1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
*DECK SHIRAT
SUBROUTINE SHIRAT(IMPX,NRAT,SIGX,DILUT,IGRP,SA,COEF,DENOM)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the NRAT-terms rational approximation coefficients for
* the SIGX-dependent fuel-to-fuel reduced collision probability in a
* closed cell.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IMPX print flag (no print if IMPX.lt.10).
* NRAT number of terms in the pij rational approximation.
* SIGX interpolation values for the resonant cross section of
* the heavy nuclide.
* DILUT interpolated macroscopic escape cross sections corresponding
* to SIGX values.
* IGRP group index.
*
*Parameters: output
* SA asymptotic macroscopic escape cross section.
* COEF numerator coefficients for the rational approximation
* of fuel-to-fuel reduced collision probability.
* DENOM denominator coefficients for the rational approximation
* of fuel-to-fuel reduced collision probability.
*
*-----------------------------------------------------------------------
*
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IMPX,NRAT,IGRP
REAL SIGX(2*NRAT-1),DILUT(2*NRAT-1),SA
COMPLEX COEF(NRAT),DENOM(NRAT)
*----
* LOCAL VARIABLES
*----
PARAMETER (NMAX=11,EPSRID=1.0D-5,NORIN=(NMAX-1)/2)
COMPLEX*16 E1,E2,E3,AAA,BBB,SQ1,TEST,D,E,SQRTM3,SIGXI,DD,
1 CDENOM(NORIN+1)
PARAMETER (SQRTM3=(0.0,1.73205080756888))
DOUBLE PRECISION A(0:NORIN),B(0:NORIN),C(0:NORIN+1)
CHARACTER HSMG*131
REAL EPS,PREC
COMPLEX EAV
LOGICAL LFAIL
*
IF(2*NRAT-1.GT.NMAX) CALL XABORT('SHIRAT: INCREASE NMAX.')
DO 10 I=2,NRAT
COEF(I)=0.0
DENOM(I)=1.0
10 CONTINUE
EPS=0.0
DO 15 I=1,2*NRAT-1,2
EPS=MAX(EPS,ABS(DILUT(I)-DILUT(NRAT))/ABS(DILUT(I)))
15 CONTINUE
IF(EPS.LT.5.0E-4) THEN
SA=DILUT(NRAT)
COEF(1)=1.0
DENOM(1)=DILUT(NRAT)
IF(IMPX.GE.10) WRITE (6,110) SA
RETURN
ENDIF
*
CALL ALPLSF(1,2*NRAT-1,SIGX,DILUT,EPSRID,.FALSE.,NOR,A,B,PREC)
SA=REAL(A(NOR))
QQ=A(1)+B(0)
RR=A(0)
IF(NOR.EQ.0) THEN
* 1-TERM RATIONAL APPROXIMATION.
COEF(1)=1.0
DENOM(1)=CMPLX(A(0),KIND=KIND(DENOM))
ELSE IF(NOR.EQ.1) THEN
* 2-TERMS RATIONAL APPROXIMATION.
AAA=QQ*QQ-4.0D0*RR
AAA=SQRT(AAA)
E1=0.5D0*(QQ+AAA)
E2=0.5D0*(QQ-AAA)
IF(ABS(DBLE(E1*E2)-RR).GT.1.0E-3*ABS(RR)) THEN
WRITE (HSMG,'(42HSHIRAT: INTERPOLATION ALGORITHM FAILURE 1,,
1 6H COEF=,1P,3E11.3)') QQ,RR,DBLE(E1*E2)
CALL XABORT(HSMG)
ENDIF
*
COEF(1)=CMPLX((B(0)-E1)/(E2-E1))
COEF(2)=CMPLX((B(0)-E2)/(E1-E2))
DENOM(1)=CMPLX(E1)
DENOM(2)=CMPLX(E2)
ELSE IF(NOR.EQ.2) THEN
* 3-TERMS RATIONAL APPROXIMATION.
PP=A(2)+B(1)
AA=(3.0D0*QQ-PP**2)/3.0D0
BB=(2.0D0*PP**3-9.0D0*PP*QQ+27.0D0*RR)/27.0D0
SQ1=BB**2/4.0D0+AA**3/27.0D0
TEST=BB/2.0D0-SQRT(SQ1)
IF(DBLE(TEST).EQ.0.0) THEN
AAA=0.0D0
ELSE IF(DBLE(TEST).GT.0.0) THEN
AAA=-(TEST)**(1.0D0/3.0D0)
ELSE
AAA=(-TEST)**(1.0D0/3.0D0)
ENDIF
TEST=BB/2.0D0+SQRT(SQ1)
IF(DBLE(TEST).EQ.0.0) THEN
BBB=0.0D0
ELSE IF(DBLE(TEST).GT.0.0) THEN
BBB=-(TEST)**(1.0D0/3.0D0)
ELSE
BBB=(-TEST)**(1.0D0/3.0D0)
ENDIF
E1=-(AAA+BBB-PP/3.0D0)
E2=-(-(AAA+BBB)/2.0D0+(AAA-BBB)*SQRTM3/2.0D0-PP/3.0D0)
E3=-(-(AAA+BBB)/2.0D0-(AAA-BBB)*SQRTM3/2.0D0-PP/3.0D0)
IF(ABS(DBLE(E1*E2*E3)-RR).GT.1.0E-3*ABS(RR)) THEN
WRITE (HSMG,'(42HSHIRAT: INTERPOLATION ALGORITHM FAILURE 2,,
1 6H COEF=,1P,4E11.3)') PP,QQ,RR,DBLE(E1*E2*E3)
CALL XABORT(HSMG)
ENDIF
*
SQ1=(0.5D0*B(1))**2-B(0)
D=0.5D0*B(1)+SQRT(SQ1)
E=0.5D0*B(1)-SQRT(SQ1)
COEF(1)=CMPLX((D-E1)*(E-E1)/(E2-E1)/(E3-E1))
COEF(2)=CMPLX((D-E2)*(E-E2)/(E1-E2)/(E3-E2))
COEF(3)=CMPLX((D-E3)*(E-E3)/(E1-E3)/(E2-E3))
DENOM(1)=CMPLX(E1)
DENOM(2)=CMPLX(E2)
DENOM(3)=CMPLX(E3)
ELSE IF(NOR.GE.3) THEN
* (NOR+1) TERMS RATIONAL APPROXIMATION.
NORP1=NOR+1
SGN=1.0D0
C(0)=A(0)
DO 25 I=2,NORP1
SGN=-SGN
C(I-1)=SGN*(B(I-2)+A(I-1))
25 CONTINUE
C(NORP1)=-SGN
CALL ALROOT(C,NORP1,CDENOM,LFAIL)
IF(LFAIL) CALL XABORT('SHIRAT: ROOT FINDING FAILURE.')
DO 50 I=1,NORP1
SIGXI=CDENOM(I)
DENOM(I)=CMPLX(SIGXI)
DD=SIGXI**(NORP1-1)
SGN=1.0D0
DO 30 J=NORP1-1,1,-1
SGN=-SGN
DD=DD+SGN*B(J-1)*SIGXI**(J-1)
30 CONTINUE
DO 40 J=1,NORP1
IF(J.NE.I) DD=DD/(SIGXI-CDENOM(J))
40 CONTINUE
COEF(I)=CMPLX(DD)
50 CONTINUE
ELSE
CALL XABORT('SHIRAT: PADE COLLOCATION FAILURE.')
ENDIF
IF(IMPX.GE.10) THEN
WRITE (6,80) IGRP,(COEF(I),I=1,NOR+1)
WRITE (6,90) (DENOM(I),I=1,NOR+1)
WRITE (6,100)
X=1.0D0
DO 70 I=1,2*NRAT-1
Z1=0.0D0
Z2=0.0D0
DO 60 J=0,NOR
Z1=Z1+A(J)*X
Z2=Z2+B(J)*X
X=X*SIGX(I)
60 CONTINUE
WRITE (6,'(1X,I5,1P,3E13.5)') I,SIGX(I),DILUT(I),Z1/Z2
70 CONTINUE
WRITE (6,110) SA
ENDIF
EAV=0.0
DO 75 I=1,NRAT
EAV=EAV+COEF(I)*SQRT(DENOM(I))
75 CONTINUE
EAV=EAV*EAV
IF(REAL(EAV).LT.0.0) THEN
NALPHA=2*NRAT-1
WRITE (6,120) (SIGX(I),I=1,NALPHA)
WRITE (6,130) (DILUT(I),I=1,NALPHA)
WRITE (6,80) IGRP,(COEF(I),I=1,NRAT)
WRITE (6,90) (DENOM(I),I=1,NRAT)
WRITE (HSMG,'(41HSHIRAT: RATIONAL EXPANSION FAILURE. EAV=(,
1 1P,E10.3,1H,,E10.3,33H) HAS NEGATIVE REAL PART IN GROUP,I4,
2 1H.)') EAV,IGRP
CALL XABORT(HSMG)
ELSE IF(ABS(AIMAG(EAV)).GT.5.0E-3*REAL(EAV)) THEN
NALPHA=2*NRAT-1
WRITE (6,120) (SIGX(I),I=1,NALPHA)
WRITE (6,130) (DILUT(I),I=1,NALPHA)
WRITE (6,80) IGRP,(COEF(I),I=1,NRAT)
WRITE (6,90) (DENOM(I),I=1,NRAT)
WRITE (6,'(/42H SHIRAT: RATIONAL EXPANSION WARNING. EAV=(,
1 1P,E10.3,1H,,E10.3,35H) HAS LARGE IMAGINARY PART IN GROUP,
2 I4,1H.)') EAV,IGRP
ENDIF
RETURN
*
80 FORMAT(//52H RATIONAL APPROXIMATION COEFFICIENTS FOR FUEL-TO-FUE,
1 59HL REDUCED COLLISION PROBABILITIES OF THE CLOSED CELL (GROUP,
2 I5,2H):/1P,9X,10HNUMERATOR ,3(2H (,E11.4,1H,,E11.4,1H),:)/19X,
3 3(2H (,E11.4,1H,,E11.4,1H),:))
90 FORMAT(7X,12HDENOMINATOR ,3(2H (,E11.4,1H,,E11.4,1H),:)/19X,
1 3(2H (,E11.4,1H,,E11.4,1H),:))
100 FORMAT(/5X,1HI,9X,4HSIGX,8X,5HDILUT,10X,3HFIT)
110 FORMAT(11X,8HINFINITE,1P,E13.5)
120 FORMAT(//7H SIGX:,1P,7E11.4)
130 FORMAT(7H DILUT:,7E11.4/)
END
|