4,1H),:)/19X,
     3 3(2H (,E11.4,1H,,E11.4,1H),:))
   90 FORMAT(7X,12HDENOMINATOR ,3(2H (,E11.4,1H,,E11.4,1H),:)/19X,
     1 3(2H (,E11.4,1H,,E11.4,1H),:))
  100 FORMAT(/5X,1HI,9X,4HSIGX,8X,5HDILUT,10X,3HFIT)
  110 FORMAT(11X,8HINFINITE,1P,E13.5)
  120 FORMAT(//7H  SIGX:,1P,7E11.4)
  130 FORMAT(7H DILUT:,7E11.4/)
      END