1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
|
!
!---------------------------------------------------------------------
!
!Purpose:
! Support module used to create a 2D geometry.
!
!Copyright:
! Copyright (C) 2001 Ecole Polytechnique de Montreal.
!
!Author(s):
! X. Warin
!
!---------------------------------------------------------------------
!
MODULE SAL_GEOMETRY_MOD
USE SAL_GEOMETRY_TYPES
USE PRECISION_AND_KINDS, ONLY : PDB, PI,TWOPI,HALFPI
USE SAL_NUMERIC_MOD, ONLY : SAL141
USE SALGET_FUNS_MOD
CONTAINS
SUBROUTINE SAL100(GG)
!
!---------------------------------------------------------------------
!
!Purpose:
! perform input data and first allocation for geometry OBJECT T_G_BASIC
!
!Parameters: input/output
! GG geometry basic information.
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : T_G_BASIC,TYPGEO,NBFOLD,EPS,ANGGEO, &
INDEX,KNDEX,PREC,ISPEC,LGSPEC
USE SAL_TRACKING_TYPES, ONLY : PRTIND
IMPLICIT NONE
TYPE(T_G_BASIC) :: GG
!*****
! local variable
! **************
INTEGER, PARAMETER :: N_DATAIN=25, N_DATARE=20
INTEGER, DIMENSION (N_DATAIN) :: DATAIN
REAL, DIMENSION (N_DATARE) :: DATARE
INTEGER :: OK
INTEGER, PARAMETER :: FOUT =6
!*****
! TYPGEO = type of geometry:
! NBFOLD = n in angle definition of rotation or symmetry geometry
! NB_NODE = number of nodes
! NBELEM = number of elements
!
CALL SALGET(DATAIN,6,F_GEO,FOUT0,'dimensions for geometry')
TYPGEO=DATAIN(1)
NBFOLD=DATAIN(2)
GG%NB_NODE=DATAIN(3)
GG%NB_ELEM=DATAIN(4)
GG%NB_MACRO=DATAIN(5)
GG%NB_FLUX=DATAIN(6)
ANGGEO=0.0D0
SELECT CASE(TYPGEO)
CASE(1)
IF(NBFOLD.EQ.3) THEN
ANGGEO=TWOPI/8.0D0 ! half diagonal symmetry case
ELSE
ANGGEO=TWOPI/NBFOLD
ENDIF
CASE(2)
ANGGEO=TWOPI/NBFOLD
CASE(5:6)
ANGGEO=HALFPI
CASE(7)
ANGGEO=PI*0.25
CASE(8:11)
ANGGEO=PI/3.
CASE(12)
ANGGEO=PI/6.
END SELECT
IF((PRTIND >= 1).AND.(TYPGEO.EQ.0)) THEN
WRITE(FOUT,*) 'SAL100: TYPGEO=',TYPGEO,' NBFOLD=',NBFOLD
ELSE IF(PRTIND >= 1) THEN
WRITE(FOUT,*) 'SAL100: TYPGEO=',TYPGEO,' NBFOLD=',NBFOLD, &
& ' ANGGEO=',ANGGEO,' radians'
ENDIF
LGSPEC=(TYPGEO/=0).AND.(NBFOLD==0)
IF(LGSPEC) THEN
IF(ISPEC==0) THEN
WRITE(*,*) 'SAL100: TYPGEO=',TYPGEO,' NBFOLD=',NBFOLD
CALL XABORT('SAL100: TISO option is incompatible with the surfacic file')
ENDIF
ELSE
IF(ISPEC==1) THEN
WRITE(*,*) 'SAL100: TYPGEO=',TYPGEO,' NBFOLD=',NBFOLD
CALL XABORT('SAL100: TSPC option is incompatible with the surfacic file')
ENDIF
ENDIF
!
!* read printing indexes for general domain data and topological deformations
! INDEX = to print general domain data
! KNDEX = to print motions of topological adjustment
! PREC = if 0 then read RPAR & BCDATA with e20.12)
CALL SALGET(DATAIN,3,F_GEO,FOUT0,'index kndex prec')
INDEX=DATAIN(1)
KNDEX=DATAIN(2)
PREC=DATAIN(3)
!
!* read epsilons for topological deformations
! EPS = if the distance of two ends of elements < eps,
! they will be united to one point
CALL SALGET(DATARE,1,F_GEO,FOUT0,'eps')
EPS=DATARE(1)
!
IF(PRTIND >= 1) THEN
WRITE(FOUT,'(//,5X,''domain checkout:'',/, &
& 5X,''elements are in contact for distance < '',1P,E12.4,//)') EPS
ENDIF
!
ALLOCATE(GG%NUM_MERGE(GG%NB_NODE),STAT =OK)
IF(OK /= 0) CALL XABORT('SAL100: failure to allocate NB_NODE')
CALL SALGET(GG%NUM_MERGE,GG%NB_NODE,F_GEO,FOUT0,'FLUX INDEX PER NODE')
IF(MAXVAL(GG%NUM_MERGE) /= GG%NB_FLUX) CALL XABORT('SAL100: inconsistent NBFLUX')
ALLOCATE(GG%NAME_MACRO(GG%NB_MACRO),STAT =OK)
IF(OK /= 0) CALL XABORT('SAL100: failure to allocate NB_MACRO')
CALL SALGET(GG%NAME_MACRO,GG%NB_MACRO,F_GEO,FOUT0,'NAMES OF MACROS')
ALLOCATE(GG%NUM_MACRO(GG%NB_FLUX))
CALL SALGET(GG%NUM_MACRO,GG%NB_FLUX,F_GEO,FOUT0,'macro order number per flux region')
!* do the work (SAL100_2 is called here!):
CALL SAL110(GG)
!
END SUBROUTINE SAL100
!
SUBROUTINE SAL110(GG)
!
!---------------------------------------------------------------------
!
!Purpose:
! constructs geometrical domain
!
!Parameters: input/output
! GG geometry basic information.
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : TYPGEO,NBFOLD,NIPAR,NRPAR,ALLSUR,NANIS,IC,ISPEC,ANGGEO
USE SAL_TRACKING_TYPES, ONLY : PRTIND
!****
IMPLICIT NONE
! in variable
! ************
TYPE(T_G_BASIC), INTENT(INOUT) :: GG
! local variable
! ***************
INTEGER :: ELEM,OK,I,TYPE
CHARACTER(LEN=4) :: HSYM
REAL(PDB),PARAMETER :: CONV=PI/180._PDB
INTEGER, PARAMETER :: FOUT =6
!****
! allocate node arrays
HSYM=' '
IF((TYPGEO==0).OR.((TYPGEO==6).AND.(NBFOLD==0))) THEN
CONTINUE
ELSE IF((TYPGEO==1).AND.(NBFOLD==3)) THEN
HSYM='QUAR'
ELSE IF(((TYPGEO==1).AND.(NBFOLD==8)).OR.((TYPGEO==7).AND.(NBFOLD==0))) THEN
HSYM='EIGH'
ELSE IF(((TYPGEO==1).AND.(NBFOLD==6)).OR.((TYPGEO==8).AND.(NBFOLD==0))) THEN
HSYM='SIXT'
ELSE IF(((TYPGEO==1).AND.(NBFOLD==12)).OR.((TYPGEO==12).AND.(NBFOLD==0))) THEN
HSYM='S30'
ELSE IF(((TYPGEO==1).AND.(NBFOLD==4)).OR.((TYPGEO==3).AND.(NBFOLD==0))) THEN
HSYM='SYME'
ELSE IF((TYPGEO==1).AND.(NBFOLD==2)) THEN
HSYM='SY1D'
ELSE IF(((TYPGEO==2).AND.(NBFOLD==6)).OR.((TYPGEO==10).AND.(NBFOLD==0))) THEN
HSYM='RA60'
ELSE IF((TYPGEO==5).AND.(NBFOLD==0)) THEN
HSYM='TRAN'
ELSE IF((TYPGEO==9).AND.(NBFOLD==0)) THEN
HSYM='TRAN'
ELSE IF(((TYPGEO==2).AND.(NBFOLD==3)).OR.(TYPGEO==11).AND.(NBFOLD==0)) THEN
HSYM='R120'
ELSE
WRITE(*,*) "TYPGEO=",TYPGEO," NBFOLD=",NBFOLD
CALL XABORT('SAL110: non supported type of symmetry')
ENDIF
ALLOCATE (GG%IPAR(NIPAR,GG%NB_ELEM), GG%RPAR(NRPAR,GG%NB_ELEM), STAT=OK)
IF(OK/=0) CALL XABORT('SAL110: not enough memory I,R')
!* read surfacic file
CALL SALINP(GG)
!
!* unite the ends of elements, redefine elements
CALL SAL128(GG%RPAR,GG%IPAR,GG%NB_ELEM)
!
IF((ISPEC==0).AND.(IC.EQ.4)) THEN
!* unfold domain
IF(HSYM=='QUAR') THEN
IF(PRTIND>0) WRITE(*,*) "SAL110: DIAG unfold"
IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
ANGGEO=2.0*ANGGEO
CALL SALFOLD_1('DIAG',GG)
ELSE IF(HSYM=='EIGH') THEN
IF(PRTIND>0) WRITE(*,*) "SAL110: DIAG + SYME unfold"
IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
ANGGEO=2.0*ANGGEO
CALL SALFOLD_1('DIAG',GG)
CALL SALFOLD_1('SYMX',GG)
CALL SALFOLD_1('SYMY',GG)
ELSE IF(HSYM=='SYME') THEN
IF(PRTIND>0) WRITE(*,*) "SAL110: SYME unfold"
IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
CALL SALFOLD_1('SYMX',GG)
CALL SALFOLD_1('SYMY',GG)
ELSE IF(HSYM=='SY1D') THEN
IF(PRTIND>0) WRITE(*,*) "SAL110: SY1D unfold"
IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
CALL SALFOLD_1('SYMX',GG)
ELSE IF(HSYM=='SIXT') THEN
IF(PRTIND>0) WRITE(*,*) "SAL110: SA60 unfold"
IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
CALL SALFOLD_1('SA60',GG)
CALL SALFOLD_1('SYMH',GG)
ELSE IF(HSYM=='S30') THEN
IF(PRTIND>0) WRITE(*,*) "SAL110: S30 unfold"
IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
CALL SALFOLD_1('S30 ',GG)
CALL SALFOLD_1('SB60',GG)
CALL SALFOLD_1('SYMX',GG)
ELSE IF(HSYM=='RA60') THEN
IF(PRTIND>0) WRITE(*,*) "SAL110: SR60 unfold with rotation"
IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
CALL SALFOLD_2('SR60',GG)
CALL SALFOLD_2('R180',GG)
ELSE IF(HSYM=='R120') THEN
IF(PRTIND>0) WRITE(*,*) "SAL110: SR120 unfold with rotation"
IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
CALL SALFOLD_2('R120',GG)
ELSE
IF(PRTIND>0) WRITE(*,*) "SAL110: no unfold"
ENDIF
IF((TYPGEO/=0).AND.(NBFOLD==0)) THEN
TYPGEO=6
ELSE
TYPGEO=0; NBFOLD=0
ENDIF
ENDIF
IF(PRTIND>0) WRITE(FOUT,*) 'SAL110: after unfolding -- NB_ELEM=',GG%NB_ELEM, &
& ' NB_PERIM=',GG%NBBCDA
IF(PRTIND>5) THEN
!* print surfacic file
WRITE(FOUT,'(5H--cut,75(1H-))')
WRITE(FOUT,'(5HBEGIN)')
WRITE(FOUT,'(42H* typgeo nbfold nbnode nbelem nbmacr nbreg)')
WRITE(FOUT,'(6I7)') TYPGEO,NBFOLD,GG%NB_NODE,GG%NB_ELEM,GG%NB_MACRO,GG%NB_NODE
WRITE(FOUT,'(20H* index kndex prec)')
WRITE(FOUT,'(4I7)') 0,0,1
WRITE(FOUT,'(18H* eps eps0)')
WRITE(FOUT,'(1P,2E18.9)') 1.0E-03,1.0E-05
WRITE(FOUT,'(20H* num_of_region/mesh)')
WRITE(FOUT,'(10I7)') (GG%NUM_MERGE(I),I=1,GG%NB_NODE)
WRITE(FOUT,'(13H* macro names)')
WRITE(FOUT,'(4(3x,a10,2x))') (GG%NAME_MACRO(I),I=1,GG%NB_MACRO)
WRITE(FOUT,'(35H* macro_order_index_per_flux_region)')
WRITE(FOUT,'(10I7)') (GG%NUM_MACRO(I),I=1,GG%NB_FLUX)
DO ELEM=1,GG%NB_ELEM
TYPE=GG%IPAR(1,ELEM)
WRITE(FOUT,'(7h elem =,I6)') ELEM
WRITE(FOUT,'(22H*type node- node+)')
WRITE(FOUT,'(3I6)') (GG%IPAR(I,ELEM),I=1,3)
WRITE(FOUT,'(63H*cx cy ex_or_R ey_or_theta1 theta2)')
IF(TYPE<=2) THEN
WRITE(FOUT,'(1P,5E18.9)') (GG%RPAR(I,ELEM),I=1,5)
ELSE IF(TYPE==3) THEN
WRITE(FOUT,'(1P,5E18.9)') (GG%RPAR(I,ELEM),I=1,3),GG%RPAR(4,ELEM)/CONV, &
(GG%RPAR(5,ELEM)-GG%RPAR(4,ELEM))/CONV
ENDIF
ENDDO
WRITE(FOUT,'(40H*defaul nbbcda allsur divsur ndivsur)')
WRITE(FOUT,'(1P,5I8)') GG%DEFAUL,GG%NBBCDA,ALLSUR,0,0
WRITE(FOUT,'(17H*albedo deltasur)')
WRITE(FOUT,'(1P,2E18.9)') GG%ALBEDO,0.0
DO ELEM=1,GG%NBBCDA
WRITE(FOUT,'(37H particular boundary condition number,i12)') ELEM
WRITE(FOUT,'(13H*type nber)')
WRITE(FOUT,'(1P,2I8)') GG%BCDATAREAD(ELEM)%SALTYPE,GG%BCDATAREAD(ELEM)%NBER
WRITE(FOUT,'(14H*elems(1,nber))')
WRITE(FOUT,'(1P,10I8)') (GG%BCDATAREAD(ELEM)%ELEMNB(I),I=1,GG%BCDATAREAD(ELEM)%NBER)
IF(GG%BCDATAREAD(ELEM)%SALTYPE==0) THEN
WRITE(FOUT,'(7H*albedo)')
WRITE(FOUT,'(1P,E18.9)') GG%BCDATAREAD(ELEM)%BCDATA(6)
ELSE
WRITE(FOUT,'(22H*cx cy angle)')
WRITE(FOUT,'(1P,3E18.9)') GG%BCDATAREAD(ELEM)%BCDATA(1:2),GG%BCDATAREAD(ELEM)%BCDATA(5)*180._PDB/PI
ENDIF
ENDDO
ENDIF
! allocate media and element arrays
ALLOCATE (GG%VOL_NODE(GG%NB_NODE),GG%PPERIM_NODE(GG%NB_NODE+1),GG%IBC2_ELEM(GG%NB_ELEM), &
GG%ISURF2_ELEM(GG%NB_ELEM),GG%MED(GG%NB_NODE), STAT=OK)
IF(OK/=0) CALL XABORT('SAL110: not enough memory VOL')
GG%ISURF2_ELEM(:GG%NB_ELEM)=0
!* 2D boundary conditions and macro contacts:
! - defines NB_BC2, NBSUR2
! - defines surface strctures for each 2D macro
! - defines perimeter structure for each 2D macro
! - read 2D boundary conditions
CALL SAL130(GG)
!
!* topological check
CALL SAL140(GG%NB_NODE,GG%RPAR,GG%IPAR,GG%PPERIM_NODE,GG%PERIM_NODE)
!
!* volumes, surfaces, put local nbers in node, and read media:
CALL SAL160(GG)
IF(PRTIND>5) THEN
WRITE(FOUT,'(12H* mil(nbreg))')
WRITE(FOUT,'(10I7)') (GG%MED(I),I=1,GG%NB_NODE)
WRITE(FOUT,'(3HEND)')
WRITE(FOUT,'(5H--cut,75(1H-))')
ENDIF
!
!* printout basic domain
CALL SAL170(GG)
!
END SUBROUTINE SAL110
!
SUBROUTINE SALINP(GG)
!
!---------------------------------------------------------------------
!
!Purpose:
! read surfacic file
!
!Parameters: input/output
! GG geometry descriptor
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : ALLSUR,PREC
!****
IMPLICIT NONE
! in variable
! ************
TYPE(T_G_BASIC), INTENT(INOUT) :: GG
!****
INTEGER, PARAMETER :: N_DATAIN=25
INTEGER, DIMENSION (N_DATAIN) :: DATAIN
INTEGER :: ELEM,I,TYPE,NBER
INTEGER, PARAMETER, DIMENSION(0:4) :: READ_BC_LEN=(/1,1,3,3,3/)
INTEGER, PARAMETER :: FOUT =6
REAL(PDB) :: ANGLE,BCDATA_TDT(3)
!
!* read element data
DO ELEM=1,GG%NB_ELEM
CALL SAL126(GG%RPAR(:,ELEM),GG%IPAR(:,ELEM))
ENDDO
!* read
! DEFAUL = default bc condition
! 0 = all external surfaces are isotropically reflected
! with the same ALBEDO = ALBED0
! 1 = all external surfaces are reflected
! NBBCDA = number of groups of bc conditions
!
CALL SALGET(DATAIN,3,F_GEO,FOUT0,'general bc data')
GG%DEFAUL=DATAIN(1)
GG%NBBCDA=DATAIN(2)
ALLSUR=DATAIN(3)
! we can define only two default bc's
IF(GG%DEFAUL>4.OR.GG%DEFAUL<0) THEN
WRITE(FOUT,'(8H defaul=,I5)') GG%DEFAUL
CALL XABORT('SALINP: wrong default bc type')
ENDIF
!* read albedo : defaul bcdata
CALL SALGET(GG%ALBEDO,F_GEO,FOUT0,PREC,'GENERAL ALBEDO')
!
!* read detailed bcdata if required (motions)
LBCDIAG=.FALSE.
IF(GG%NBBCDA>0)THEN
ALLOCATE(GG%BCDATAREAD(GG%NBBCDA))
DO I=1,GG%NBBCDA
GG%BCDATAREAD(I)%BCDATA(:6)=0.0
CALL SALGET(DATAIN,2,F_GEO,FOUT0,'SPECIFIC BC: TYPE NBER')
TYPE=DATAIN(1)
NBER=DATAIN(2)
GG%BCDATAREAD(I)%SALTYPE=TYPE
GG%BCDATAREAD(I)%NBER=NBER
IF(TYPE>5.OR.TYPE<0) CALL XABORT('SALINP: wrong bc type')
IF(NBER>GG%NB_ELEM) CALL XABORT('SALINP: bc def exceeds nber of elements')
!
! read order numbers of elements affected
ALLOCATE(GG%BCDATAREAD(I)%ELEMNB(NBER))
CALL SALGET(GG%BCDATAREAD(I)%ELEMNB,NBER,F_GEO,FOUT0,'BC ELEMENTS')
! read bc motion
CALL SALGET(BCDATA_TDT,READ_BC_LEN(TYPE),F_GEO,FOUT0,PREC,'data for specific bc condition')
IF(READ_BC_LEN(TYPE).EQ.1) THEN
GG%BCDATAREAD(I)%BCDATA(1:5)=0._PDB
GG%BCDATAREAD(I)%BCDATA(6)=BCDATA_TDT(1)
ELSE
GG%BCDATAREAD(I)%BCDATA(1:2)=BCDATA_TDT(1:2)
ANGLE=BCDATA_TDT(3)*PI/180._PDB
GG%BCDATAREAD(I)%BCDATA(3)=COS(ANGLE)
GG%BCDATAREAD(I)%BCDATA(4)=SIN(ANGLE)
GG%BCDATAREAD(I)%BCDATA(5)=ANGLE
GG%BCDATAREAD(I)%BCDATA(6)=1._PDB
LBCDIAG=LBCDIAG.OR.((GG%BCDATAREAD(I)%BCDATA(1)==0._PDB).AND.(GG%BCDATAREAD(I)%BCDATA(2)==0._PDB) &
.AND.(GG%BCDATAREAD(I)%BCDATA(5)==PI/4._PDB))
ENDIF
ENDDO
ENDIF
END SUBROUTINE SALINP
!
SUBROUTINE SAL126(RPAR,IPAR)
!
!---------------------------------------------------------------------
!
!Purpose:
! reads one element data
!
!Parameters: input/output
! RPAR floating point geometry descriptors
! IPAR integer geometry descriptors
!
!---------------------------------------------------------------------
!
!****
USE SAL_GEOMETRY_TYPES, ONLY : PREC,G_ELE_TYPE
!****
IMPLICIT NONE
! in variable
INTEGER, INTENT(OUT), DIMENSION(:) :: IPAR
REAL(PDB), INTENT(INOUT), DIMENSION(:) :: RPAR
!****
! local variable
INTEGER :: TYPE,NBER,IAUX
REAL(PDB) :: PHI1,PHI2,ANGMAX,DELPHI
!****
! IPAR(1) = 1 (segment), 2 (circle), 3(arc of circle)
! IPAR(2) = order nber of node in - side
! IPAR(3) = order nber of node in + side
!
!* read integer element data
CALL SALGET(IPAR,3,F_GEO,FOUT0,'integer descriptors')
TYPE=IPAR(1)
!
! ** segment:
! R = C+T*F with T in (0,1)
! RPAR(1~5) = CX CY FX FY F
!
! ** arc of circle:
! R = C+R*F(THETA) with
! THETA in (THETA1 < THETA2)
! with THETA1 in (0,360)
! RPAR(1~5) = CX CY R THETA1 THETA2 (in degrees)
!
!* read real element data
IF(TYPE == G_ELE_TYPE(1)) THEN
NBER=4
ELSE IF(TYPE == G_ELE_TYPE(2)) THEN
NBER=3
ELSE IF(TYPE == G_ELE_TYPE(3)) THEN
NBER=5
ANGMAX=360._PDB
ELSE
WRITE(FOUT0,'(1X,''==> SAL126: unknown type '',I3)') TYPE
CALL XABORT('SAL126: unknown element type')
ENDIF
CALL SALGET(RPAR,NBER,F_GEO,FOUT0,PREC,'real descriptors')
IF(TYPE == G_ELE_TYPE(1)) THEN
! segment: compute length
RPAR(5)=SQRT(RPAR(3)*RPAR(3)+RPAR(4)*RPAR(4))
RPAR(6)=0._PDB
ELSE IF(TYPE == G_ELE_TYPE(2)) THEN
! full circle: set angles
RPAR(4)=0._PDB
RPAR(5)=TWOPI
RPAR(6)=0._PDB
ELSE IF((TYPE == G_ELE_TYPE(3)).OR.(TYPE == G_ELE_TYPE(4))) THEN
! check angles
PHI1=RPAR(NBER-1)
DELPHI=RPAR(NBER)
! order angles in increasing values:
IF(DELPHI>0._PDB)THEN
IF(DELPHI>ANGMAX)THEN
WRITE(FOUT0,'(1X,''==> SAL126: DELPHI = '',1P,E12.4, &
&'' > '',1P,E12.4,'' FOR TYPE'',I3)')DELPHI,ANGMAX,TYPE
CALL XABORT('SAL126: invalid value of delphi')
ENDIF
PHI2=PHI1+DELPHI
ELSE
IF(DELPHI<-ANGMAX)THEN
WRITE(FOUT0,'(1X,''==> SAL126: DELPHI = '',1P,E12.4, &
&'' < '',1P,E12.4,'' FOR TYPE'',I3)')DELPHI,-ANGMAX,TYPE
CALL XABORT('SAL126: invalid value of delphi')
ENDIF
PHI2=PHI1
PHI1=PHI1+DELPHI
ENDIF
IF(TYPE==G_ELE_TYPE(3))THEN
! arc of circle: put phi1 within 0 and 360.
IF(PHI1>360._PDB)THEN
IAUX=INT(PHI1/360._PDB)
DELPHI=360._PDB*IAUX
PHI2=PHI2-DELPHI
PHI1=PHI1-DELPHI
ELSEIF(PHI1<0._PDB)THEN
IAUX=INT((-PHI1+1.D-7)/360._PDB)+1
DELPHI=360._PDB*IAUX
PHI2=PHI2+DELPHI
PHI1=PHI1+DELPHI
ENDIF
RPAR(6)=0._PDB
ELSE
CALL XABORT('SAL126: unsupported option')
ENDIF
! convert to radians
RPAR(NBER-1)=PHI1*(TWOPI/360._PDB)
RPAR(NBER)=PHI2*(TWOPI/360._PDB)
ENDIF
!
END SUBROUTINE SAL126
!
SUBROUTINE SAL128(RPAR,IPAR,NB_ELEM)
!
!---------------------------------------------------------------------
!
!Purpose:
! create library of ends of elements and redefine element discriptors
!
!Parameters: input/output
! RPAR floating point geometry descriptors
! IPAR integer geometry descriptors
! NB_ELEM number of surfacic elements
!
!---------------------------------------------------------------------
!
!****
USE SAL_GEOMETRY_TYPES, ONLY : G_ELE_TYPE,EPS,KNDEX,TYPGEO
! in variable
!************
IMPLICIT NONE
INTEGER, INTENT(IN), DIMENSION(:,:) :: IPAR
REAL(PDB), INTENT(INOUT), DIMENSION(:,:) :: RPAR
INTEGER , INTENT(IN) :: NB_ELEM
! local variable
! ***************
REAL(PDB), DIMENSION (:,:), ALLOCATABLE :: POINT ! coordinates of the ends of elements
INTEGER, DIMENSION (:,:), ALLOCATABLE :: ELEM_NEW ! point nbers of two ends of elements
!****
! NN = total number of points
! NBP = count of number of ends having the same coordinates
INTEGER :: TYPE,NN,ELEM,I,P,POS,I1,I2,OK
REAL(PDB) :: X(2),Y(2),D,DX,DY
REAL :: EPS2
LOGICAL :: LGONE
INTEGER, DIMENSION(NB_ELEM) :: NBP
INTEGER, PARAMETER :: FOUT =6
!****
! - POINT(2,NB_ELEM) = coordinates of the ends of elements
! - ELEM_NEW(2,NB_ELEM) = point nbers of two ends of elements
!
ALLOCATE(POINT(2,NB_ELEM),ELEM_NEW(2,NB_ELEM),STAT=OK)
IF(OK/=0) CALL XABORT('SAL100_3_1: not enough memory I,CH')
EPS2=EPS*EPS
IF(KNDEX/=0)WRITE(FOUT,'(//,&
&" reunite the ends of elements of distance less than ",E13.4)') EPS
!
!* nn counts the nber of points
NBP(1:NB_ELEM)=0
NN=0
DO ELEM=1,NB_ELEM
TYPE=IPAR(1,ELEM)
IF(TYPE/=G_ELE_TYPE(2)) THEN
DO I=1,2
! get coordinates of end
CALL SAL141(TYPE,RPAR(:,ELEM),X(I),Y(I),I)
! find if there is a defined neighbouring point
LGONE=.FALSE.
DO P=1,NN
DX=POINT(1,P)-X(I)
DY=POINT(2,P)-Y(I)
D=DX*DX+DY*DY
IF(D<EPS2) THEN
LGONE=.TRUE.
POS=P
EXIT
ENDIF
ENDDO
IF(LGONE) THEN
! choose average value
X(I)=(X(I)+POINT(1,POS)*NBP(POS))/REAL(NBP(POS)+1)
Y(I)=(Y(I)+POINT(2,POS)*NBP(POS))/REAL(NBP(POS)+1)
ELSE
! add points
NN=NN+1
IF(NN > NB_ELEM) CALL XABORT('SAL128: point overflow')
POS=NN
ENDIF
POINT(1,POS)=X(I)
POINT(2,POS)=Y(I)
NBP(POS)=NBP(POS)+1
! define the end of element
ELEM_NEW(I,ELEM)=POS
ENDDO
ELSE
ELEM_NEW(1:2,ELEM)=0
ENDIF
ENDDO
!* adjust points on the axes
SELECT CASE(TYPGEO)
CASE(5:6)
CALL SAL128_3(NN,POINT,EPS,EPS2)
CASE(7)
CALL SAL128_4(NN,POINT,EPS,EPS2)
CASE(8,12)
CALL SAL128_5(NN,POINT,EPS,EPS2)
CASE(9)
CALL SAL128_6(NN,POINT,EPS,EPS2)
CASE(10)
CALL SAL128_7(NN,POINT,EPS,EPS2)
CASE(11)
CALL SAL128_8(NN,POINT,EPS,EPS2)
END SELECT
!* redefine the elements in rpar
IF(KNDEX/=0)WRITE(FOUT,'(/," redefine elements : ",/)')
DO ELEM=1,NB_ELEM
TYPE=IPAR(1,ELEM)
IF(TYPE/=G_ELE_TYPE(2)) THEN
I1=ELEM_NEW(1,ELEM)
I2=ELEM_NEW(2,ELEM)
CALL SAL129(POINT(1,I1),POINT(2,I1),POINT(1,I2),POINT(2,I2), &
TYPE,RPAR(:,ELEM),ELEM,KNDEX,FOUT)
ENDIF
ENDDO
!
DEALLOCATE(POINT,ELEM_NEW)
!
END SUBROUTINE SAL128
!
SUBROUTINE SAL128_3(NN,POINT,EPS,EPS2)
!
!---------------------------------------------------------------------
!
!Purpose:
! process retangular geometry with translation or symmetry boundary condition
! (TYPGEO=5,6): adjusts points on the axes, computes the lengths of the
! retangle sides; in case of with translation,element lengths on the opposite
! axes will be adjusted to be the same
!
!Parameters: input
! NN total number of points
! EPS when distance of points to axes less than EPS, displace
! the points onto the axes
! EPS2 variable set to EPS*EPS
!
!Parameters: input/output
! POINT coordinates of points
!
!---------------------------------------------------------------------
!
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_GEOMETRY_TYPES, ONLY : TYPGEO,KNDEX,LX=>LENGTHX,LY=>LENGTHY
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NN
REAL, INTENT(IN) :: EPS,EPS2
REAL(PDB), INTENT(INOUT), DIMENSION(:,:) :: POINT
! DIMENSION POINT(2,NN)
!****
INTEGER :: NP,NAXIS,I,J,K,M,P,IPOINT(4,NN),BP(4),IP(4)
LOGICAL :: LGADJUST
REAL(PDB) :: D,AUX,EX(4),EY(4),DIS(4),AX(4),AY(4),D_AXIS(4,NN)
INTEGER, PARAMETER :: FOUT =6
!****
! flag to adjust the element lengths on the opposite axes
LGADJUST=TYPGEO==5
! compute sides of the rectangle
LX=0.; LY=0.
DO P=1,NN
IF(ABS(POINT(1,P))<EPS) THEN
IF(LY<POINT(2,P)) LY=POINT(2,P)
ENDIF
IF(ABS(POINT(2,P))<EPS) THEN
IF(LX<POINT(1,P)) LX=POINT(1,P)
ENDIF
ENDDO
!* axis directions and their distance to (0,0)
NAXIS=4
EX(1)=1.; EY(1)=0.; DIS(1)=0.
EX(2)=1.; EY(2)=0.; DIS(2)=-LY
EX(3)=0.; EY(3)=1.; DIS(3)=0.
EX(4)=0.; EY(4)=1.; DIS(4)=LX
NP=4
AX(1)=0.; AY(1)=0.
AX(2)=0.; AY(2)=LY
AX(3)=LX; AY(3)=0.
AX(4)=LX; AY(4)=LY
! beginning point of the axes
IF(LGADJUST) THEN
! axis numbering:
! M=2
! ************
! * *
! M=3 * * M=4
! ************
! M=1
!
BP(1)=1; BP(2)=2; BP(3)=1; BP(4)=3
IP=0
ENDIF
ITER0:DO P=1,NN
DO I=1,NP
! if it is the 4 corners of the rectangle
D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
IF(D.LT.EPS2) THEN
! move point to the corners
POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
IF(LGADJUST) THEN
! put distance to the axis origin
SELECT CASE(I)
CASE(2)
! end of axis 3,keep its distance and number
IP(3)=IP(3)+1
D_AXIS(3,IP(3))=AY(I)
IPOINT(3,IP(3))=P
CASE(3)
! end of axis 1,keep its distance and number
IP(1)=IP(1)+1
D_AXIS(1,IP(1))=AX(I)
IPOINT(1,IP(1))=P
CASE(4)
! end of axes 2&4,keep its distance and number
IP(2)=IP(2)+1
D_AXIS(2,IP(2))=AX(I)
IPOINT(2,IP(2))=P
IP(4)=IP(4)+1
D_AXIS(4,IP(4))=AY(I)
IPOINT(4,IP(4))=P
END SELECT
ENDIF
CYCLE ITER0
ENDIF
ENDDO
DO I=1,NAXIS
! distance to the axis
D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
! when aux>0,the point is near the half axis
AUX=POINT(1,P)*EX(I)+POINT(2,P)*EY(I)
IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
! move point to the axis
POINT(1,P)=POINT(1,P)-D*EY(I)
POINT(2,P)=POINT(2,P)+D*EX(I)
IF(LGADJUST) THEN
! compute distance to the axis origin
D=SQRT((POINT(1,P)-AX(BP(I)))**2+(POINT(2,P)-AY(BP(I)))**2)
IP(I)=IP(I)+1
D_AXIS(I,IP(I))=D
IPOINT(I,IP(I))=P
ENDIF
CYCLE ITER0
ENDIF
ENDDO
ENDDO ITER0
!
IF(LGADJUST) THEN
DO I=1,NAXIS,2
IF(IP(I)/=IP(I+1)) &
CALL XABORT('SAL128_3: axial points nber not the same,axis')
! sort the 'd_axis' table
DO J=I,I+1
DO P=1,IP(J)
DO K=P+1,IP(J)
IF(D_AXIS(J,P)>D_AXIS(J,K)) THEN
D=D_AXIS(J,P)
D_AXIS(J,P)=D_AXIS(J,K)
D_AXIS(J,K)=D
M=IPOINT(J,P)
IPOINT(J,P)=IPOINT(J,K)
IPOINT(J,K)=M
ENDIF
ENDDO
ENDDO
ENDDO
DO P=1,IP(I)
IF(ABS(D_AXIS(I,P)-D_AXIS(I+1,P))>EPS) THEN
IF(KNDEX/=0) &
WRITE(FOUT,'(" warning: too great axial length difference",&
& 2(/,2X,"axis = ",I3," point = ",I3," d = ",E13.6))')&
I,P,D_AXIS(I,P),I+1,P,D_AXIS(I+1,P)
ENDIF
D=(D_AXIS(I,P)+D_AXIS(I+1,P))*0.5
DO J=I,I+1
K=IPOINT(J,P)
POINT(1,K)=D*EX(J)+AX(BP(J))
POINT(2,K)=D*EY(J)+AY(BP(J))
ENDDO
ENDDO
ENDDO
ENDIF
!
END SUBROUTINE SAL128_3
!
SUBROUTINE SAL128_4(NN,POINT,EPS,EPS2)
!
!---------------------------------------------------------------------
!
!Purpose:
! process a 1/8 square geometry (typgeo=7): adjusts points on the axes,
! computes the square side length
!
!Parameters: input
! NN total number of points
! EPS when distance of points to axes less than EPS, displace
! the points onto the axes
! EPS2 variable set to EPS*EPS
!
!Parameters: input/output
! POINT coordinates of points
!
!---------------------------------------------------------------------
!
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_GEOMETRY_TYPES, ONLY : ANGGEO,KNDEX,LX=>LENGTHX,LY=>LENGTHY
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NN
REAL, INTENT(IN) :: EPS,EPS2
REAL(PDB), INTENT(INOUT), DIMENSION(:,:) :: POINT
!****
INTEGER :: NP,NAXIS,I,P
REAL(PDB) :: D,AUX,EX(3),EY(3),DIS(3),AX(3),AY(3)
INTEGER, PARAMETER :: FOUT =6
!****
! compute the square sides
LX=0.; LY=0.
DO P=1,NN
IF(LY<POINT(2,P)) LY=POINT(2,P)
IF(LX<POINT(1,P)) LX=POINT(1,P)
ENDDO
IF(KNDEX>0.AND.ABS(LY-LX)>EPS) &
WRITE(FOUT,'(" warning: the square sides are not the same!", &
& " lx = ",E12.4," ly = ",E12.4)')LX,LY
LX=(LX+LY)*0.5
LY=LX
!* adjust points on the axes
NAXIS=3
! axis directions
EX(1)=1.; EY(1)=0.; DIS(1)=0.
EX(2)=COS(ANGGEO); EY(2)=SIN(ANGGEO); DIS(2)=0.
EX(3)=0.; EY(3)=1.; DIS(3)=LX
NP=3
! axis ends
AX(1)=0.; AY(1)=0.
AX(2)=LX; AY(2)=0.
AX(3)=LX; AY(3)=LY
ITER0:DO P=1,NN
DO I=1,NP
D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
IF(D.LT.EPS2) THEN
! move point to the axis origin
POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
CYCLE ITER0
ENDIF
ENDDO
DO I=1,NAXIS
! distance to the axis
D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
! when aux>0,the point is near the half axis
AUX=POINT(1,P)*EX(I)+POINT(2,P)*EY(I)
IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
! move point to the axis
POINT(1,P)=POINT(1,P)-D*EY(I)
POINT(2,P)=POINT(2,P)+D*EX(I)
CYCLE ITER0
ENDIF
ENDDO
ENDDO ITER0
!
END SUBROUTINE SAL128_4
!
SUBROUTINE SAL128_5(NN,POINT,EPS,EPS2)
!
!---------------------------------------------------------------------
!
!Purpose:
! process a trianglar geometry (TYPGEO=8 or 12) with specular reflection:
! adjusts points on the axes, computes the triangular side length
!
!Parameters: input
! NN total number of points
! EPS when distance of points to axes less than EPS, displace
! the points onto the axes
! EPS2 variable set to EPS*EPS
!
!Parameters: input/output
! POINT coordinates of points
!
!---------------------------------------------------------------------
!
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_GEOMETRY_TYPES, ONLY : ANGGEO,KNDEX,LX=>LENGTHX,LY=>LENGTHY
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NN
REAL, INTENT(IN) :: EPS,EPS2
REAL(PDB), INTENT(INOUT), DIMENSION(:,:) :: POINT
!****
INTEGER :: NP,NAXIS,I,P
REAL(PDB) :: D,AUX,EX(3),EY(3),DIS(3),AX(3),AY(3)
INTEGER, PARAMETER :: FOUT =6
!****
! compute the triangular side
LX=0.; LY=0.
DO P=1,NN
IF(ABS(POINT(2,P))<EPS) THEN
IF(LX<POINT(1,P)) LX=POINT(1,P)
ENDIF
IF(LY<POINT(2,P)) LY=POINT(2,P)
ENDDO
IF(KNDEX>0.AND.ABS(LY-LX*SIN(ANGGEO))>EPS) &
WRITE(FOUT,'(" warning: h is different from a*sin(anggeo)!", &
& " a = ",E12.4," h = ",E12.4)')LX,LY
! adjust h according a
LY=LX*SIN(ANGGEO)
!* adjust points on the axes
NAXIS=3
! axis directions
EX(1)=1.; EY(1)=0.; DIS(1)=0.
EX(2)=COS(ANGGEO); EY(2)=SIN(ANGGEO); DIS(2)=0.
EX(3)=COS(ANGGEO*2.); EY(3)=SIN(ANGGEO*2.); DIS(3)=LY
NP=3
! axis ends
AX(1)=0.; AY(1)=0.
AX(2)=LX; AY(2)=0.
AX(3)=LX*0.5; AY(3)=LY
ITER0:DO P=1,NN
DO I=1,NP
D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
IF(D.LT.EPS2) THEN
! move point to the axis origin
POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
CYCLE ITER0
ENDIF
ENDDO
DO I=1,NAXIS
! distance to the axis
D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
! when aux>0,the point is near the half axis
AUX=POINT(1,P)*EX(I)+POINT(2,P)*EY(I)
IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
! move point to the axis
POINT(1,P)=POINT(1,P)-D*EY(I)
POINT(2,P)=POINT(2,P)+D*EX(I)
CYCLE ITER0
ENDIF
ENDDO
ENDDO ITER0
!
END SUBROUTINE SAL128_5
!
SUBROUTINE SAL128_6(NN,POINT,EPS,EPS2)
!
!---------------------------------------------------------------------
!
!Purpose:
! process a hexagonal geometry with translations on all sides (typgeo=9):
! adjusts points on the axes, computes the lengths of hexagon sides;
! element lengths on the opposite axes will be adjusted to be the same
!
!Parameters: input
! NN total number of points
! EPS when distance of points to axes less than EPS, displace
! the points onto the axes
! EPS2 variable set to EPS*EPS
!
!Parameters: input/output
! POINT coordinates of points
!
!---------------------------------------------------------------------
!
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_GEOMETRY_TYPES, ONLY : ANGGEO,KNDEX,LX=>LENGTHX,LY=>LENGTHY
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NN
REAL, INTENT(IN) :: EPS,EPS2
REAL(PDB), INTENT(INOUT), DIMENSION(:,:) :: POINT
!****
INTEGER :: NP,NAXIS,I,J,K,M,P,IPOINT(6,NN),BP(6),IP(6)
REAL(PDB) :: D,AUX,EX(6),EY(6),DIS(6),AX(6),AY(6),D_AXIS(6,NN)
INTEGER, PARAMETER :: FOUT =6
!****
! compute sides of the hexagon: LX=SIDE LENGTH,LY=LX*SIN(A)
LX=0.; LY=0.
DO P=1,NN
IF(ABS(POINT(2,P))<EPS) THEN
IF(LX<POINT(1,P)) LX=POINT(1,P)
ENDIF
IF(LY<POINT(2,P)) LY=POINT(2,P)
ENDDO
IF(KNDEX>0.AND.ABS(LY-LX*SIN(ANGGEO))>EPS) &
WRITE(FOUT,'(" warning: h is different from A*SIN(ANGGEO)!", &
& " a = ",E12.4," h = ",E12.4)')LX,LY
!* axis directions and their distance to (0,0)
NAXIS=6
EX(1)=1.; EY(1)=0.; DIS(1)=LY
EX(2)=1.; EY(2)=0.; DIS(2)=-LY
EX(3)=COS(ANGGEO); EY(3)=SIN(ANGGEO); DIS(3)=LY
EX(4)=EX(3); EY(4)=EY(3); DIS(4)=-LY
EX(5)=COS(2.*ANGGEO); EY(5)=SIN(2.*ANGGEO); DIS(5)=LY
EX(6)=EX(5); EY(6)=EY(5); DIS(6)=-LY
NP=6
AX(1)=-LX*0.5; AY(1)=-LY
AX(2)=LX*0.5; AY(2)=-LY
AX(3)=LX; AY(3)=0.
AX(4)=LX*0.5; AY(4)=LY
AX(5)=-LX*0.5; AY(5)=LY
AX(6)=-LX; AY(6)=0.
! axis numbering:
! M=2
! *****
! M=4 * * M=5
! * * *
! M=6 * * M=3
! *****
! M=1
!
BP(1)=1; BP(2)=5; BP(3)=2; BP(4)=6; BP(5)=3; BP(6)=1
IP=0
ITER0:DO P=1,NN
DO I=1,NP
! if it is the 6 corners of the hexagon
D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
IF(D.LT.EPS2) THEN
! move point to the corner
POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
! put distance to the axis origin
J=0
SELECT CASE(I)
CASE(1)
CYCLE ITER0
CASE(2)
! END OF AXIS 1
J=1
CASE(3)
! END OF AXIS 3
J=3
CASE(4)
! END OF AXES 2&5
J=2
CASE(5)
! END OF AXIS 4
J=4
CASE(6)
! END OF AXIS 6
J=6
END SELECT
! keep its distance and number
10 IP(J)=IP(J)+1
D_AXIS(J,IP(J))=LX
IPOINT(J,IP(J))=P
IF(J==2) THEN
J=5
GOTO 10
ENDIF
CYCLE ITER0
ENDIF
ENDDO
DO I=1,NAXIS
! distance to the axis
D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
! when aux>0,the point is near the half axis
AUX=(POINT(1,P)-AX(BP(I)))*EX(I)+(POINT(2,P)-AY(BP(I)))*EY(I)
IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
! move point to the axis
POINT(1,P)=POINT(1,P)-D*EY(I)
POINT(2,P)=POINT(2,P)+D*EX(I)
! compute distance to the axis origin
D=SQRT((POINT(1,P)-AX(BP(I)))**2+(POINT(2,P)-AY(BP(I)))**2)
IP(I)=IP(I)+1
D_AXIS(I,IP(I))=D
IPOINT(I,IP(I))=P
CYCLE ITER0
ENDIF
ENDDO
ENDDO ITER0
!
DO I=1,NAXIS,2
IF(IP(I)/=IP(I+1)) &
CALL XABORT('SAL128_6: axial points nber not the same,axis')
! sort the 'd_axis' table
DO J=I,I+1
DO P=1,IP(J)
DO K=P+1,IP(J)
IF(D_AXIS(J,P)>D_AXIS(J,K)) THEN
D=D_AXIS(J,P)
D_AXIS(J,P)=D_AXIS(J,K)
D_AXIS(J,K)=D
M=IPOINT(J,P)
IPOINT(J,P)=IPOINT(J,K)
IPOINT(J,K)=M
ENDIF
ENDDO
ENDDO
ENDDO
DO P=1,IP(I)
IF(ABS(D_AXIS(I,P)-D_AXIS(I+1,P))>EPS) THEN
IF(KNDEX/=0) &
WRITE(FOUT,'(" warning: too great axial length difference",&
& 2(/,2X,"axis = ",I3," point = ",I3," d = ",E13.6))')&
I,P,D_AXIS(I,P),I+1,P,D_AXIS(I+1,P)
ENDIF
D=(D_AXIS(I,P)+D_AXIS(I+1,P))*0.5
DO J=I,I+1
K=IPOINT(J,P)
POINT(1,K)=D*EX(J)+AX(BP(J))
POINT(2,K)=D*EY(J)+AY(BP(J))
ENDDO
ENDDO
ENDDO
!
END SUBROUTINE SAL128_6
!
SUBROUTINE SAL128_7(NN,POINT,EPS,EPS2)
!
!---------------------------------------------------------------------
!
!Purpose:
! process an isocel trianglar geometry (TYPGEO=10) with RA60 rotation:
! adjusts points on the axes, computes the triangular side length
!
!Parameters: input
! NN total number of points
! EPS when distance of points to axes less than EPS, displace
! the points onto the axes
! EPS2 variable set to EPS*EPS
!
!Parameters: input/output
! POINT coordinates of points
!
!---------------------------------------------------------------------
!
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_GEOMETRY_TYPES, ONLY : ANGGEO,LX=>LENGTHX,LY=>LENGTHY
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NN
REAL, INTENT(IN) :: EPS,EPS2
REAL(PDB), INTENT(INOUT), DIMENSION(:,:) :: POINT
!****
INTEGER :: NP,NAXIS,I,P
REAL(PDB) :: D,AUX,EX(3),EY(3),DIS(3),AX(3),AY(3)
INTEGER, PARAMETER :: FOUT =6
!****
! compute the triangular side
LX=0.; LY=0.
DO P=1,NN
IF(ABS(POINT(2,P))<EPS) THEN
IF(LX<POINT(1,P)) LX=POINT(1,P)
ENDIF
IF(LY<POINT(2,P)) LY=POINT(2,P)
ENDDO
IF(KNDEX>0.AND.ABS(LY-LX*SIN(ANGGEO))>EPS) &
WRITE(FOUT,'(" warning: h is different from a*sin(anggeo)!", &
& " a = ",E12.4," h = ",E12.4)')LX,LY
! adjust h according a
LY=LX*SIN(ANGGEO)
!* adjust points on the axes
NAXIS=3
! axis directions
EX(1)=1.; EY(1)=0.; DIS(1)=0.
EX(2)=COS(ANGGEO); EY(2)=SIN(ANGGEO); DIS(2)=0.
EX(3)=COS(ANGGEO*2.); EY(3)=SIN(ANGGEO*2.); DIS(3)=LY
NP=3
! axis ends
AX(1)=0.; AY(1)=0.
AX(2)=LX; AY(2)=0.
AX(3)=LX*0.5; AY(3)=LY
ITER0:DO P=1,NN
DO I=1,NP
D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
IF(D.LT.EPS2) THEN
! move point to the axis origin
POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
CYCLE ITER0
ENDIF
ENDDO
DO I=1,NAXIS
! distance to the axis
D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
! when aux>0,the point is near the half axis
AUX=POINT(1,P)*EX(I)+POINT(2,P)*EY(I)
IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
! move point to the axis
POINT(1,P)=POINT(1,P)-D*EY(I)
POINT(2,P)=POINT(2,P)+D*EX(I)
CYCLE ITER0
ENDIF
ENDDO
ENDDO ITER0
!
END SUBROUTINE SAL128_7
!
SUBROUTINE SAL128_8(NN,POINT,EPS,EPS2)
!
!---------------------------------------------------------------------
!
!Purpose:
! process R120 lozenge geometry (TYPGEO=11): adjusts points on the axes,
! computes the lozenge side length
!
!Parameters: input
! NN total number of points
! EPS when distance of points to axes less than EPS, displace
! the points onto the axes
! EPS2 variable set to EPS*EPS
!
!Parameters: input/output
! POINT coordinates of points
!
!---------------------------------------------------------------------
!
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_GEOMETRY_TYPES, ONLY : ANGGEO,LX=>LENGTHX,LY=>LENGTHY
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NN
REAL, INTENT(IN) :: EPS,EPS2
REAL(PDB), INTENT(INOUT), DIMENSION(:,:) :: POINT
!****
INTEGER :: NP,NAXIS,I,P
REAL(PDB) :: D,AUX,EX(4),EY(4),DIS(4),AX(4),AY(4)
INTEGER, PARAMETER :: FOUT =6
!****
! compute the triangular side
LX=0.; LY=0.
DO P=1,NN
IF(ABS(POINT(2,P))<EPS) THEN
IF(LX<POINT(1,P)) LX=POINT(1,P)
ENDIF
IF(LY<POINT(2,P)) LY=POINT(2,P)
ENDDO
IF(ABS(LY-LX*SIN(ANGGEO))>EPS) &
WRITE(FOUT,'(" warning: h is different from a*sin(anggeo)!", &
& " a = ",E12.4," h = ",E12.4)') LX,LY
! adjust h according to base
LY=LX*SIN(ANGGEO)
!* adjust points on the axes
NAXIS=4
! axis directions
EX(1)=1.; EY(1)=0.; DIS(1)=0.
EX(2)=1.; EY(2)=0.; DIS(2)=-LY
EX(3)=COS(ANGGEO); EY(3)=SIN(ANGGEO); DIS(3)=0.
EX(4)=COS(ANGGEO); EY(4)=SIN(ANGGEO); DIS(4)=LY
NP=4
! axis ends
AX(1)=0. ; AY(1)=0.
AX(2)=LX*0.5; AY(2)=LY
AX(3)=LX ; AY(3)=0.
AX(4)=LX*1.5; AY(4)=LY
ITER0:DO P=1,NN
DO I=1,NP
D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
IF(D.LT.EPS2) THEN
! move point to the axis origin
POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
CYCLE ITER0
ENDIF
ENDDO
DO I=1,NAXIS
! distance to the axis
D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
! when aux>0,the point is near the half axis
AUX=POINT(1,P)*EX(I)+POINT(2,P)*EY(I)
IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
! move point to the axis
POINT(1,P)=POINT(1,P)-D*EY(I)
POINT(2,P)=POINT(2,P)+D*EX(I)
CYCLE ITER0
ENDIF
ENDDO
ENDDO ITER0
!
END SUBROUTINE SAL128_8
!
SUBROUTINE SAL129(X1,Y1,X2,Y2,TYPE,RPAR,II,KNDEX,FOUT)
!
!---------------------------------------------------------------------
!
!Purpose:
! recompute element data by giving two ends of the element
!
!Parameters: input
! X1 new position in X for the end 1
! Y1 new position in Y for the end 1
! X2 new position in X for the end 2
! Y2 new position in Y for the end 2
! TYPE type of element 1 (segment) 3 (arc of circle)
! II element to be changed
! KNDEX if not 0 print out data when motion>EPS
! FOUT printout file
!
!Parameters: input/output
! RPAR descriptors of the element
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : NRPAR,EPS,G_ELE_TYPE,G_ELE_LEN
USE SAL_NUMERIC_MOD, ONLY : SALACO
!****
IMPLICIT NONE
! in variable
! ***********
INTEGER, INTENT(IN) :: TYPE,KNDEX,FOUT,II
REAL(PDB), INTENT(IN) :: X1,Y1,X2,Y2
REAL(PDB), INTENT(INOUT), DIMENSION(:) :: RPAR
!****
! local variable
! **************
REAL(PDB) :: CX,CY,DELX,DELY,R,THETA,SX,SY,VX,VY,V2,DIST,MOV1,MOV2
INTEGER :: I
REAL(PDB) :: RPAR_OLD(NRPAR)
!****
! keep old parameters:
RPAR_OLD(1:NRPAR)=RPAR(1:NRPAR)
!
MOV1=0._PDB; MOV2=0._PDB;
IF(TYPE == G_ELE_TYPE(1)) THEN
!* segment :
! compute the motions of two ends
DELX=X1-RPAR(1)
DELY=Y1-RPAR(2)
MOV1=SQRT(DELX*DELX+DELY*DELY)
DELX=X2-(RPAR(1)+RPAR(3))
DELY=Y2-(RPAR(2)+RPAR(4))
MOV2=SQRT(DELX*DELX+DELY*DELY)
! set new ends, compute direction
RPAR(1)=X1
RPAR(2)=Y1
RPAR(3)=X2-X1
RPAR(4)=Y2-Y1
RPAR(5)=SQRT(RPAR(3)*RPAR(3)+RPAR(4)*RPAR(4))
ELSE IF(TYPE == G_ELE_TYPE(3)) THEN
!* arc of circle :
! get old radius
CX=RPAR(1); CY=RPAR(2)
! compute the motion of two ends
R=RPAR(3)
THETA=RPAR(4)
DELX=CX+R*COS(THETA)-X1
DELY=CY+R*SIN(THETA)-Y1
MOV1=SQRT(DELX*DELX+DELY*DELY)
THETA=RPAR(5)
DELX=CX+R*COS(THETA)-X2
DELY=CY+R*SIN(THETA)-Y2
MOV2=SQRT(DELX*DELX+DELY*DELY)
! compute new radius, new center and new angles
SX=X1-CX
SY=Y1-CY
! get demi-vector from (x1,y1) to (x2,y2)
VX=(X2-X1)/2.0
VY=(Y2-Y1)/2.0
V2=VX*VX+VY*VY
! get center closest to old center, change radius
! compute new r
R=SQRT(V2+(SX*VY-SY*VX)**2/V2)
RPAR(3)=R
! compute new center
DIST=1.0_PDB+(VX*SX+VY*SY)/V2
! get new center and compute angles
CX=CX+VX*DIST
CY=CY+VY*DIST
RPAR(1)=CX
RPAR(2)=CY
THETA=SALACO((X1-CX)/R,Y1-CY)
RPAR(4)=THETA
THETA=SALACO((X2-CX)/R,Y2-CY)
RPAR(5)=THETA
! if phi1 > phi2 put phi2 equal to phi2+twopi
IF(RPAR(4)>RPAR(5)) RPAR(5)=RPAR(5)+TWOPI
ENDIF
IF(KNDEX/=0) THEN
IF(MOV1>EPS.OR.MOV2>EPS) THEN
WRITE(FOUT,'(/," old element ",I4," : ",6(1P,E13.4))') &
II,(RPAR_OLD(I),I=1,G_ELE_LEN(TYPE))
WRITE(FOUT,'(" new element ",I4," : ",6(1P,E13.4))') &
II,(RPAR(I),I=1,G_ELE_LEN(TYPE))
ENDIF
ENDIF
!
END SUBROUTINE SAL129
!
SUBROUTINE SAL130(GG)
!
!---------------------------------------------------------------------
!
!Purpose:
! perform domain definition and set boundary conditions
! - computes node perimeters per 2d macro
! - reads boundary conditions
! - computes external perimeters
!
!Parameters: input/output
! GG geometry descriptor
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : G_BC_TYPE,TYPGEO
!****
IMPLICIT NONE
! in variable
! ************
TYPE(T_G_BASIC), INTENT(INOUT):: GG
! local variable
!****
INTEGER :: NN,OK
INTEGER, DIMENSION(GG%NB_ELEM*2) :: AUX_ARR
!****
!* compute node perimeters for the macro
CALL SAL130_2(GG%NB_ELEM,GG%NB_NODE,GG%IPAR,GG%PPERIM_NODE, &
GG%PERIM_NODE,AUX_ARR)
!
!* - compute number of bc's per 2D macro,
! NB_BC2 counts total nber of 2D bc's
! - compute IBC2_ELEM, keep relative 2D bc nber to elements
! - allocation : 2D bc structures
! 2D perimeter structure for a macro
! - get list of elements in 2d macro perimeter
CALL SAL130_4(GG%NB_ELEM,NN,GG%IPAR,GG%IBC2_ELEM,AUX_ARR)
GG%NB_BC2=NN
ALLOCATE (GG%TYPE_BC2(NN),GG%IDATA_BC2(NN),GG%PERIM_MAC2(NN), &
GG%PPERIM_MAC2(7),STAT=OK)
IF(OK/=0) CALL XABORT('SAL130: not enough memory I,R')
GG%PPERIM_MAC2(:7)=0
GG%PERIM_MAC2(1:NN)=AUX_ARR(1:NN)
GG%NPERIM_MAC2=NN
!
!* read boundary conditions:
CALL SAL131(GG)
!
! - define IELEM_SURF2
IF(GG%NB_SURF2>0) THEN
! allocate
ALLOCATE(GG%SURF2(GG%NB_SURF2),STAT = OK)
IF(OK /= 0) CALL XABORT('SAL130: not enough memory I,R')
CALL SAL130_6(GG%NB_SURF2,GG%IBC2_SURF2,GG%PERIM_MAC2,GG%IELEM_SURF2)
ENDIF
!
!* construct perimeter structures for rotative or symmetrical geometry
SELECT CASE(TYPGEO)
CASE(1:2)
CALL SAL130_8(GG%NPERIM_MAC2,GG%PERIM_MAC2,GG%PPERIM_MAC2,GG%DIST_AXIS, &
GG%IBC2_ELEM,GG%TYPE_BC2,GG%IDATA_BC2,GG%BCDATA,GG%IPAR,GG%RPAR)
CASE(5:12)
CALL SAL130_10(GG%NPERIM_MAC2,GG%PERIM_MAC2,GG%PPERIM_MAC2,GG%DIST_AXIS, &
GG%IBC2_ELEM,GG%TYPE_BC2,GG%IDATA_BC2,GG%BCDATA,GG%IPAR,GG%RPAR)
END SELECT
!
END SUBROUTINE SAL130
!
SUBROUTINE SAL130_2(NB_ELEM,NB_NODE,IPAR,PPERIM,PERIM,LIST)
!
!---------------------------------------------------------------------
!
!Purpose:
! compute node perimeters for one 2D macro
!
!Parameters: input
! NB_ELEM number of elements
! NB_NODE number of nodes
! IPAR integer descriptors for elements
!
!Parameters: output
! PPERIM array pointer to list of elements in perimeter per node
! PERIM elements in perimeters per node
! LIST temporary array
!
!---------------------------------------------------------------------
!
IMPLICIT NONE
INTEGER, INTENT(IN) :: NB_ELEM,NB_NODE
INTEGER, INTENT(IN), DIMENSION(:,:) :: IPAR
INTEGER, INTENT(OUT), DIMENSION(:) :: LIST
INTEGER, INTENT(OUT), DIMENSION(:) :: PPERIM
INTEGER, POINTER, DIMENSION(:) :: PERIM
!****
INTEGER :: NT,NN,NODE,ELEM,OK
CHARACTER(LEN=131) :: HSMG
!****
NT=0
PPERIM(1)=1
DO NODE=1,NB_NODE
DO ELEM=1, NB_ELEM
IF(IPAR(2,ELEM)==NODE.OR.IPAR(3,ELEM)==NODE) THEN
NT=NT+1
LIST(NT)=ELEM
ENDIF
ENDDO
NN=NT+1-PPERIM(NODE)
IF(NN>0) THEN
PPERIM(NODE+1)=NT+1
ELSE
WRITE(HSMG,'(15HSAL130_2: node=,i5,19H without perimeter.)') NODE
CALL XABORT(HSMG)
ENDIF
ENDDO
IF(NT>0) THEN
ALLOCATE (PERIM(NT), STAT=OK)
IF(OK/=0) CALL XABORT('SAL130_2: not enough memory I')
PERIM(1:NT)=LIST(1:NT)
ENDIF
!
END SUBROUTINE SAL130_2
!
SUBROUTINE SAL130_4(NB_ELEM,NB_BC,IPAR,IBC2_ELEM,LIST_BC)
!
!---------------------------------------------------------------------
!
!Purpose:
! count number of bc's in a 2D macro
!
!Parameters: input
! NB_ELEM number of elements
!
!Parameters: input/output
! IPAR integer descriptors for elements
!
!Parameters: output
! NB_BC nber of bc's
! IBC2_ELEM relative 2D bc index per element
! LIST_BC list of elements in boundary
!
!---------------------------------------------------------------------
!
IMPLICIT NONE
INTEGER, INTENT(IN) :: NB_ELEM
INTEGER, INTENT(OUT) :: NB_BC
INTEGER, INTENT(IN), DIMENSION(:,:) :: IPAR
INTEGER, INTENT(OUT), DIMENSION(:) :: IBC2_ELEM,LIST_BC
!****
INTEGER :: ELEM
!****
! initiation
IBC2_ELEM(:)=0
NB_BC=0
DO ELEM=1, NB_ELEM
IF(IPAR(2,ELEM)<=0.AND.IPAR(3,ELEM)<=0) THEN
CALL XABORT('SAL130_4: two boundaries for element')
ELSE IF(IPAR(2,ELEM)<=0.OR.IPAR(3,ELEM)<=0) THEN
NB_BC=NB_BC+1
LIST_BC(NB_BC)=ELEM
IF(IBC2_ELEM(ELEM)/=0) CALL XABORT('SAL130_4: two surfaces to element')
IBC2_ELEM(ELEM)=NB_BC
! set mark for the macro connection surface :
ENDIF
ENDDO
!
END SUBROUTINE SAL130_4
!
SUBROUTINE SAL130_6(NSURF,IBC2_SURF2,IELEM_BC2,IELEM_SURF2)
!
!---------------------------------------------------------------------
!
!Purpose:
! get element order indices per surface
!
!Parameters: input
! NSURF number of surfaces
! IBC2_SURF2 2D bc order index per surface
! IELEM_BC2 element order index per bc
!
!Parameters: output
! IELEM_SURF2 element order index per surface
!
!---------------------------------------------------------------------
!
!****
USE SAL_GEOMETRY_TYPES, ONLY : G_BC_TYPE
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NSURF
INTEGER, INTENT(IN), DIMENSION(:) :: IBC2_SURF2,IELEM_BC2
INTEGER, INTENT(OUT), DIMENSION(:) :: IELEM_SURF2
!****
INTEGER :: SURF,IBC,ELEM
!****
IF(NSURF > 0) THEN
DO SURF=1, NSURF
! get relative bc order number
IBC=IBC2_SURF2(SURF)
! get relative element
ELEM=IELEM_BC2(IBC)
! define ielem_surf2
IELEM_SURF2(SURF)=ELEM
ENDDO
ENDIF
!
END SUBROUTINE SAL130_6
!
SUBROUTINE SAL130_8(NPERIM,PERIM,PPERIM,DIST_AXIS,IBC2_ELEM,TYPE_BC2,IDATA_BC2, &
BCDATA,IPAR,RPAR)
!
!---------------------------------------------------------------------
!
!Purpose:
! calculate PERIM_MAC2,DIST_AXIS for rotative or symmetrical geometry
! (TYPGEO=1 & 2)
!
!Parameters: input
! NPERIM number of elements in perimeter
! IBC2_ELEM 2D bc order number per element
! TYPE_BC2 type of boundary conditions per 2D bc
! IDATA_BC2 position in the 'bcdata' table for each 2D bc
! BCDATA table of boundary conditions data
! IPAR integer element descriptor table
! RPAR floating point element descriptor table
!
!Parameters: input/output
! PERIM list of elements in perimeter,in return it will be in following
! order: (elems on axis 1)+(elems on axis 2)+(other elems)
!
!Parameters: output
! PPERIM pointers to the table 'perim':
! (1): first elem on axis 1 (2): first elem on axis 2
! (3): first of other elems (4): NPERIM + 1
! DIST_AXIS distance of points on axis to the center (0,0),in order of:
! (distances of points on axis 1)+(distances of points on axis 2)
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : ANGGEO,EPS,G_BC_TYPE
USE SAL_NUMERIC_MOD, ONLY : SAL141
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NPERIM
INTEGER, INTENT(IN), DIMENSION(:) :: IBC2_ELEM,TYPE_BC2,IDATA_BC2
INTEGER, INTENT(INOUT), DIMENSION(:) :: PERIM
INTEGER, INTENT(OUT), DIMENSION(:) :: PPERIM
REAL(PDB), POINTER, DIMENSION(:) :: DIST_AXIS
INTEGER, INTENT(IN), DIMENSION(:,:) :: IPAR
REAL(PDB), INTENT(INOUT),DIMENSION(:,:) :: RPAR
REAL(PDB), INTENT(IN),DIMENSION(:,:) :: BCDATA
!****
! LIST_ELEMS = table of elements,elements on axis are in increasing order
! of distance to (0,0):
! 1=elements on axis 1; 2=elements on axis 2; 3=other elements
! AUX_DIST = max distance of element ends to the beginnings of the axes:
! 1=distances on axis 1; 2=distances on axis 2
INTEGER, DIMENSION(NPERIM,3) :: LIST_ELEMS
REAL(PDB), DIMENSION(NPERIM,2) :: AUX_DIST
INTEGER :: I,J,K,M,ELEM,TYPBC,IBC,IDATA,NBE(3),OK,NAXES
REAL(PDB) :: ANGLE,X,Y,D
!****
NAXES=2
!* calculate number of elements on axis 1 & 2
! and their distances to the beginning of the axes
NBE=0
DO I=1,NPERIM
ELEM=PERIM(I)
IBC=IBC2_ELEM(ELEM)
TYPBC=TYPE_BC2(IBC)
IDATA=IDATA_BC2(IBC)
! default is the elements not on axis
M=NAXES+1
IF(TYPBC==G_BC_TYPE(3)) THEN
!* rotation:
ANGLE=BCDATA(5,IDATA)
IF(ABS(ANGLE-ANGGEO)<EPS) THEN
! element is on the axis 1 (angle=anggeo)
M=1
ELSEIF(ABS(ANGLE+ANGGEO)<EPS) THEN
! element is on the axis 2 (angle=-anggeo)
M=2
ENDIF
ELSEIF(TYPBC==G_BC_TYPE(4)) THEN
!* symmetry:
ANGLE=BCDATA(5,IDATA)
IF(ABS(ANGLE)<EPS) THEN
! element is on the axis 1 (angle=0)
M=1
ELSEIF(ABS(ANGLE-ANGGEO)<EPS) THEN
! element is on the axis 2 (angle=anggeo)
M=2
ENDIF
ENDIF
NBE(M)=NBE(M)+1
LIST_ELEMS(NBE(M),M)=ELEM
IF(M/=NAXES+1) THEN
! sort the element list according their distance to (0,0)
D=0.
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT(X*X+Y*Y))
ENDDO
AUX_DIST(NBE(M),M)=D
IF(NBE(M)>1) THEN
DO K=1,NBE(M)-1
IF(AUX_DIST(NBE(M),M)<AUX_DIST(K,M)) THEN
! insert the last element to position k
D=AUX_DIST(NBE(M),M)
ELEM=LIST_ELEMS(NBE(M),M)
DO J=NBE(M),K+1,-1
AUX_DIST(J,M)=AUX_DIST(J-1,M)
LIST_ELEMS(J,M)=LIST_ELEMS(J-1,M)
ENDDO
AUX_DIST(K,M)=D
LIST_ELEMS(K,M)=ELEM
EXIT
ENDIF
ENDDO
ENDIF
ENDIF
ENDDO
! nber of blocks in 'perim'
M=NAXES+1
!* organize elements as:
! (elems on axis 1)+(elems on axis 2)+(other elems)
PPERIM(:)=0
PPERIM(1)=1
DO I=1,M
PPERIM(I+1)=PPERIM(I)+NBE(I)
ENDDO
DO I=1,M
PERIM(PPERIM(I):PPERIM(I+1)-1)=LIST_ELEMS(1:NBE(I),I)
ENDDO
!* allocate and set dist_axis
IF(PPERIM(NAXES+1)-1>0) THEN
ALLOCATE(DIST_AXIS(PPERIM(NAXES+1)-1),STAT=OK)
IF(OK.NE.0) CALL XABORT('SAL130_8: not enough memory R')
DO I=1,NAXES
DIST_AXIS(PPERIM(I):PPERIM(I+1)-1)=AUX_DIST(1:NBE(I),I)
ENDDO
ELSE
NULLIFY(DIST_AXIS)
ENDIF
!
end subroutine sal130_8
!
SUBROUTINE SAL130_10(NPERIM,PERIM,PPERIM,DIST_AXIS,IBC2_ELEM,TYPE_BC2,IDATA_BC2, &
BCDATA,IPAR,RPAR)
!
!---------------------------------------------------------------------
!
!Purpose:
! calculate PERIM_MAC2 and DIST_AXIS for the cyclical geometries:
! type 5&6: retangle with translations or symmetries on all sides
! type 7 : 1/8 assembly with symmetries on all sides
! type 8 : equilateral triangle with symmetries on all sides
! type 9 : hexagon with translations on all sides
! type 10 : hexagon with RA60 rotation
! type 11 : hexagon with R120 rotation
! type 12 : rectangular S30 triangle geometry
!
!Parameters: input
! NPERIM number of elements in perimeter
! IBC2_ELEM 2D bc order number per element
! TYPE_BC2 type of boundary conditions per 2D bc
! IDATA_BC2 position in the 'bcdata' table for each 2D bc
! BCDATA table of boundary conditions data
! IPAR integer element descriptor table
! RPAR floating point element descriptor table
!
!Parameters: input/output
! PERIM list of elements in perimeter,in return it will be in following
! order: (elems on axis 1)+(elems on axis 2)+(other elems)
!
!Parameters: output
! PPERIM pointers to the table 'perim':
! DIST_AXIS distance of points on axis to the axis origin
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : TYPGEO,ANGGEO,EPS,LX=>LENGTHX,LY=>LENGTHY,G_BC_TYPE
USE SAL_NUMERIC_MOD, ONLY : SAL141
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NPERIM
INTEGER, INTENT(IN), DIMENSION(:) :: IBC2_ELEM,TYPE_BC2,IDATA_BC2
INTEGER, INTENT(INOUT), DIMENSION(:) :: PERIM
INTEGER, INTENT(OUT), DIMENSION(:) :: PPERIM
REAL(PDB), POINTER, DIMENSION(:) :: DIST_AXIS
INTEGER, INTENT(IN), DIMENSION(:,:) :: IPAR
REAL(PDB), INTENT(INOUT),DIMENSION(:,:) :: RPAR
REAL(PDB), INTENT(IN),DIMENSION(:,:) :: BCDATA
!****
! LIST_ELEMS = table of elements,elements on axis are in increasing order
! of distance to axis origin:
! 1=elements on axis 1; 2=elements on axis 2; ...
! AUX_DIST = max distance of element ends to axis origin:
! 1=distances on axis 1; 2=distances on axis 2; ...
INTEGER, DIMENSION(NPERIM,6) :: LIST_ELEMS
REAL(PDB), DIMENSION(NPERIM,6) :: AUX_DIST
INTEGER :: I,J,K,M,ELEM,TYPBC,IBC,IDATA,NBE(6),OK,NAXES
REAL(PDB) :: ANGLE,X,Y,D
!****
NAXES=0
IF((TYPGEO==5).OR.(TYPGEO==6).OR.(TYPGEO==11)) THEN
NAXES=4
ELSEIF((TYPGEO==7).OR.(TYPGEO==8).OR.(TYPGEO==10).OR.(TYPGEO==12)) THEN
NAXES=3
ELSEIF(TYPGEO==9) THEN
NAXES=6
ENDIF
!* calculate number of elements on axes,
! and their distances to the origin of the axis
NBE=0
DO I=1,NPERIM
ELEM=PERIM(I)
IBC=IBC2_ELEM(ELEM)
TYPBC=TYPE_BC2(IBC)
IDATA=IDATA_BC2(IBC)
ENDDO
DO I=1,NPERIM
ELEM=PERIM(I)
IBC=IBC2_ELEM(ELEM)
TYPBC=TYPE_BC2(IBC)
IDATA=IDATA_BC2(IBC)
ANGLE=BCDATA(5,IDATA)
! default is the elements not on axis
M=NAXES+1
SELECT CASE(TYPGEO)
CASE(5)
!* rectangle with translations:
! axes definition:
! M=3
! ************
! * *
! M=2 * * M=4
! ************
! M=1
IF(TYPBC==G_BC_TYPE(2)) THEN
IF(BCDATA(2,IDATA)>0) THEN
M=1
ELSEIF(BCDATA(2,IDATA)<0) THEN
M=3
ELSEIF(BCDATA(1,IDATA)>0) THEN
M=2
ELSEIF(BCDATA(1,IDATA)<0) THEN
M=4
ENDIF
ELSE
CALL XABORT('SAL130_10: wrong boundary condition for TYPGEO=5.')
ENDIF
CASE(6)
!* rectangle with symmetries:
! axes definition:
! M=3
! ************
! * *
! M=2 * * M=4
! ************
! M=1
IF(TYPBC==G_BC_TYPE(4)) THEN
IF(ABS(ANGLE)<EPS) THEN
IF(BCDATA(2,IDATA)>0) THEN
! cy>0: element is on the axis 3 (angle=0)
M=3
ELSE
! cy=0: element is on the axis 1 (angle=0)
M=1
ENDIF
ELSEIF(ABS(ANGLE-ANGGEO)<EPS) THEN
IF(BCDATA(1,IDATA)>0) THEN
! cx>0: element is on the axis 4 (angle=anggeo)
M=4
ELSE
! cx=0: element is on the axis 2 (angle=anggeo)
M=2
ENDIF
ENDIF
ELSE
CALL XABORT('SAL130_10: wrong boundary condition for TYPGEO=6.')
ENDIF
CASE(7,8,12)
!* triangles with symmetries:
! typgeo=7 axes definition:
! *
! M=2 * * M=3
! * *
! *******
! M=1
! typgeo=8 axes definition:
! *
! M=2 * * M=3
! * *
! *************
! M=1
IF(TYPBC==G_BC_TYPE(4)) THEN
IF(ABS(ANGLE)<EPS) THEN
! element is on the axis 1 (angle=0)
M=1
ELSEIF(ABS(ANGLE-ANGGEO)<EPS) THEN
! element is on the axis 2 (angle=anggeo)
M=2
ELSEIF(ABS(ANGLE-HALFPI)<EPS) THEN
! typgeo=7:element is on the axis 3 (angle=pi/2)
M=3
ELSEIF(ABS(ANGLE-2.*ANGGEO)<EPS) THEN
! typgeo=8:element is on the axis 3 (angle=2*anggeo)
M=3
ELSEIF(ABS(ANGLE-2.*PI/3.)<EPS) THEN
! typgeo=12:element is on the axis 3 (angle=2*pi/3)
M=3
ELSE
CALL XABORT('SAL130_10: boundary condition data error in element for TYPGEO=7,8,12.')
ENDIF
ELSE
CALL XABORT('SAL130_10: wrong boundary condition for TYPGEO=7,8.')
ENDIF
CASE(9)
!* hexagon with translations:
! axes definition:
! M=4 (0,-2ly)
! *****
! M=3 (3/2lx,-ly) * * M=5 (-3/2lx,-ly)
! * *
! M=2 (3/2lx, ly) * * M=6 (-3/2lx, ly)
! *****
! M=1 (0, 2ly)
! origins of axes:
! axis 1&2: (-lx/2,-ly)
! axis 3: (-lx , 0)
! axis 4: (-lx/2, ly)
! axis 5: ( lx , 0)
! axis 6: ( lx/2,-ly)
IF(TYPBC==G_BC_TYPE(2)) THEN
IF(ABS(BCDATA(1,IDATA))<EPS) THEN
IF(BCDATA(2,IDATA)>0) THEN
M=1
ELSE
M=4
ENDIF
ELSEIF(BCDATA(1,IDATA)>0.AND.BCDATA(2,IDATA)>0) THEN
M=2
ELSEIF(BCDATA(1,IDATA)>0.AND.BCDATA(2,IDATA)<0) THEN
M=3
ELSEIF(BCDATA(1,IDATA)<0.AND.BCDATA(2,IDATA)>0) THEN
M=6
ELSEIF(BCDATA(1,IDATA)<0.AND.BCDATA(2,IDATA)<0) THEN
M=5
ENDIF
ELSE
CALL XABORT('SAL130_10: wrong boundary condition for TYPGEO=9.')
ENDIF
CASE(10)
!* triangles with rotations and translations:
! typgeo=10 axes definition:
! *
! M=2 * * M=3
! * *
! *************
! M=1
IF((TYPBC==G_BC_TYPE(2)).OR.(TYPBC==G_BC_TYPE(3))) THEN
IF(ABS(ANGLE)<EPS) THEN
! element is on the axis 1 (angle=0)
M=1
ELSEIF(ABS(ANGLE-ANGGEO)<EPS) THEN
! element is on the axis 2 (angle=anggeo)
M=2
ELSEIF(ABS(ANGLE-2.*ANGGEO)<EPS) THEN
! element is on the axis 3 (angle=2*anggeo)
M=3
ELSE
CALL XABORT('SAL130_10: boundary condition data error in element for TYPGEO=10.')
ENDIF
ELSE
CALL XABORT('SAL130_10: wrong boundary condition for TYPGEO=10.')
ENDIF
CASE(11)
!* lozenge with rotations and translations:
! axes definition:
! M=3
! ************
! * *
! M=2 * * M=4
! ************
! M=1
IF((TYPBC==G_BC_TYPE(2)).OR.(TYPBC==G_BC_TYPE(3))) THEN
IF(ABS(ANGLE)<EPS) THEN
IF(BCDATA(2,IDATA)>0) THEN
! cy>0: element is on the axis 3 (angle=0)
M=3
ELSE
! cy=0: element is on the axis 1 (angle=0)
M=1
ENDIF
ELSE
IF(BCDATA(1,IDATA)>0) THEN
! cx>0: element is on the axis 4 (angle>0)
M=4
ELSE
! cx=0: element is on the axis 2 (angle>0)
M=2
ENDIF
ENDIF
ELSE
CALL XABORT('SAL130_10: TYPGEO=11:wrong boundary condition type.')
ENDIF
CASE DEFAULT
CALL XABORT('SAL130_10: boundary condition not implemented.')
END SELECT
IF(M>=NAXES+1) CALL XABORT('SAL130_10: element not on axes')
NBE(M)=NBE(M)+1
LIST_ELEMS(NBE(M),M)=ELEM
! sort the element list according their distance to
! the origins of the axes
D=0.
SELECT CASE(TYPGEO)
CASE(5:6)
SELECT CASE(M)
CASE(1:2)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT(X*X+Y*Y))
ENDDO
CASE(3)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,X)
ENDDO
CASE(4)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,Y)
ENDDO
END SELECT
CASE(7)
SELECT CASE(M)
CASE(1:2)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT(X*X+Y*Y))
ENDDO
CASE(3)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,Y)
ENDDO
END SELECT
CASE(8,10,12)
SELECT CASE(M)
CASE(1:2)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT(X*X+Y*Y))
ENDDO
CASE(3)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
! axis origin is (lx,0)
D=MAX(D,SQRT((X-LX)*(X-LX)+Y*Y))
ENDDO
END SELECT
CASE(9)
! origins of axes:
! axis 1&2: (-lx/2,-ly)
! axis 3: (-lx , 0)
! axis 4: (-lx/2, ly)
! axis 5: ( lx , 0)
! axis 6: ( lx/2,-ly)
SELECT CASE(M)
CASE(1:2)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT((X+LX*0.5)*(X+LX*0.5)+(Y+LY)*(Y+LY)))
ENDDO
CASE(3)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT((X+LX)*(X+LX)+Y*Y))
ENDDO
CASE(4)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT((X+LX*0.5)*(X+LX*0.5)+(Y-LY)*(Y-LY)))
ENDDO
CASE(5)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT((X-LX)*(X-LX)+Y*Y))
ENDDO
CASE(6)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT((X-LX*0.5)*(X-LX*0.5)+(Y+LY)*(Y+LY)))
ENDDO
END SELECT
CASE(11)
SELECT CASE(M)
CASE(1:2)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT(X*X+Y*Y))
ENDDO
CASE(3)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT((X-LX*0.5)*(X-LX*0.5)+(Y-LY)*(Y-LY)))
ENDDO
CASE(4)
DO K=1,2
CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
D=MAX(D,SQRT((X-LX)*(X-LX)+Y*Y))
ENDDO
END SELECT
END SELECT
AUX_DIST(NBE(M),M)=D
IF(NBE(M)>1) THEN
DO K=1,NBE(M)-1
IF(AUX_DIST(NBE(M),M)<AUX_DIST(K,M)) THEN
! insert the last element to position k
D=AUX_DIST(NBE(M),M)
ELEM=LIST_ELEMS(NBE(M),M)
DO J=NBE(M),K+1,-1
AUX_DIST(J,M)=AUX_DIST(J-1,M)
LIST_ELEMS(J,M)=LIST_ELEMS(J-1,M)
ENDDO
AUX_DIST(K,M)=D
LIST_ELEMS(K,M)=ELEM
EXIT
ENDIF
ENDDO
ENDIF
ENDDO
! nber of blocks in 'perim'
M=NAXES
!* organize elements as: (elems on axis 1)+(elems on axis 2)+...
PPERIM(1)=1
DO I=1,M
PPERIM(I+1)=PPERIM(I)+NBE(I)
ENDDO
DO I=1,M
PERIM(PPERIM(I):PPERIM(I+1)-1)=LIST_ELEMS(1:NBE(I),I)
ENDDO
!* allocate and set dist_axis
IF(PPERIM(NAXES+1)-1>0) THEN
ALLOCATE(DIST_AXIS(PPERIM(NAXES+1)-1),STAT=OK)
IF(OK.NE.0) CALL XABORT('SAL130_10: not enough memory R')
DO I=1,NAXES
DIST_AXIS(PPERIM(I):PPERIM(I+1)-1)=AUX_DIST(1:NBE(I),I)
ENDDO
ELSE
NULLIFY(DIST_AXIS)
ENDIF
!
END SUBROUTINE SAL130_10
!
SUBROUTINE SAL131(GG)
!
!---------------------------------------------------------------------
!
!Purpose:
! modifies GG%IPAR and constructs bcdata (modifies GG%IPAR and
! constructs BCDATA)
!
!Parameters: input/output
! GG geometry descriptor
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : G_BC_MAX_LEN,G_BC_LEN,G_BC_TYPE,NIPAR,EPS, &
ANGGEO,TYPGEO,LENGTHX,LENGTHY,ALLSUR
!****
IMPLICIT NONE
! in variable
! ************
TYPE(T_G_BASIC), INTENT(INOUT) :: GG
!****
LOGICAL :: LGBC,LGALLS
INTEGER :: TYPE,II,NN,NBER,I,J,ITBC,IELEM
REAL(PDB) :: ANGLE
INTEGER :: ELEM,IBC,OK,IDATA(2)
INTEGER, POINTER, DIMENSION(:) :: TYPE_BC2,ISURF2_ELEM,IELEM_BC2
!*****
!** TMP_BCDATA = description of motions at the boundary
!** IPAR = pointer to geometry descriptors
INTEGER, DIMENSION(GG%NB_ELEM) :: AUX_ARR
REAL(PDB), DIMENSION(G_BC_MAX_LEN,GG%NB_ELEM+5) :: TMP_BCDATA
!*****
!* initialization
IF(TYPGEO==1.OR.TYPGEO==2) IDATA(:)=0
!* BCDATA for surfaces of type G_BC_TYPE(-1)
!
LGALLS=ALLSUR/=0
ITBC=0 ! the first bc data
!
!* treat approximate boundary condictions
IF(LGALLS)THEN
ITBC=1
! ALL BC'S PRODUIT SURFACES
IF(GG%DEFAUL==1)THEN
! SPECULAR REFLEXION -> ISOTROPIC REFLEXION WITH ALBEDO=1
GG%DEFAUL=0 ; TMP_BCDATA(6,ITBC)=1._PDB
ENDIF
ENDIF
!
!* put default value in all bc elements:
CALL SAL131_2(GG%NB_ELEM,GG%DEFAUL,GG%IPAR,GG%IBC2_ELEM,GG%TYPE_BC2,GG%IDATA_BC2)
!
IF(GG%NBBCDA>0)THEN
ANGLE=0._PDB
DO I=1,GG%NBBCDA
ITBC=ITBC+1
IF(ITBC.GT.GG%NB_ELEM+5) CALL XABORT('SAL131: BCDATA overflow')
TMP_BCDATA(:,ITBC)=GG%BCDATAREAD(I)%BCDATA(:)
TYPE=GG%BCDATAREAD(I)%SALTYPE
SELECT CASE(TYPE)
CASE(1)
IF(LGALLS)THEN
! specular reflexion -> isotropic reflexion with albedo=1
TYPE=0 ; TMP_BCDATA(6,ITBC)=1._PDB
ENDIF
CASE(2)
ANGLE=TMP_BCDATA(5,ITBC)
SELECT CASE(TYPGEO)
CASE(5)
! adjust translation data according to the sides of rectangle
IF(TMP_BCDATA(1,ITBC)/=0) TMP_BCDATA(1,ITBC)=SIGN(LENGTHX,TMP_BCDATA(1,ITBC))
IF(TMP_BCDATA(2,ITBC)/=0) TMP_BCDATA(2,ITBC)=SIGN(LENGTHY,TMP_BCDATA(2,ITBC))
CASE(9)
! adjust translation data according to the hexagonal sides
IF(ABS(TMP_BCDATA(1,ITBC))<EPS) THEN
! axes 1 & 4
TMP_BCDATA(2,ITBC)=SIGN(2.*LENGTHY,TMP_BCDATA(2,ITBC))
ELSE
TMP_BCDATA(1,ITBC)=SIGN(LENGTHX*1.5,TMP_BCDATA(1,ITBC))
TMP_BCDATA(2,ITBC)=SIGN(LENGTHY,TMP_BCDATA(2,ITBC))
ENDIF
TMP_BCDATA(3,ITBC)=COS(ANGLE)
TMP_BCDATA(4,ITBC)=SIN(ANGLE)
TMP_BCDATA(5,ITBC)=ANGLE
CASE(11)
! adjust translation data according to the hexagonal sides
IF(ABS(ANGLE)<EPS) THEN
IF(TMP_BCDATA(2,ITBC)>0.) THEN
! cy>0 and angle=0
TMP_BCDATA(1,ITBC)=LENGTHX/2.0
TMP_BCDATA(2,ITBC)=LENGTHY
ELSE
! cy=0 and angle=0
TMP_BCDATA(1,ITBC)=0.0
TMP_BCDATA(2,ITBC)=0.0
ENDIF
ELSE
IF(TMP_BCDATA(1,ITBC)>0.) THEN
! cx>0 and angle=pi/3 rad
TMP_BCDATA(1,ITBC)=LENGTHX
TMP_BCDATA(2,ITBC)=0.0
ELSE
! cx=0 and angle=pi/3 rad
TMP_BCDATA(1,ITBC)=0.0
TMP_BCDATA(2,ITBC)=0.0
ENDIF
ENDIF
TMP_BCDATA(3,ITBC)=COS(ANGLE)
TMP_BCDATA(4,ITBC)=SIN(ANGLE)
TMP_BCDATA(5,ITBC)=ANGLE
END SELECT
IF(LGALLS)THEN
! translation -> isotropic translation with albedo=1
TYPE=TYPE+4
! perform array shift
TMP_BCDATA(:,ITBC)=CSHIFT(TMP_BCDATA(:,ITBC),1)
! albedo=1
TMP_BCDATA(6,ITBC)=1._PDB
ENDIF
CASE(3)
! cases of rotation:
! read angle, compute cos and sin
ANGLE=TMP_BCDATA(5,ITBC)
IF(TYPGEO==1.OR.TYPGEO==2) THEN
IF(ABS(ANGLE-ANGGEO)<EPS) THEN
! for the axis 1:keep anggeo,cos(anggeo),sin(anggeo)
ANGLE=ANGGEO
IF(IDATA(1)==0) IDATA(1)=ITBC
ELSEIF(ABS(ANGLE+ANGGEO)<EPS) THEN
! for the axis 2:keep -anggeo,cos(-anggeo),sin(-anggeo)
ANGLE=-ANGGEO
IF(IDATA(2)==0) IDATA(2)=ITBC
ELSE
CALL XABORT('SAL131: error in angle of rotative axis')
ENDIF
ENDIF
TMP_BCDATA(3,ITBC)=COS(ANGLE)
TMP_BCDATA(4,ITBC)=SIN(ANGLE)
TMP_BCDATA(5,ITBC)=ANGLE
IF(LGALLS)THEN
! rotation -> isotropic rotation with albedo=1
! axial symmetry -> isotropic axial symmetry with albedo=1
TYPE=TYPE+4
! perform array shift
TMP_BCDATA(:,ITBC)=CSHIFT(TMP_BCDATA(:,ITBC),1)
! albedo=1
TMP_BCDATA(6,ITBC)=1._PDB
ENDIF
CASE(4)
! cases of specular symmetry:
! read center and angle, compute cos and sin
ANGLE=TMP_BCDATA(5,ITBC)
SELECT CASE(TYPGEO)
CASE(1,2)
IF(ABS(ANGLE-0.)<EPS) THEN
IF(IDATA(1)==0) IDATA(1)=ITBC
ELSE
IF(IDATA(2)==0) IDATA(2)=ITBC
ENDIF
CASE(6:8)
! adjust translation data according to the rectangle/triangle sides
IF(TMP_BCDATA(1,ITBC)/=0) TMP_BCDATA(1,ITBC)=SIGN(LENGTHX,TMP_BCDATA(1,ITBC))
IF(TMP_BCDATA(2,ITBC)/=0) TMP_BCDATA(2,ITBC)=SIGN(LENGTHY,TMP_BCDATA(2,ITBC))
END SELECT
TMP_BCDATA(3,ITBC)=COS(ANGLE)
TMP_BCDATA(4,ITBC)=SIN(ANGLE)
TMP_BCDATA(5,ITBC)=ANGLE
IF(LGALLS)THEN
! rotation -> isotropic rotation with albedo=1
! axial symmetry -> isotropic axial symmetry with albedo=1
TYPE=TYPE+4
! perform array shift
TMP_BCDATA(:,ITBC)=CSHIFT(TMP_BCDATA(:,ITBC),1)
! albedo=1
TMP_BCDATA(6,ITBC)=1._PDB
ENDIF
END SELECT
!
! modify notation for boundary conditions
NBER=GG%BCDATAREAD(I)%NBER
DO J=1,NBER
ELEM=GG%BCDATAREAD(I)%ELEMNB(J)
IF(ELEM>GG%NB_ELEM.OR.ELEM<=0) CALL XABORT('SAL131: unknown bc element')
! get local surface nber
IBC=GG%IBC2_ELEM(ELEM)
LGBC=GG%IPAR(2,ELEM)<=0
II=0
IF(LGBC)THEN
II=2
ELSE
LGBC=GG%IPAR(3,ELEM)<=0
IF(LGBC) II=3
ENDIF
IF(.NOT.LGBC) THEN
WRITE(*,*) 'elem :',ELEM
WRITE(*,*) 'GG%IPAR(:,ELEM) :',GG%IPAR(:,ELEM)
CALL XABORT('SAL131: wrong bc element')
ENDIF
! put bc type
GG%IPAR(II,ELEM)=G_BC_TYPE(TYPE)
GG%TYPE_BC2(IBC)=G_BC_TYPE(TYPE)
! put bc data position :
GG%IDATA_BC2(IBC)=ITBC
ENDDO
ENDDO
ENDIF
!
!* - set BCDATA position for surfaces of type G_BC_TYPE(-1)
! - compute the nber of surfaces (type -1,0,-12,-13,-14,-15) : nbsur2
! - allocate structures for the surfaces
! - compute surf_mac2
TYPE_BC2=>GG%TYPE_BC2
ISURF2_ELEM=>GG%ISURF2_ELEM
IELEM_BC2=>GG%PERIM_MAC2
NN=0
DO IBC=1,GG%NB_BC2
IF(TYPE_BC2(IBC)==G_BC_TYPE(-1)) THEN
! macro contact surfaces : set bcdata position to 1
GG%IDATA_BC2(IBC)=1
ENDIF
! relative element nber
IELEM=IELEM_BC2(IBC)
! count 2D surfaces number
IF(TYPE_BC2(IBC)==G_BC_TYPE(-1) .OR. TYPE_BC2(IBC)==G_BC_TYPE(0) .OR. &
TYPE_BC2(IBC)==G_BC_TYPE(1)) THEN
NN=NN+1
AUX_ARR(NN)=IBC
ISURF2_ELEM(IELEM)=NN
ELSE
ISURF2_ELEM(IELEM)=0
ENDIF
ENDDO
GG%NB_SURF2=NN
IF(NN>0) THEN
ALLOCATE (GG%IBC2_SURF2(NN),GG%IELEM_SURF2(NN),STAT=OK)
IF(OK/=0) CALL XABORT('SAL131: NOT ENOUGH MEMORY I,R')
GG%IBC2_SURF2(1:NN)=AUX_ARR(1:NN)
ELSE
NULLIFY(GG%IBC2_SURF2,GG%IELEM_SURF2)
ENDIF
!
!* allocate idata_axis
IF(TYPGEO==1.OR.TYPGEO==2) THEN
DO I=1,2
IF(IDATA(I)==0) THEN
! there is no elements on this axis,add a bcdata for this axis
ITBC=ITBC+1
ANGLE=0._PDB
IF(TYPGEO==1) THEN
! symmetry
IF(I==1) THEN
ANGLE=0._PDB
ELSE
ANGLE=ANGGEO
ENDIF
ELSEIF(TYPGEO==2) THEN
! rotation
IF(I==1) THEN
ANGLE=ANGGEO
ELSE
ANGLE=-ANGGEO
ENDIF
ENDIF
TMP_BCDATA(1,ITBC)=0._PDB
TMP_BCDATA(2,ITBC)=0._PDB
TMP_BCDATA(3,ITBC)=COS(ANGLE)
TMP_BCDATA(4,ITBC)=SIN(ANGLE)
TMP_BCDATA(5,ITBC)=ANGLE
IDATA(I)=ITBC
ENDIF
ENDDO
ALLOCATE(GG%IDATA_AXIS(2), STAT=OK)
IF(OK.NE.0) CALL XABORT('SAL131: not enough memory I')
GG%IDATA_AXIS=IDATA
ENDIF
!* allocate bcdata
ALLOCATE (GG%BCDATA(G_BC_MAX_LEN,ITBC), STAT=OK)
IF(OK/=0) CALL XABORT('SAL131: not enough memory R')
GG%BCDATA(:,1:ITBC)=TMP_BCDATA(:,1:ITBC)
GG%NALBG=ITBC
!
END SUBROUTINE SAL131
!
SUBROUTINE SAL131_2(NB_ELEM,DEFAUL,IPAR,IBC2_ELEM,TYPE_BC2,IDATA_BC2)
!
!---------------------------------------------------------------------
!
!Purpose:
! put default bc type and BCDATA to a 2D macro
!
!Parameters: input
! NB_ELEM nber of elements
! DEFAUL default bc type
! IBC2_ELEM relative 2D bc number per element
!
!Parameters: input/output
! IPAR integer descriptors for elements
!
!Parameters: input
! TYPE_BC2 2D boundary condiction type
! IDATA_BC2 position in bcdata par 2D bc
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : G_BC_TYPE
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NB_ELEM,DEFAUL
INTEGER, INTENT(INOUT), DIMENSION(:,:) :: IPAR
INTEGER, INTENT(IN), DIMENSION(:) :: IBC2_ELEM
INTEGER, INTENT(OUT), DIMENSION(:) :: TYPE_BC2
INTEGER, INTENT(OUT), DIMENSION(:) :: IDATA_BC2
!****
INTEGER :: ELEM,II,IBC
LOGICAL :: LGBC
!****
! initiation
TYPE_BC2=G_BC_TYPE(-1)
!
DO ELEM=1,NB_ELEM
LGBC=IPAR(2,ELEM)==0
II=0
IF(LGBC) THEN
II=2
IF(IPAR(3,ELEM)<=0) CALL XABORT('SAL131_2: element with 2 bc''s')
ELSE
LGBC=IPAR(3,ELEM)==0
IF(LGBC) II=3
ENDIF
IF(LGBC) THEN
! put bc type value to ipar
IPAR(II,ELEM)=G_BC_TYPE(DEFAUL)
! put bc type value to bc type structure
IBC=IBC2_ELEM(ELEM)
IF(IBC==0) CALL XABORT('SAL131_2: surf-element relation error')
IF(TYPE_BC2(IBC)/=G_BC_TYPE(-1)) CALL XABORT('SAL131_2: two elements to a surface')
TYPE_BC2(IBC)=G_BC_TYPE(DEFAUL)
! put position of "defaul" in bcdata table (use default albedo)
IDATA_BC2(IBC)=0
ENDIF
ENDDO
!
END SUBROUTINE SAL131_2
!
SUBROUTINE SAL140(NB_NODE,RPAR,IPAR,PPERIM,PERIM)
!
!---------------------------------------------------------------------
!
!Purpose:
! checks domain topology in a 2D macro
!
!Parameters: input
! NB_NODE number of nodes in macro
!
!Parameters: input/output
! RPAR floating point geometry descriptors
! IPAR integer descriptors for elements
! PPERIM pointer to list of elements in perimeter
! PERIM list of perimeters
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : NRPAR,NIPAR
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NB_NODE
INTEGER, INTENT(IN), DIMENSION (:) :: PPERIM
INTEGER, INTENT(INOUT), DIMENSION (:,:) :: IPAR
INTEGER, INTENT(INOUT), DIMENSION (:) :: PERIM
REAL(PDB), INTENT(INOUT), DIMENSION (:,:) :: RPAR
!****
INTEGER :: ELEM,NODE,ID,L,FIRST,LAST,NEXT,NLOOP, &
NEWEND,KEEP,IEND,I1,I2
REAL(PDB) :: X,Y,XNEW,YNEW,DIST
LOGICAL :: LGOPEN,LGON,LGERR
INTEGER, PARAMETER :: MXKEEP = 20
REAL, DIMENSION(MXKEEP) :: KEEPD
INTEGER, PARAMETER :: FOUT =6
REAL(PDB),PARAMETER :: EPS2=1.0E-7_PDB
!*****
NEXT=0
!* checks topology of each node
DO NODE=1,NB_NODE
I1=PPERIM(NODE)
! ID counts elements in the perimeter already treated
ID=I1-1
I2=PPERIM(NODE+1)-1
IF(I2<I1) CALL XABORT('SAL140: node without perimeter')
! mark elements in perimeter of node as untreated
! (except full circle: ipar=2)
DO L=I1,I2
ELEM=PERIM(L)
IF(IPAR(1,ELEM)==2)THEN
ID=ID+1
IF(ID<L)THEN
! move circles at beginning
PERIM(L)=PERIM(ID)
PERIM(ID)=ELEM
ENDIF
ENDIF
ENDDO
ID=ID+1
! nloop counts nber of loops for node
NLOOP=ID-1
! treat all elements in perimeter until they have been all done:
DO WHILE (ID<I2)
! an element in the perimeter that has not been done
FIRST=PERIM(ID)
NLOOP=NLOOP+1
! get first end for this element:
IEND=1
! determine the loop defined by element last:
LGOPEN=.TRUE.
LAST=FIRST
DO WHILE(LGOPEN)
! get coordinates x and y of end of element last
CALL SAL141(IPAR(1,LAST),RPAR(:,LAST),X,Y,IEND)
! get next element in the perimeter in touch with
! last element at its end iend
LGON=.TRUE.
L=ID+1
KEEP=0
DO WHILE(LGON.AND.L<=I2)
NEXT=PERIM(L)
! check whether next is really 'next' to last
CALL SAL142(X,Y,XNEW,YNEW,IPAR(1,NEXT),RPAR(:,NEXT),NEWEND,EPS2,DIST)
IF(KEEP<MXKEEP)KEEP=KEEP+1
KEEPD(KEEP)=REAL(DIST)
LGON=NEWEND<0
IF(LGON)L=L+1
ENDDO
LGOPEN=.NOT.LGON
IF(LGOPEN)THEN
! replace last element in order in the perimeter
ID=ID+1
IF(ID<L)THEN
PERIM(L)=PERIM(ID)
PERIM(ID)=NEXT
ENDIF
ELSE
LGERR=.FALSE.
! try to close with first element of loop:
CALL SAL142(X,Y,XNEW,YNEW,IPAR(1,FIRST),RPAR(:,FIRST),NEWEND,EPS2,DIST)
LGOPEN=NEWEND<0
IF(LGOPEN)THEN
! fatal error: cannot close loop for this node
WRITE(FOUT,'(//,''==> cannot close node '',i5, &
&'' AT ELEMENT'',I5,/)')NODE,LAST
LGERR=.TRUE.
ELSEIF(FIRST==LAST)THEN
WRITE(FOUT,'(//,''==> node '',i5,'' with '', &
&''isolated element'',i5,/)')NODE,LAST
LGERR=.TRUE.
ENDIF
IF(LGERR) CALL XABORT('SAL140: node not closed')
NEXT=FIRST
ENDIF
! define last = next element and proceed
LAST=NEXT
IEND=3-NEWEND
ENDDO
ID=ID+1
ENDDO
ENDDO
!
END SUBROUTINE SAL140
!
SUBROUTINE SAL142(X,Y,XNEW,YNEW,TYPE,RPAR,IEND,EPS2,DIST)
!
!---------------------------------------------------------------------
!
!Purpose:
! checks whether element is very close to point (X,Y)
!
!Parameters: input
! X abscissa coordinate
! Y ordinate coordinate
! TYPE type of element 1 (segment), 3 (arc of circle)
! EPS2 criterium for closeness
!
!Parameters: input/output
! XNEW abscissa coordinate of end of element close to point
! YNEW ordinate coordinate of end of element close to point
! RPAR floating point geometry descriptors
! IEND = 1 (beginning is close to point dist < EPS2)
! 2 (end is close to point DIST < EPS2)
! -1 (beginning is close to point dist > EPS2)
! -2 (end is close to point DIST > EPS2)
! DIST distance from end of element to point (X,Y)
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : G_ELE_TYPE
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: TYPE
INTEGER, INTENT(OUT) :: IEND
REAL(PDB), INTENT(IN) :: X,Y,EPS2
REAL(PDB), INTENT(OUT) :: XNEW,YNEW,DIST
REAL(PDB), INTENT(IN), DIMENSION(:) :: RPAR
! DIMENSION RPAR(NRPAR)
!****
REAL(PDB) :: CX,CY,THETA,R,DIST2
!****
!* function giving distance between two points:
REAL(PDB) :: FUNC,X1,Y1,X2,Y2
FUNC(X1,Y1,X2,Y2)=(X1-X2)**2+(Y1-Y2)**2
!****
CX=RPAR(1)
CY=RPAR(2)
DIST2=0._PDB
IF(TYPE==G_ELE_TYPE(1))THEN
!* segment
XNEW=CX
YNEW=CY
DIST=FUNC(XNEW,YNEW,X,Y)
IF(DIST<=EPS2)THEN
IEND=1
RETURN
ELSE
XNEW=CX+RPAR(3)
YNEW=CY+RPAR(4)
DIST2=FUNC(XNEW,YNEW,X,Y)
ENDIF
ELSEIF(TYPE<=G_ELE_TYPE(3))THEN
!* arc of circle
R=RPAR(3)
THETA=RPAR(4)
XNEW=CX+R*COS(THETA)
YNEW=CY+R*SIN(THETA)
DIST=FUNC(XNEW,YNEW,X,Y)
IF(DIST<=EPS2)THEN
IEND=1
RETURN
ELSE
THETA=RPAR(5)
XNEW=CX+R*COS(THETA)
YNEW=CY+R*SIN(THETA)
DIST2=FUNC(XNEW,YNEW,X,Y)
ENDIF
ELSE
CALL XABORT('SAL142: not implemented')
ENDIF
!
IF(DIST2<=EPS2)THEN
DIST=DIST2
IEND=2
RETURN
ELSE
IF(DIST<=DIST2)THEN
IEND=-1
ELSE
DIST=DIST2
IEND=-2
ENDIF
ENDIF
!
END SUBROUTINE SAL142
!
SUBROUTINE SAL160(GG)
!
!---------------------------------------------------------------------
!
!Purpose:
! analyse domain definition: 2D volumes, surfaces
! - compute node volumes
! - compute areas of 2d surfaces
! - read medium data
!
!Parameters: input/output
! GG geometry descriptor
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : G_BC_TYPE,NBMED
!****
IMPLICIT NONE
TYPE(T_G_BASIC), INTENT(INOUT) :: GG
!****
INTEGER :: INB,IMED
INTEGER, DIMENSION(GG%NB_NODE) :: DATAIN
!****
! SUBROUTINE SAL160_2(NB_ELEM,IPAR,RPAR,VOL2,ISURF2_ELEM,NB_SURF2,SURF2)
IF(GG%NB_SURF2==0) THEN
CALL SAL160_2(GG%NB_ELEM,GG%IPAR,GG%RPAR,GG%VOL_NODE,GG%ISURF2_ELEM, &
GG%NB_SURF2)
ELSE
CALL SAL160_2(GG%NB_ELEM,GG%IPAR,GG%RPAR,GG%VOL_NODE,GG%ISURF2_ELEM, &
GG%NB_SURF2,GG%SURF2)
ENDIF
!
!* read medium per region
CALL SALGET(DATAIN,GG%NB_NODE,F_GEO,FOUT0,'media per node')
! number of media fixed to maximum of datain
NBMED = MAXVAL(DATAIN(1:GG%NB_NODE))
!
!* check and define med for code regions
DO INB=1,GG%NB_NODE
IMED=DATAIN(INB)
IF(IMED>NBMED.OR.IMED<0)THEN
WRITE(*,*) 'medium : ',IMED
WRITE(*,*) 'inb, nbmed, nbnode : ',INB,NBMED,GG%NB_NODE
CALL XABORT('SAL160: wrong medium in a region')
ENDIF
GG%MED(INB)=IMED
ENDDO
!
END SUBROUTINE SAL160
!
SUBROUTINE SAL160_2(NB_ELEM,IPAR,RPAR,VOL2,ISURF2_ELEM,NB_SURF2,SURF2)
!
!---------------------------------------------------------------------
!
!Purpose:
! compute 2D volumes and surfaces
! - compute node volumes
! - compute 2D surface areas
!
!Parameters: input
! NB_ELEM number of elements
! NB_NODE number of nodes
! IPAR integer descriptors for elements
! RPAR floating point descriptors for elements
! ISURF2_ELEM 2D surface nber per elem
! NB_SURF2 number of 2D surface
!
!Parameters: output
! VOL2 2D volumes of node
! SURF2 2D areas of node
!
!---------------------------------------------------------------------
!
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_GEOMETRY_TYPES, ONLY : G_BC_TYPE
!****
IMPLICIT NONE
INTEGER, INTENT(IN) :: NB_ELEM
INTEGER, INTENT(IN), DIMENSION(:,:) :: IPAR
REAL(PDB), INTENT(IN), DIMENSION(:,:) :: RPAR
REAL(PDB), INTENT(OUT), DIMENSION(:) :: VOL2
INTEGER, INTENT(IN), DIMENSION(:) :: ISURF2_ELEM
INTEGER, INTENT(IN) :: NB_SURF2
REAL(PDB), INTENT(OUT), OPTIONAL, DIMENSION(:) :: SURF2
!****
INTEGER :: ELEM,NODEBC,NODE,ISURF
LOGICAL :: LGBC
REAL(PDB) :: AUX
!****
! initiation
VOL2=0._PDB
IF(NB_SURF2 > 0) SURF2=0._PDB
DO ELEM=1,NB_ELEM
!* compute volume of node and add to volume of region (local)
CALL SAL161(IPAR(1,ELEM),RPAR(:,ELEM),AUX)
NODEBC=IPAR(2,ELEM)
LGBC=NODEBC<=0
IF(.NOT.LGBC) VOL2(NODEBC)=VOL2(NODEBC)+AUX
NODE=IPAR(3,ELEM)
IF(NODE>0)THEN
VOL2(NODE)=VOL2(NODE)-AUX
ELSE
IF(LGBC) CALL XABORT('SAL160_2: isolated element')
LGBC=.TRUE.
NODEBC=NODE
ENDIF
IF(LGBC) THEN
IF(NODEBC==G_BC_TYPE(-1).OR.NODEBC==G_BC_TYPE(0).OR.NODEBC==G_BC_TYPE(1))THEN
! compute external surface (loaded in total order number)
ISURF=ISURF2_ELEM(ELEM)
IF(ISURF==0) CALL XABORT('SAL160_2: wrong relation of element - surf ')
CALL SAL162(IPAR(1,ELEM),RPAR(:,ELEM),SURF2(ISURF))
ENDIF
ENDIF
ENDDO
!
END SUBROUTINE SAL160_2
!
SUBROUTINE SAL161(TYPE,RPAR,VOL2)
!
!---------------------------------------------------------------------
!
!Purpose:
! computes 'volume' between an element and the x axis
!
!Parameters: input
! TYPE type of element
! RPAR floating point descriptors for elements
!
!Parameters: output
! VOL2 '2D area' between the element and the horizontal axis
!
!---------------------------------------------------------------------
!
IMPLICIT NONE
INTEGER, INTENT(IN) :: TYPE
REAL(PDB), INTENT(IN), DIMENSION (:) :: RPAR
REAL(PDB), INTENT(OUT) :: VOL2
! DIMENSION RPAR(*)
!****
REAL(PDB) :: YC,EX,EY,R,PHI1,PHI2,COS1,COS2
!****
! volume is added to node- and substracted from node+
YC=RPAR(2)
IF(TYPE==1)THEN
! segment:
EX=RPAR(3)
EY=RPAR(4)
VOL2=EX*(YC+EY/2.)
ELSEIF(TYPE==2)THEN
! whole circle
VOL2=PI*RPAR(3)*RPAR(3)
ELSEIF(TYPE==3)THEN
! arc of circle:
R=RPAR(3)
PHI1=RPAR(4)
PHI2=RPAR(5)
COS1=COS(PHI1)
COS2=COS(PHI2)
VOL2=R*(YC*(COS1-COS2)+(R/2.0)*(PHI2-PHI1+ &
& (SIN(PHI1)*COS1-SIN(PHI2)*COS2)))
ELSE
CALL XABORT('SAL161: not implemented')
ENDIF
!
END SUBROUTINE SAL161
!
SUBROUTINE SAL162(TYPE,RPAR,SURF2)
!
!---------------------------------------------------------------------
!
!Purpose:
! computes surface of a boundary element
!
!Parameters: input
! TYPE type of element
! RPAR floating point descriptors for elements
!
!Parameters: output
! SURF2 '2D length' of element
!
!---------------------------------------------------------------------
!
IMPLICIT NONE
INTEGER, INTENT(IN) :: TYPE
REAL(PDB), INTENT(IN), DIMENSION (:) :: RPAR
REAL(PDB), INTENT(OUT) :: SURF2
!****
IF(TYPE==1)THEN
! segment
SURF2=RPAR(5)
ELSEIF(TYPE<=3)THEN
! arc of circle
SURF2=(RPAR(5)-RPAR(4))*RPAR(3)
ELSE
CALL XABORT('SAL162: not implemented')
ENDIF
!
END SUBROUTINE SAL162
!
SUBROUTINE SAL170(GG)
!
!---------------------------------------------------------------------
!
!Purpose:
! prints out volume, surface and medium info for 2D macros
!
!Parameters: input/output
! GG geometry descriptor
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : G_BC_TYPE
USE SAL_TRACKING_TYPES, ONLY : PRTIND
!****
IMPLICIT NONE
TYPE(T_G_BASIC), INTENT(INOUT) :: GG
INTEGER, PARAMETER :: FOUT =6
!****
IF(PRTIND == 1) THEN
WRITE(FOUT,'(//,10x,''2D geometry'',/,10X,11(''=''),//, &
&I8,'' regions'',/, &
&I8,'' external surfaces'',//)') GG%NB_NODE,GG%NB_SURF2
ENDIF
!
END SUBROUTINE SAL170
!
SUBROUTINE SALSYM(X1,Y1,X2,Y2,X0,Y0,X4,Y4)
!
!---------------------------------------------------------------------
!
!Purpose:
! set the symmetric point (x4,y4) of (x0,y0) relative to symmetry axis
! (x1,y1)->(x2,y2)
!
!Parameters: input
! X1 abscissa coordinate of a point on the symmetry axis
! Y1 ordinate coordinate of a point on the symmetry axis
! X2 abscissa coordinate of a point on the symmetry axis
! Y2 ordinate coordinate of a point on the symmetry axis
! X0 abscissa coordinate of the point to mirror
! Y0 ordinate coordinate of the point to mirror
!
!Parameters: output
! X4 abscissa coordinate of the symmetric point
! Y4 ordinate coordinate of the symmetric point
!
!---------------------------------------------------------------------
!
IMPLICIT NONE
REAL(PDB),INTENT(IN) :: X1,Y1,X2,Y2,X0,Y0
REAL(PDB),INTENT(OUT) :: X4,Y4
REAL(PDB) :: A,B,C,DEN,X3,Y3
A=Y2-Y1; B=X1-X2; C=X2*Y1-X1*Y2;
DEN=A*A+B*B;
IF(DEN==0._PDB) CALL XABORT('SALSYM: division by zero')
X3=(B*(B*X0-A*Y0)-A*C)/DEN;
Y3=(A*(-B*X0+A*Y0)-B*C)/DEN;
X4=X0+2._PDB*(X3-X0); Y4=Y0+2._PDB*(Y3-Y0);
END SUBROUTINE SALSYM
!
SUBROUTINE SALROT(X0,Y0,THETA,X3,Y3,X4,Y4)
!
!---------------------------------------------------------------------
!
!Purpose:
! set the symmetric point (x4,y4) of (x3,y3) relative to the rotation
! center (x1,y1) with angle theta.
!
!Parameters: input
! X0 abscissa coordinate of the rotation center
! Y0 ordinate coordinate of the rotation center
! THETA rotation angle
! X3 abscissa coordinate of the point to mirror
! Y3 ordinate coordinate of the point to mirror
!
!Parameters: output
! X4 abscissa coordinate of the symmetric point
! Y4 ordinate coordinate of the symmetric point
!
!---------------------------------------------------------------------
!
IMPLICIT NONE
REAL(PDB),INTENT(IN) :: X0,Y0,THETA,X3,Y3
REAL(PDB),INTENT(OUT) :: X4,Y4
REAL(PDB) :: A,B
IF(THETA==0.0_PDB) THEN
X4=X3; Y4=Y3
ELSE
A=X3-X0; B=Y3-Y0
X4=X0+A*COS(THETA)-B*SIN(THETA); Y4=Y0+A*SIN(THETA)+B*COS(THETA)
ENDIF
END SUBROUTINE SALROT
!
SUBROUTINE SALFOLD_0(GG,IPASS,IB,NBBCDA,ALIGN,LFOLD,IFOLD)
!
!---------------------------------------------------------------------
!
!Purpose:
! unfold the domain with reflection relative to axis AXIS_XY
!
!Parameters: input
! IB actual unfolding axis
! NBBCDA number of perimeters before unfolding
! ALIGN unfolding axes
! LFOLD identification flag to all unfolding axes
!
!Parameters: input/output
! GG geometry descriptor
!
!Parameters: output
! IFOLD folded element indices corresponding to unfolded ones
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : NIPAR,NRPAR,LENGTHX,LENGTHY
USE SAL_NUMERIC_MOD, ONLY : FINDLC,DET_ROSETTA
IMPLICIT NONE
INTEGER, INTENT(IN) :: IPASS,IB,NBBCDA
LOGICAL, DIMENSION(NBBCDA), INTENT(IN) :: LFOLD
REAL(PDB), DIMENSION(3,3,NBBCDA), INTENT(INOUT) :: ALIGN
TYPE(T_G_BASIC), INTENT(INOUT) :: GG
INTEGER, DIMENSION(:), INTENT(OUT) :: IFOLD
!
! AXIS_XY values of AXIS_X1, AXIS_Y1, AXIS_X2 and AXIS_Y2 for the
! reflecting axis
INTEGER :: ELEM,TYPE,OK,TMP_NB_ELEM,TMP_NBBCDA,I,J,IBC,INDBC,IAUX
INTEGER, DIMENSION(3) :: IPAR_TMP
REAL(PDB), DIMENSION(4) :: AXIS_XY
REAL(PDB), DIMENSION(6) :: RPAR_TMP
REAL(PDB),PARAMETER :: EPS=1.0E-5_PDB
REAL(PDB) :: X1,X2,X4,Y1,Y2,Y4,DX4,DY4,RAD,THETA1,THETA2,X1B,Y1B,X4B, &
Y4B,XMIN,YMIN,XMAX,YMAX,PHI1,PHI2,DELPHI,DET1,DET2
!
! allocatable arrays
INTEGER, ALLOCATABLE, DIMENSION(:) :: PERIM_ELEM
LOGICAL, ALLOCATABLE, DIMENSION(:) :: ISPERIM
INTEGER, POINTER, DIMENSION(:,:) :: TMP_IPAR
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: I2
REAL(PDB), ALLOCATABLE, DIMENSION(:) :: ANGLE,ALBEDO
REAL(PDB), POINTER, DIMENSION(:,:) :: TMP_RPAR
REAL(PDB), ALLOCATABLE, DIMENSION(:,:,:) :: ALIGN2
TYPE(T_SALBCDATA), POINTER, DIMENSION(:) :: TMP_BCDATAREAD
!
! compute size of the unfold geometry
XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
DO ELEM=1,GG%NB_ELEM
TYPE=GG%IPAR(1,ELEM)
IF(TYPE==1) THEN
X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM);
XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
XMIN=MIN(XMIN,X2); YMIN=MIN(YMIN,Y2); XMAX=MAX(XMAX,X2); YMAX=MAX(YMAX,Y2);
ENDIF
ENDDO
LENGTHX=XMAX-XMIN; LENGTHY=YMAX-YMIN;
!
! allocate new surfacic element containers
XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
ALLOCATE(TMP_IPAR(NIPAR,3*GG%NB_ELEM), TMP_RPAR(NRPAR,3*GG%NB_ELEM), &
I2(2,GG%NB_ELEM), STAT=OK)
IF(OK/=0) CALL XABORT('SALFOLD_0: not enough memory')
TMP_IPAR(:,:)=0; TMP_RPAR(:,:)=0._PDB;
!
! loop over old elements
TMP_NB_ELEM=0
THETA1=0._PDB; THETA2=0._PDB;
I2(:2,:GG%NB_ELEM)=0
AXIS_XY(1)=ALIGN(1,1,IB) ; AXIS_XY(2)=ALIGN(1,2,IB)
AXIS_XY(3)=ALIGN(2,1,IB) ; AXIS_XY(4)=ALIGN(2,2,IB)
OUT1: DO ELEM=1,GG%NB_ELEM
TYPE=GG%IPAR(1,ELEM)
X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM); RAD=GG%RPAR(3,ELEM)
IF(TYPE==1) THEN
XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM)
! Cycle if this element is sitting on an unfolding axe
DO IBC=1,NBBCDA
IF(.NOT.LFOLD(IBC)) CYCLE
IF((IPASS.EQ.1).AND.(IBC.NE.IB)) CYCLE
ALIGN(3,1,IBC)=X1; ALIGN(3,2,IBC)=Y1
DET1 = DET_ROSETTA(ALIGN(1,1,IBC),3)
ALIGN(3,1,IBC)=X2; ALIGN(3,2,IBC)=Y2;
DET2 = DET_ROSETTA(ALIGN(1,1,IBC),3)
IF((ABS(DET1).LE.1.0E-4).AND.(ABS(DET2).LE.1.0E-4)) CYCLE OUT1
ENDDO
!
CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X1,Y1,X4,Y4)
CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X2,Y2,DX4,DY4)
ELSE IF(TYPE==2) THEN
CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X1,Y1,X4,Y4)
THETA1=0._PDB; THETA2=0._PDB;
ELSE IF(TYPE==3) THEN
CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X1,Y1,X4,Y4)
X1B=X1+RAD*COS(GG%RPAR(4,ELEM)); Y1B=Y1+RAD*SIN(GG%RPAR(4,ELEM));
CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X1B,Y1B,X4B,Y4B)
IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 > 0._PDB)) THEN
THETA1=PI/2._PDB
ELSE IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 < 0._PDB)) THEN
THETA1=3._PDB*PI/2._PDB
ELSE IF(X4B-X4 > 0._PDB) THEN
THETA1=ATAN((Y4B-Y4)/(X4B-X4))
ELSE
THETA1=ATAN((Y4B-Y4)/(X4B-X4))+PI
ENDIF
X1B=X1+RAD*COS(GG%RPAR(5,ELEM)); Y1B=Y1+RAD*SIN(GG%RPAR(5,ELEM));
CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X1B,Y1B,X4B,Y4B)
IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 > 0._PDB)) THEN
THETA2=PI/2._PDB
ELSE IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 < 0._PDB)) THEN
THETA2=3._PDB*PI/2._PDB
ELSE IF(X4B-X4 > 0._PDB) THEN
THETA2=ATAN((Y4B-Y4)/(X4B-X4))
ELSE
THETA2=ATAN((Y4B-Y4)/(X4B-X4))+PI
ENDIF
ELSE
WRITE(*,*) " elem=",ELEM," type=",TYPE
CALL XABORT('SALFOLD_0: invalid type of surfacic element')
ENDIF
IPAR_TMP(:3)=0
RPAR_TMP(:6)=0_PDB
RPAR_TMP(1)=X4; RPAR_TMP(2)=Y4;
IPAR_TMP(1)=TYPE;
IF(TYPE==1) THEN
RPAR_TMP(3)=DX4-X4; RPAR_TMP(4)=DY4-Y4;
RPAR_TMP(5)=SQRT(RPAR_TMP(3)**2+RPAR_TMP(4)**2)
XMIN=MIN(XMIN,X4); YMIN=MIN(YMIN,Y4); XMAX=MAX(XMAX,X4); YMAX=MAX(YMAX,Y4);
XMIN=MIN(XMIN,DX4); YMIN=MIN(YMIN,DY4); XMAX=MAX(XMAX,DX4); YMAX=MAX(YMAX,DY4);
IPAR_TMP(2)=GG%IPAR(3,ELEM); IPAR_TMP(3)=GG%IPAR(2,ELEM);
ELSE IF((TYPE==2).OR.(TYPE==3)) THEN
RPAR_TMP(3)=GG%RPAR(3,ELEM) ! RADIUS
IF(THETA2>THETA1) THETA1=THETA1+2._PDB*PI
PHI1=THETA2; DELPHI=THETA1-THETA2;
IF(DELPHI>0._PDB)THEN
PHI2=PHI1+DELPHI
ELSE
PHI2=PHI1
PHI1=PHI1+DELPHI
ENDIF
IF(TYPE==3)THEN
! arc of circle: put phi1 within 0 and 2*pi
IF(PHI1>2._PDB*PI)THEN
IAUX=INT(PHI1/(2._PDB*PI))
DELPHI=(2._PDB*PI)*IAUX
PHI1=PHI1-DELPHI ; PHI2=PHI2-DELPHI
ELSEIF(PHI1<0._PDB)THEN
IAUX=INT((-PHI1+1.D-7)/(2._PDB*PI))+1
DELPHI=(2._PDB*PI)*IAUX
PHI1=PHI1+DELPHI ; PHI2=PHI2+DELPHI
ENDIF
ENDIF
RPAR_TMP(4)=PHI1; RPAR_TMP(5)=PHI2; ! ANGLES
IPAR_TMP(2)=GG%IPAR(2,ELEM); IPAR_TMP(3)=GG%IPAR(3,ELEM)
ENDIF
RPAR_TMP(6)=0._PDB
IF(IPASS==2) THEN
! remove identical elements at pass 2
DO I=1,TMP_NB_ELEM
IF((ABS(TMP_RPAR(1,I)-RPAR_TMP(1))<=10.0*EPS).AND. &
(ABS(TMP_RPAR(2,I)-RPAR_TMP(2))<=10.0*EPS).AND. &
(ABS(TMP_RPAR(3,I)-RPAR_TMP(3))<=10.0*EPS).AND. &
(ABS(TMP_RPAR(4,I)-RPAR_TMP(4))<=10.0*EPS).AND. &
(ABS(TMP_RPAR(5,I)-RPAR_TMP(5))<=10.0*EPS)) THEN
CYCLE OUT1
ENDIF
ENDDO
ENDIF
TMP_NB_ELEM=TMP_NB_ELEM+1
IF(TMP_NB_ELEM>3*GG%NB_ELEM) CALL XABORT('SALFOLD_0: tmp_nb_elem overflow(1)')
TMP_IPAR(:3,TMP_NB_ELEM)=IPAR_TMP(:3)
TMP_RPAR(:6,TMP_NB_ELEM)=RPAR_TMP(:6)
I2(2,ELEM)=TMP_NB_ELEM
IF(IPASS==2) THEN
! remove identical elements at pass 2
DO I=1,TMP_NB_ELEM
IF((ABS(TMP_RPAR(1,I)-GG%RPAR(1,ELEM))<=10.0*EPS).AND. &
(ABS(TMP_RPAR(2,I)-GG%RPAR(2,ELEM))<=10.0*EPS).AND. &
(ABS(TMP_RPAR(3,I)-GG%RPAR(3,ELEM))<=10.0*EPS).AND. &
(ABS(TMP_RPAR(4,I)-GG%RPAR(4,ELEM))<=10.0*EPS).AND. &
(ABS(TMP_RPAR(5,I)-GG%RPAR(5,ELEM))<=10.0*EPS)) THEN
CYCLE OUT1
ENDIF
ENDDO
ENDIF
TMP_NB_ELEM=TMP_NB_ELEM+1
IF(TMP_NB_ELEM>3*GG%NB_ELEM) CALL XABORT('SALFOLD_0: tmp_nb_elem overflow(2)')
TMP_IPAR(:,TMP_NB_ELEM)=GG%IPAR(:,ELEM)
TMP_RPAR(:,TMP_NB_ELEM)=GG%RPAR(:,ELEM)
I2(1,ELEM)=TMP_NB_ELEM
ENDDO OUT1
DEALLOCATE(GG%IPAR,GG%RPAR)
DO ELEM=1,GG%NB_ELEM
IF(I2(1,ELEM).GT.2*GG%NB_ELEM) CALL XABORT('SALFOLD_0: IFOLD overflow')
IF(I2(1,ELEM).NE.0) IFOLD(I2(1,ELEM))=ELEM
IF(I2(2,ELEM).NE.0) IFOLD(I2(2,ELEM))=ELEM
ENDDO
GG%IPAR=>TMP_IPAR; GG%RPAR=>TMP_RPAR;
GG%NB_ELEM=TMP_NB_ELEM
!
! loop over boundary conditions
ALLOCATE(ISPERIM(GG%NB_ELEM),ALIGN2(3,3,GG%NB_ELEM),ANGLE(GG%NB_ELEM), &
& ALBEDO(GG%NB_ELEM),PERIM_ELEM(GG%NB_ELEM))
ALIGN2(:3,3,:GG%NB_ELEM)=1.0_PDB
PERIM_ELEM(:GG%NB_ELEM)=0
ISPERIM(:GG%NB_ELEM)=.FALSE.
TMP_NBBCDA=0
DO IBC=1,GG%NBBCDA
DO I=1,GG%BCDATAREAD(IBC)%NBER
INDBC=GG%BCDATAREAD(IBC)%ELEMNB(I)
IF(INDBC==0) CYCLE
IF(I2(1,INDBC)/=0) ISPERIM(I2(1,INDBC))=.TRUE.
IF(I2(2,INDBC)/=0) ISPERIM(I2(2,INDBC))=.TRUE.
ENDDO
ENDDO
ITER0: DO ELEM=1,GG%NB_ELEM
IF(.NOT.ISPERIM(ELEM)) CYCLE
X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM);
X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
DO J=1,TMP_NBBCDA
ALIGN2(3,1,J)=X1; ALIGN2(3,2,J)=Y1;
DET1 = DET_ROSETTA(ALIGN2(1,1,J),3)
ALIGN2(3,1,J)=X2; ALIGN2(3,2,J)=Y2;
DET2 = DET_ROSETTA(ALIGN2(1,1,J),3)
IF((ABS(DET1).LE.1.0E-4).AND.(ABS(DET2).LE.1.0E-4)) THEN
PERIM_ELEM(ELEM) = J
CYCLE ITER0
ENDIF
ENDDO
TMP_NBBCDA=TMP_NBBCDA+1
PERIM_ELEM(ELEM) = TMP_NBBCDA
ANGLE(TMP_NBBCDA)=ATAN((Y2-Y1)/(X2-X1))
IF(ABS(ANGLE(TMP_NBBCDA)).LE.1.0E-5) ANGLE(TMP_NBBCDA)=0.0
ALIGN2(1,1,TMP_NBBCDA)=X1; ALIGN2(1,2,TMP_NBBCDA)=Y1
ALIGN2(2,1,TMP_NBBCDA)=X2; ALIGN2(2,2,TMP_NBBCDA)=Y2
! Recover albedo from folded geometry
ALBEDO(TMP_NBBCDA)=1.0
DO IBC=1,GG%NBBCDA
J = FINDLC(GG%BCDATAREAD(IBC)%ELEMNB,ELEM)
IF(J.EQ.1) THEN
ALBEDO(TMP_NBBCDA)=GG%BCDATAREAD(IBC)%BCDATA(6)
EXIT
ENDIF
ENDDO
ENDDO ITER0
ALLOCATE(TMP_BCDATAREAD(TMP_NBBCDA))
DO IBC=1,TMP_NBBCDA
TMP_BCDATAREAD(IBC)%NBER = COUNT(PERIM_ELEM(:GG%NB_ELEM) == IBC)
ALLOCATE(TMP_BCDATAREAD(IBC)%ELEMNB(TMP_BCDATAREAD(IBC)%NBER))
TMP_BCDATAREAD(IBC)%SALTYPE = 0
J=0
DO I=1,GG%NB_ELEM
IF(PERIM_ELEM(I) == IBC) THEN
J=J+1
TMP_BCDATAREAD(IBC)%ELEMNB(J) = I
ENDIF
ENDDO
TMP_BCDATAREAD(IBC)%BCDATA(1) = ALIGN2(1,1,IBC)
TMP_BCDATAREAD(IBC)%BCDATA(2) = ALIGN2(1,2,IBC)
TMP_BCDATAREAD(IBC)%BCDATA(3) = COS(ANGLE(IBC))
TMP_BCDATAREAD(IBC)%BCDATA(4) = SIN(ANGLE(IBC))
TMP_BCDATAREAD(IBC)%BCDATA(5) = ANGLE(IBC)
TMP_BCDATAREAD(IBC)%BCDATA(6) = ALBEDO(IBC)
ENDDO
DEALLOCATE(I2,PERIM_ELEM,ALBEDO,ANGLE,ALIGN2,ISPERIM)
DEALLOCATE(GG%BCDATAREAD)
GG%BCDATAREAD=>TMP_BCDATAREAD
GG%NBBCDA=TMP_NBBCDA
GG%ALBEDO=1.D0
END SUBROUTINE SALFOLD_0
!
SUBROUTINE SALFOLD_1(HSYM,GG)
!
!---------------------------------------------------------------------
!
!Purpose:
! unfold the domain with reflection
!
!Parameters: input
! HSYM: type of symmetry: 'DIAG': diagonal symmetry; 'SYMX': symmetry
! relative to X axis; 'SYMY': symmetry relative to Y axis;
! 'SA60': SA60 symmetry; 'S30': S30 symmetry
!
!Parameters: input/output
! GG geometry descriptor
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : NIPAR,NRPAR,LENGTHX,LENGTHY
USE SAL_NUMERIC_MOD, ONLY : FINDLC,DET_ROSETTA
IMPLICIT NONE
CHARACTER(LEN=4),INTENT(IN) :: HSYM
TYPE(T_G_BASIC), INTENT(INOUT) :: GG
!
INTEGER :: ELEM,TYPE,OK,TMP_NB_ELEM,TMP_NBBCDA,I,J,IBC,INDBC,IAUX,ISYM,NSYM
REAL(PDB),PARAMETER :: EPS=1.0E-5_PDB
REAL(PDB) :: AXIS_X1(2),AXIS_X2(2),AXIS_Y1(2),AXIS_Y2(2)
REAL(PDB) :: X1,X2,X4,Y1,Y2,Y4,DX4,DY4,RAD,THETA1,THETA2,X1B,Y1B,X4B, &
Y4B,XMIN,YMIN,XMAX,YMAX,PHI1,PHI2,DELPHI,DET1,DET2,ALIGN3(3,3)
LOGICAL :: NOCOPY(2)
!
! allocatable arrays
INTEGER, ALLOCATABLE, DIMENSION(:) :: PERIM_ELEM
LOGICAL, ALLOCATABLE, DIMENSION(:) :: ISPERIM
INTEGER, POINTER, DIMENSION(:,:) :: TMP_IPAR
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: I2
REAL(PDB), ALLOCATABLE, DIMENSION(:) :: ANGLE,ALBEDO
REAL(PDB), POINTER, DIMENSION(:,:) :: TMP_RPAR
REAL(PDB), ALLOCATABLE, DIMENSION(:,:,:) :: ALIGN
TYPE(T_SALBCDATA), POINTER, DIMENSION(:) :: TMP_BCDATAREAD
!
! compute size of the unfold geometry
XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
DO ELEM=1,GG%NB_ELEM
TYPE=GG%IPAR(1,ELEM)
IF(TYPE==1) THEN
X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM);
XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
XMIN=MIN(XMIN,X2); YMIN=MIN(YMIN,Y2); XMAX=MAX(XMAX,X2); YMAX=MAX(YMAX,Y2);
ENDIF
ENDDO
LENGTHX=XMAX-XMIN; LENGTHY=YMAX-YMIN;
!
NSYM=1
IF(HSYM=='SYMX') THEN ! define symmetry axis
AXIS_X1(1)=0._PDB; AXIS_X2(1)=100._PDB; AXIS_Y1(1)=0._PDB; AXIS_Y2(1)=0._PDB;
ELSE IF(HSYM=='SYMY') THEN
AXIS_X1(1)=0._PDB; AXIS_X2(1)=0._PDB; AXIS_Y1(1)=0._PDB; AXIS_Y2(1)=100._PDB;
ELSE IF(HSYM=='DIAG') THEN
AXIS_X1(1)=0._PDB; AXIS_X2(1)=100._PDB; AXIS_Y1(1)=0._PDB; AXIS_Y2(1)=100._PDB;
ELSE IF(HSYM=='SA60') THEN
! the hexagon side is on south
NSYM=2
AXIS_X1(1)=XMIN; AXIS_Y1(1)=YMIN; AXIS_X2(1)=XMIN+0.5_PDB*LENGTHX
AXIS_Y2(1)=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
AXIS_X1(2)=XMIN+LENGTHX; AXIS_Y1(2)=YMIN; AXIS_X2(2)=XMIN+0.5_PDB*LENGTHX
AXIS_Y2(2)=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
ELSE IF(HSYM=='SB60') THEN
! the hexagon side is on north-east
NSYM=2
AXIS_X1(1)=XMIN; AXIS_Y1(1)=YMIN; AXIS_X2(1)=XMIN+0.5_PDB*LENGTHX
AXIS_Y2(1)=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
AXIS_X1(2)=XMIN; AXIS_Y1(2)=YMIN; AXIS_X2(2)=XMIN
AXIS_Y2(2)=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
ELSE IF(HSYM=='S30') THEN
AXIS_X1(1)=XMIN; AXIS_Y1(1)=YMIN; AXIS_X2(1)=XMIN+0.75_PDB*LENGTHX
AXIS_Y2(1)=YMIN+0.25_PDB*SQRT(3._PDB)*LENGTHX
ELSE IF(HSYM=='SYMH') THEN
AXIS_X1(1)=XMIN ; AXIS_Y1(1)=YMIN+0.25_PDB*SQRT(3._PDB)*LENGTHX
AXIS_X2(1)=XMIN+LENGTHX ; AXIS_Y2(1)=AXIS_Y1(1)
ELSE
CALL XABORT('SALFOLD_1: invalid type of symmetry axis')
ENDIF
XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
!
! allocate new surfacic element containers
ALLOCATE(TMP_IPAR(NIPAR,3*GG%NB_ELEM), TMP_RPAR(NRPAR,3*GG%NB_ELEM), &
I2(3,GG%NB_ELEM), STAT=OK)
IF(OK/=0) CALL XABORT('SALFOLD_1: not enough memory')
TMP_IPAR(:,:)=0; TMP_RPAR(:,:)=0._PDB;
!
! loop over old elements
TMP_NB_ELEM=0
THETA1=0._PDB; THETA2=0._PDB;
DO ELEM=1,GG%NB_ELEM
I2(:,ELEM)=0
TYPE=GG%IPAR(1,ELEM)
NOCOPY(:2)=.FALSE.
DO ISYM=1,NSYM
X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM); RAD=GG%RPAR(3,ELEM)
IF(TYPE==1) THEN
XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X1,Y1,X4,Y4)
CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X2,Y2,DX4,DY4)
NOCOPY(ISYM)=ABS(X1-X4)<10.0*EPS .AND. ABS(Y1-Y4)<10.0*EPS .AND. &
ABS(X2-DX4)<10.0*EPS .AND. ABS(Y2-DY4)<10.0*EPS
IF(NOCOPY(ISYM)) CYCLE
IF(HSYM=='SB60') THEN
IF(ISYM==1) THEN
IF((ABS(Y1)<10.0*EPS).AND.(ABS(Y2)<10.0*EPS)) CYCLE
ELSE
IF((ABS(2._PDB*ABS(Y1-YMIN)-ABS(X4-X1)*SQRT(3._PDB))<10.0*EPS .AND. &
& ABS(Y1-Y4)<10.0*EPS .AND. ABS(2._PDB*ABS(Y2-YMIN)-ABS(DX4-X2)*SQRT(3._PDB))<10.0*EPS &
& .AND. ABS(Y2-DY4)<10.0*EPS)) CYCLE
ALIGN3(1,2)=YMIN ; ALIGN3(2,2)=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
ALIGN3(1,1)=-XMIN
ALIGN3(2,1)=-XMIN-0.5_PDB*LENGTHX
ALIGN3(:3,3)=1.0_PDB
ALIGN3(3,1)=X4; ALIGN3(3,2)=Y4;
DET1 = DET_ROSETTA(ALIGN3(1,1),3)
ALIGN3(3,1)=DX4; ALIGN3(3,2)=DY4;
DET2 = DET_ROSETTA(ALIGN3(1,1),3)
IF((ABS(DET1).LE.1.0E-4).AND.(ABS(DET2).LE.1.0E-4)) CYCLE
ENDIF
ENDIF
ELSE IF(TYPE==2) THEN
CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X1,Y1,X4,Y4)
THETA1=0._PDB; THETA2=0._PDB;
ELSE IF(TYPE==3) THEN
CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X1,Y1,X4,Y4)
X1B=X1+RAD*COS(GG%RPAR(4,ELEM)); Y1B=Y1+RAD*SIN(GG%RPAR(4,ELEM));
CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X1B,Y1B,X4B,Y4B)
IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 > 0._PDB)) THEN
THETA1=PI/2._PDB
ELSE IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 < 0._PDB)) THEN
THETA1=3._PDB*PI/2._PDB
ELSE IF(X4B-X4 > 0._PDB) THEN
THETA1=ATAN((Y4B-Y4)/(X4B-X4))
ELSE
THETA1=ATAN((Y4B-Y4)/(X4B-X4))+PI
ENDIF
X1B=X1+RAD*COS(GG%RPAR(5,ELEM)); Y1B=Y1+RAD*SIN(GG%RPAR(5,ELEM));
CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X1B,Y1B,X4B,Y4B)
IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 > 0._PDB)) THEN
THETA2=PI/2._PDB
ELSE IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 < 0._PDB)) THEN
THETA2=3._PDB*PI/2._PDB
ELSE IF(X4B-X4 > 0._PDB) THEN
THETA2=ATAN((Y4B-Y4)/(X4B-X4))
ELSE
THETA2=ATAN((Y4B-Y4)/(X4B-X4))+PI
ENDIF
ELSE
WRITE(*,*) " elem=",ELEM," type=",TYPE," isym=",ISYM
CALL XABORT('SALFOLD_1: invalid type of surfacic element')
ENDIF
TMP_NB_ELEM=TMP_NB_ELEM+1
IF(TMP_NB_ELEM>3*GG%NB_ELEM) CALL XABORT('SALFOLD_1: tmp_nb_elem overflow(1)')
I2(ISYM+1,ELEM)=TMP_NB_ELEM
TMP_RPAR(1,TMP_NB_ELEM)=X4; TMP_RPAR(2,TMP_NB_ELEM)=Y4;
TMP_IPAR(1,TMP_NB_ELEM)=TYPE;
IF(TYPE==1) THEN
TMP_RPAR(3,TMP_NB_ELEM)=DX4-X4; TMP_RPAR(4,TMP_NB_ELEM)=DY4-Y4;
TMP_RPAR(5,TMP_NB_ELEM)=SQRT(TMP_RPAR(3,TMP_NB_ELEM)**2+TMP_RPAR(4,TMP_NB_ELEM)**2)
XMIN=MIN(XMIN,X4); YMIN=MIN(YMIN,Y4); XMAX=MAX(XMAX,X4); YMAX=MAX(YMAX,Y4);
XMIN=MIN(XMIN,DX4); YMIN=MIN(YMIN,DY4); XMAX=MAX(XMAX,DX4); YMAX=MAX(YMAX,DY4);
TMP_IPAR(2,TMP_NB_ELEM)=GG%IPAR(3,ELEM); TMP_IPAR(3,TMP_NB_ELEM)=GG%IPAR(2,ELEM);
ELSE IF((TYPE==2).OR.(TYPE==3)) THEN
TMP_RPAR(3,TMP_NB_ELEM)=GG%RPAR(3,ELEM) ! RADIUS
IF(THETA2>THETA1) THETA1=THETA1+2._PDB*PI
PHI1=THETA2; DELPHI=THETA1-THETA2;
IF(DELPHI>0._PDB)THEN
PHI2=PHI1+DELPHI
ELSE
PHI2=PHI1
PHI1=PHI1+DELPHI
ENDIF
IF(TYPE==3)THEN
! arc of circle: put phi1 within 0 and 2*pi
IF(PHI1>2._PDB*PI)THEN
IAUX=INT(PHI1/(2._PDB*PI))
DELPHI=(2._PDB*PI)*IAUX
PHI1=PHI1-DELPHI ; PHI2=PHI2-DELPHI
ELSEIF(PHI1<0._PDB)THEN
IAUX=INT((-PHI1+1.D-7)/(2._PDB*PI))+1
DELPHI=(2._PDB*PI)*IAUX
PHI1=PHI1+DELPHI ; PHI2=PHI2+DELPHI
ENDIF
ENDIF
TMP_RPAR(4,TMP_NB_ELEM)=PHI1; TMP_RPAR(5,TMP_NB_ELEM)=PHI2; ! ANGLES
TMP_IPAR(2,TMP_NB_ELEM)=GG%IPAR(2,ELEM); TMP_IPAR(3,TMP_NB_ELEM)=GG%IPAR(3,ELEM)
ENDIF
TMP_RPAR(6,TMP_NB_ELEM)=0._PDB
ENDDO
IF((.NOT.NOCOPY(1)).AND.(.NOT.NOCOPY(2))) THEN
TMP_NB_ELEM=TMP_NB_ELEM+1
IF(TMP_NB_ELEM>3*GG%NB_ELEM) CALL XABORT('SALFOLD_1: tmp_nb_elem overflow(2)')
TMP_IPAR(:,TMP_NB_ELEM)=GG%IPAR(:,ELEM)
TMP_RPAR(:,TMP_NB_ELEM)=GG%RPAR(:,ELEM)
I2(1,ELEM)=TMP_NB_ELEM
ENDIF
ENDDO
DEALLOCATE(GG%IPAR,GG%RPAR)
GG%IPAR=>TMP_IPAR; GG%RPAR=>TMP_RPAR;
GG%NB_ELEM=TMP_NB_ELEM
!
! translate the domain
DO ELEM=1,GG%NB_ELEM
GG%RPAR(1,ELEM)=GG%RPAR(1,ELEM)-XMIN
GG%RPAR(2,ELEM)=GG%RPAR(2,ELEM)-YMIN
ENDDO
LENGTHX=XMAX-XMIN ; LENGTHY=YMAX-YMIN ;
!
! loop over boundary conditions
TMP_NBBCDA=0
ALLOCATE(ISPERIM(GG%NB_ELEM),ALIGN(3,3,GG%NB_ELEM),ANGLE(GG%NB_ELEM), &
& ALBEDO(GG%NB_ELEM),PERIM_ELEM(GG%NB_ELEM))
ALIGN(:3,3,:GG%NB_ELEM)=1.0_PDB
PERIM_ELEM(:GG%NB_ELEM)=0
ISPERIM(:GG%NB_ELEM)=.FALSE.
DO IBC=1,GG%NBBCDA
DO I=1,GG%BCDATAREAD(IBC)%NBER
INDBC=GG%BCDATAREAD(IBC)%ELEMNB(I)
IF(INDBC==0) CYCLE
DO ISYM=1,NSYM+1
IF(I2(ISYM,INDBC)/=0) ISPERIM(I2(ISYM,INDBC))=.TRUE.
ENDDO
ENDDO
ENDDO
ITER0: DO ELEM=1,GG%NB_ELEM
IF(.NOT.ISPERIM(ELEM)) CYCLE
X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM);
X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
DO J=1,TMP_NBBCDA
ALIGN(3,1,J)=X1; ALIGN(3,2,J)=Y1;
DET1 = DET_ROSETTA(ALIGN(1,1,J),3)
ALIGN(3,1,J)=X2; ALIGN(3,2,J)=Y2;
DET2 = DET_ROSETTA(ALIGN(1,1,J),3)
IF((ABS(DET1).LE.1.0E-4).AND.(ABS(DET2).LE.1.0E-4)) THEN
PERIM_ELEM(ELEM) = J
CYCLE ITER0
ENDIF
ENDDO
TMP_NBBCDA=TMP_NBBCDA+1
PERIM_ELEM(ELEM) = TMP_NBBCDA
ANGLE(TMP_NBBCDA)=ATAN((Y2-Y1)/(X2-X1))
IF(ABS(ANGLE(TMP_NBBCDA)).LE.1.0E-5) ANGLE(TMP_NBBCDA)=0.0
ALIGN(1,1,TMP_NBBCDA)=X1; ALIGN(1,2,TMP_NBBCDA)=Y1
ALIGN(2,1,TMP_NBBCDA)=X2; ALIGN(2,2,TMP_NBBCDA)=Y2
! Recover albedo from folded geometry
ALBEDO(TMP_NBBCDA)=1.0
DO IBC=1,GG%NBBCDA
J = FINDLC(GG%BCDATAREAD(IBC)%ELEMNB,ELEM)
IF(J.EQ.1) THEN
ALBEDO(TMP_NBBCDA)=GG%BCDATAREAD(IBC)%BCDATA(6)
EXIT
ENDIF
ENDDO
ENDDO ITER0
ALLOCATE(TMP_BCDATAREAD(TMP_NBBCDA))
DO IBC=1,TMP_NBBCDA
TMP_BCDATAREAD(IBC)%NBER = COUNT(PERIM_ELEM(:GG%NB_ELEM) == IBC)
ALLOCATE(TMP_BCDATAREAD(IBC)%ELEMNB(TMP_BCDATAREAD(IBC)%NBER))
TMP_BCDATAREAD(IBC)%SALTYPE = 0
J=0
DO I=1,GG%NB_ELEM
IF(PERIM_ELEM(I) == IBC) THEN
J=J+1
TMP_BCDATAREAD(IBC)%ELEMNB(J) = I
ENDIF
ENDDO
TMP_BCDATAREAD(IBC)%BCDATA(1) = ALIGN(1,1,IBC)
TMP_BCDATAREAD(IBC)%BCDATA(2) = ALIGN(1,2,IBC)
TMP_BCDATAREAD(IBC)%BCDATA(3) = COS(ANGLE(IBC))
TMP_BCDATAREAD(IBC)%BCDATA(4) = SIN(ANGLE(IBC))
TMP_BCDATAREAD(IBC)%BCDATA(5) = ANGLE(IBC)
TMP_BCDATAREAD(IBC)%BCDATA(6) = ALBEDO(IBC)
ENDDO
DEALLOCATE(I2,PERIM_ELEM,ALBEDO,ANGLE,ALIGN,ISPERIM)
DEALLOCATE(GG%BCDATAREAD)
GG%BCDATAREAD=>TMP_BCDATAREAD
GG%NBBCDA=TMP_NBBCDA
GG%ALBEDO=1.D0
END SUBROUTINE SALFOLD_1
!
SUBROUTINE SALFOLD_2(HSYM,GG)
!
!---------------------------------------------------------------------
!
!Purpose:
! unfold the domain with rotation
!
!Parameters: input
! HSYM: type of symmetry: SR60': dual 60-degree rotation; R180: 180-degree
! rotation; R120: dual 120-degree rotation
!
!Parameters: input/output
! GG geometry descriptor
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : NIPAR,NRPAR,LENGTHX,LENGTHY
IMPLICIT NONE
CHARACTER(LEN=4),INTENT(IN) :: HSYM
TYPE(T_G_BASIC), INTENT(INOUT) :: GG
!
INTEGER :: ELEM,ELEM2,TYPE,OK,TMP_NB_ELEM,ISYM,NSYM,IAUX
REAL(PDB) :: THROT(3),X1,X2,X4,Y1,Y2,Y4,DX4,DY4,RAD,THETA1,THETA2,X1B,Y1B,X4B, &
Y4B,XMIN,YMIN,XMAX,YMAX,CENTER_X,CENTER_Y,DELPHI
REAL(PDB),PARAMETER :: EPS=1.0E-5_PDB
!
! allocatable arrays
LOGICAL, ALLOCATABLE, DIMENSION(:) :: ELEM_DUP
INTEGER, POINTER, DIMENSION(:,:) :: TMP_IPAR
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: I2
REAL(PDB), POINTER, DIMENSION(:,:) :: TMP_RPAR
!
! compute size of the unfold geometry
XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
DO ELEM=1,GG%NB_ELEM
TYPE=GG%IPAR(1,ELEM)
IF(TYPE==1) THEN
X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM);
XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
XMIN=MIN(XMIN,X2); YMIN=MIN(YMIN,Y2); XMAX=MAX(XMAX,X2); YMAX=MAX(YMAX,Y2);
ENDIF
ENDDO
LENGTHX=XMAX-XMIN; LENGTHY=YMAX-YMIN;
!
NSYM=0
IF(HSYM=='SR60') THEN ! define rotation center
NSYM=3
CENTER_X=XMIN+0.5_PDB*LENGTHX; CENTER_Y=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
THROT(1)=0.0_PDB; THROT(2)=-PI/3.0_PDB; THROT(3)=PI/3.0_PDB
ELSE IF(HSYM=='R180') THEN
NSYM=2
CENTER_X=XMIN+0.5_PDB*LENGTHX; CENTER_Y=YMIN+0.25_PDB*SQRT(3._PDB)*LENGTHX
THROT(1)=0.0_PDB; THROT(2)=PI;
ELSE IF(HSYM=='R120') THEN
NSYM=3
CENTER_X=XMIN+0.5_PDB*LENGTHX/1.5_PDB; CENTER_Y=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX/1.5_PDB
THROT(1)=0.0_PDB; THROT(2)=-2.0_PDB*PI/3.0_PDB; THROT(3)=2.0_PDB*PI/3.0_PDB
ELSE
CALL XABORT('SALFOLD_2: invalid type of symmetry axis')
ENDIF
XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
!
! allocate new surfacic element containers
ALLOCATE(I2(NSYM,GG%NB_ELEM))
ALLOCATE(TMP_IPAR(NIPAR,3*GG%NB_ELEM), TMP_RPAR(NRPAR,3*GG%NB_ELEM), STAT=OK)
IF(OK/=0) CALL XABORT('SALFOLD_2: not enough memory')
I2(:NSYM,:GG%NB_ELEM)=0
TMP_IPAR(:,:)=0; TMP_RPAR(:,:)=0._PDB;
!
! loop over old elements
TMP_NB_ELEM=0
THETA1=0._PDB; THETA2=0._PDB;
DO ELEM=1,GG%NB_ELEM
TYPE=GG%IPAR(1,ELEM)
DO ISYM=1,NSYM
X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM); RAD=GG%RPAR(3,ELEM)
IF(TYPE==1) THEN
XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
CALL SALROT(CENTER_X,CENTER_Y,THROT(ISYM),X1,Y1,X4,Y4)
CALL SALROT(CENTER_X,CENTER_Y,THROT(ISYM),X2,Y2,DX4,DY4)
ELSE IF(TYPE==2) THEN
CALL SALROT(CENTER_X,CENTER_Y,THROT(ISYM),X1,Y1,X4,Y4)
THETA1=0._PDB; THETA2=0._PDB;
ELSE IF(TYPE==3) THEN
DELPHI=GG%RPAR(5,ELEM)-GG%RPAR(4,ELEM)
X1B=X1+RAD*COS(GG%RPAR(4,ELEM)); Y1B=Y1+RAD*SIN(GG%RPAR(4,ELEM));
CALL SALROT(CENTER_X,CENTER_Y,THROT(ISYM),X1,Y1,X4,Y4)
CALL SALROT(CENTER_X,CENTER_Y,THROT(ISYM),X1B,Y1B,X4B,Y4B)
IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 > 0._PDB)) THEN
THETA1=PI/2._PDB
ELSE IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 < 0._PDB)) THEN
THETA1=3._PDB*PI/2._PDB
ELSE IF(X4B-X4 > 0._PDB) THEN
THETA1=ATAN((Y4B-Y4)/(X4B-X4))
ELSE
THETA1=ATAN((Y4B-Y4)/(X4B-X4))+PI
ENDIF
THETA2=THETA1+DELPHI
! put THETA1 within 0 and 2*pi
IF(THETA1>2._PDB*PI)THEN
IAUX=INT(THETA1/(2._PDB*PI))
DELPHI=(2._PDB*PI)*IAUX
THETA1=THETA1-DELPHI ; THETA2=THETA2-DELPHI
ELSEIF(THETA1<0._PDB)THEN
IAUX=INT((-THETA1+1.D-7)/(2._PDB*PI))+1
DELPHI=(2._PDB*PI)*IAUX
THETA1=THETA1+DELPHI ; THETA2=THETA2+DELPHI
ENDIF
ELSE
WRITE(*,*) " elem=",ELEM," type=",TYPE," isym=",ISYM
CALL XABORT('SALFOLD_2: invalid type of surfacic element')
ENDIF
TMP_NB_ELEM=TMP_NB_ELEM+1
IF(TMP_NB_ELEM>3*GG%NB_ELEM) CALL XABORT('SALFOLD_2: TMP_NB_ELEM overflow')
I2(ISYM,ELEM)=TMP_NB_ELEM
TMP_RPAR(1,TMP_NB_ELEM)=X4; TMP_RPAR(2,TMP_NB_ELEM)=Y4;
TMP_IPAR(1,TMP_NB_ELEM)=TYPE;
IF(TYPE==1) THEN
TMP_RPAR(3,TMP_NB_ELEM)=DX4-X4; TMP_RPAR(4,TMP_NB_ELEM)=DY4-Y4;
TMP_RPAR(5,TMP_NB_ELEM)=SQRT(TMP_RPAR(3,TMP_NB_ELEM)**2+TMP_RPAR(4,TMP_NB_ELEM)**2)
XMIN=MIN(XMIN,X4); YMIN=MIN(YMIN,Y4); XMAX=MAX(XMAX,X4); YMAX=MAX(YMAX,Y4);
XMIN=MIN(XMIN,DX4); YMIN=MIN(YMIN,DY4); XMAX=MAX(XMAX,DX4); YMAX=MAX(YMAX,DY4);
TMP_IPAR(2,TMP_NB_ELEM)=GG%IPAR(2,ELEM); TMP_IPAR(3,TMP_NB_ELEM)=GG%IPAR(3,ELEM)
ELSE IF((TYPE==2).OR.(TYPE==3)) THEN
TMP_RPAR(3,TMP_NB_ELEM)=GG%RPAR(3,ELEM) ! RADIUS
TMP_RPAR(4,TMP_NB_ELEM)=THETA1; TMP_RPAR(5,TMP_NB_ELEM)=THETA2; ! ANGLES
TMP_IPAR(2,TMP_NB_ELEM)=GG%IPAR(2,ELEM); TMP_IPAR(3,TMP_NB_ELEM)=GG%IPAR(3,ELEM)
ENDIF
TMP_RPAR(6,TMP_NB_ELEM)=0._PDB
ENDDO
ENDDO
DEALLOCATE(GG%IPAR,GG%RPAR)
!
! eliminate duplicate elements
ALLOCATE(ELEM_DUP(TMP_NB_ELEM))
ELEM_DUP(:TMP_NB_ELEM)=.FALSE.
DO ELEM=1,TMP_NB_ELEM
TYPE=TMP_IPAR(1,ELEM)
IF((TYPE==1).AND.((TMP_IPAR(2,ELEM)==0).OR.(TMP_IPAR(3,ELEM)==0))) THEN
X4=TMP_RPAR(1,ELEM); Y4=TMP_RPAR(2,ELEM)
DX4=X4+TMP_RPAR(3,ELEM); DY4=Y4+TMP_RPAR(4,ELEM)
DO ELEM2=ELEM+1,TMP_NB_ELEM
IF(TMP_IPAR(1,ELEM2)/=1) CYCLE
X1=TMP_RPAR(1,ELEM2); Y1=TMP_RPAR(2,ELEM2)
X2=X1+TMP_RPAR(3,ELEM2); Y2=Y1+TMP_RPAR(4,ELEM2)
IF(((ABS(X1-X4)<10.0*EPS .AND. ABS(Y1-Y4)<10.0*EPS .AND. &
ABS(X2-DX4)<10.0*EPS .AND. ABS(Y2-DY4)<10.0*EPS)).OR. &
((ABS(X1-DX4)<10.0*EPS .AND. ABS(Y1-DY4)<10.0*EPS .AND. &
ABS(X2-X4)<10.0*EPS .AND. ABS(Y2-Y4)<10.0*EPS))) THEN
ELEM_DUP(ELEM2)=.TRUE.
IF(TMP_IPAR(2,ELEM)==0) TMP_IPAR(2,ELEM)=MAX(TMP_IPAR(2,ELEM2),TMP_IPAR(3,ELEM2))
IF(TMP_IPAR(3,ELEM)==0) TMP_IPAR(3,ELEM)=MAX(TMP_IPAR(2,ELEM2),TMP_IPAR(3,ELEM2))
IF(TMP_IPAR(2,ELEM)==TMP_IPAR(3,ELEM)) ELEM_DUP(ELEM)=.TRUE.
EXIT
ENDIF
ENDDO
ENDIF
ENDDO
!
ELEM=1
DO WHILE(ELEM<=TMP_NB_ELEM)
IF(ELEM_DUP(ELEM)) THEN
TMP_NB_ELEM=TMP_NB_ELEM-1
DO ELEM2=ELEM,TMP_NB_ELEM
TMP_IPAR(:,ELEM2)=TMP_IPAR(:,ELEM2+1); TMP_RPAR(:,ELEM2)=TMP_RPAR(:,ELEM2+1)
ELEM_DUP(ELEM2)=ELEM_DUP(ELEM2+1)
ENDDO
ELSE
ELEM=ELEM+1
ENDIF
ENDDO
GG%IPAR=>TMP_IPAR; GG%RPAR=>TMP_RPAR;
GG%NB_ELEM=TMP_NB_ELEM
!
! translate the domain
DO ELEM=1,GG%NB_ELEM
GG%RPAR(1,ELEM)=GG%RPAR(1,ELEM)-XMIN
GG%RPAR(2,ELEM)=GG%RPAR(2,ELEM)-YMIN
ENDDO
LENGTHX=XMAX-XMIN ; LENGTHY=YMAX-YMIN ;
GG%NBBCDA=0; GG%ALBEDO=1.D0
!
DEALLOCATE(ELEM_DUP,I2)
END SUBROUTINE SALFOLD_2
END MODULE SAL_GEOMETRY_MOD
|