summaryrefslogtreecommitdiff
path: root/Dragon/src/SAL_GEOMETRY_MOD.f90
blob: 373c95d40b54f48be5ad080c0e2cece5133281c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
!
!---------------------------------------------------------------------
!
!Purpose:
! Support module used to create a 2D geometry.
!
!Copyright:
! Copyright (C) 2001 Ecole Polytechnique de Montreal.
!
!Author(s):
! X. Warin
!
!---------------------------------------------------------------------
!
MODULE SAL_GEOMETRY_MOD

  USE SAL_GEOMETRY_TYPES
  USE PRECISION_AND_KINDS, ONLY : PDB, PI,TWOPI,HALFPI
  USE SAL_NUMERIC_MOD,    ONLY : SAL141
  USE SALGET_FUNS_MOD

CONTAINS

  SUBROUTINE SAL100(GG)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! perform input data and first allocation for geometry OBJECT T_G_BASIC
    !
    !Parameters: input/output
    ! GG    geometry basic information.
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : T_G_BASIC,TYPGEO,NBFOLD,EPS,ANGGEO, &
         INDEX,KNDEX,PREC,ISPEC,LGSPEC
    USE SAL_TRACKING_TYPES, ONLY : PRTIND
    IMPLICIT NONE
    TYPE(T_G_BASIC) :: GG
    !*****
    ! local variable
    ! **************
    INTEGER, PARAMETER :: N_DATAIN=25, N_DATARE=20
    INTEGER, DIMENSION (N_DATAIN) :: DATAIN
    REAL,    DIMENSION (N_DATARE) :: DATARE
    INTEGER :: OK
    INTEGER, PARAMETER :: FOUT =6
    !*****
    !     TYPGEO  = type of geometry:
    !     NBFOLD  = n in angle definition of rotation or symmetry geometry
    !     NB_NODE = number of nodes
    !     NBELEM  = number of elements
    !
    CALL SALGET(DATAIN,6,F_GEO,FOUT0,'dimensions for geometry')
    TYPGEO=DATAIN(1)
    NBFOLD=DATAIN(2)
    GG%NB_NODE=DATAIN(3)
    GG%NB_ELEM=DATAIN(4)
    GG%NB_MACRO=DATAIN(5)
    GG%NB_FLUX=DATAIN(6)
    ANGGEO=0.0D0
    SELECT CASE(TYPGEO)
       CASE(1)
       IF(NBFOLD.EQ.3) THEN
         ANGGEO=TWOPI/8.0D0 ! half diagonal symmetry case
       ELSE
         ANGGEO=TWOPI/NBFOLD
       ENDIF
       CASE(2)
       ANGGEO=TWOPI/NBFOLD
       CASE(5:6)
       ANGGEO=HALFPI
       CASE(7)
       ANGGEO=PI*0.25
       CASE(8:11)
       ANGGEO=PI/3.
       CASE(12)
       ANGGEO=PI/6.
    END SELECT
    IF((PRTIND >= 1).AND.(TYPGEO.EQ.0)) THEN
      WRITE(FOUT,*) 'SAL100: TYPGEO=',TYPGEO,' NBFOLD=',NBFOLD
    ELSE IF(PRTIND >= 1) THEN
      WRITE(FOUT,*) 'SAL100: TYPGEO=',TYPGEO,' NBFOLD=',NBFOLD, &
      & ' ANGGEO=',ANGGEO,' radians'
    ENDIF
    LGSPEC=(TYPGEO/=0).AND.(NBFOLD==0)
    IF(LGSPEC) THEN
      IF(ISPEC==0) THEN
        WRITE(*,*) 'SAL100: TYPGEO=',TYPGEO,' NBFOLD=',NBFOLD
        CALL XABORT('SAL100: TISO option is incompatible with the surfacic file')
      ENDIF
    ELSE
      IF(ISPEC==1) THEN
        WRITE(*,*) 'SAL100: TYPGEO=',TYPGEO,' NBFOLD=',NBFOLD
        CALL XABORT('SAL100: TSPC option is incompatible with the surfacic file')
      ENDIF
    ENDIF
    !
    !*    read printing indexes for general domain data and topological deformations
    !     INDEX  =  to print general domain data
    !     KNDEX  =  to print motions of topological adjustment
    !     PREC   =  if 0 then read RPAR & BCDATA with e20.12)
    CALL SALGET(DATAIN,3,F_GEO,FOUT0,'index kndex prec')
    INDEX=DATAIN(1)  
    KNDEX=DATAIN(2) 
    PREC=DATAIN(3) 
    !
    !*    read epsilons for topological deformations
    !     EPS    = if the distance of two ends of elements < eps, 
    !              they will be united to one point
    CALL SALGET(DATARE,1,F_GEO,FOUT0,'eps')
    EPS=DATARE(1)
    !
    IF(PRTIND >= 1) THEN
        WRITE(FOUT,'(//,5X,''domain checkout:'',/, &
        & 5X,''elements are in contact for distance < '',1P,E12.4,//)') EPS
    ENDIF
    !
    ALLOCATE(GG%NUM_MERGE(GG%NB_NODE),STAT =OK)
    IF(OK /= 0) CALL XABORT('SAL100: failure to allocate NB_NODE')
    CALL SALGET(GG%NUM_MERGE,GG%NB_NODE,F_GEO,FOUT0,'FLUX INDEX PER NODE')
    IF(MAXVAL(GG%NUM_MERGE) /= GG%NB_FLUX) CALL XABORT('SAL100: inconsistent NBFLUX')
    ALLOCATE(GG%NAME_MACRO(GG%NB_MACRO),STAT =OK)
    IF(OK /= 0) CALL XABORT('SAL100: failure to allocate NB_MACRO')
    CALL SALGET(GG%NAME_MACRO,GG%NB_MACRO,F_GEO,FOUT0,'NAMES OF MACROS')
    ALLOCATE(GG%NUM_MACRO(GG%NB_FLUX))
    CALL SALGET(GG%NUM_MACRO,GG%NB_FLUX,F_GEO,FOUT0,'macro order number per flux region')
    !*    do the work (SAL100_2 is called here!):
    CALL SAL110(GG)
    !
  END SUBROUTINE SAL100
  !
  SUBROUTINE SAL110(GG)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! constructs geometrical domain
    !
    !Parameters: input/output
    ! GG    geometry basic information.
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : TYPGEO,NBFOLD,NIPAR,NRPAR,ALLSUR,NANIS,IC,ISPEC,ANGGEO
    USE SAL_TRACKING_TYPES, ONLY : PRTIND
    !****
    IMPLICIT NONE
    ! in variable
    ! ************
    TYPE(T_G_BASIC), INTENT(INOUT) :: GG

    ! local variable
    ! ***************
    INTEGER :: ELEM,OK,I,TYPE
    CHARACTER(LEN=4) :: HSYM
    REAL(PDB),PARAMETER :: CONV=PI/180._PDB
    INTEGER, PARAMETER :: FOUT =6
    !****
    ! allocate node arrays
    HSYM=' '
    IF((TYPGEO==0).OR.((TYPGEO==6).AND.(NBFOLD==0))) THEN
      CONTINUE
    ELSE IF((TYPGEO==1).AND.(NBFOLD==3)) THEN
      HSYM='QUAR'
    ELSE IF(((TYPGEO==1).AND.(NBFOLD==8)).OR.((TYPGEO==7).AND.(NBFOLD==0))) THEN
      HSYM='EIGH'
    ELSE IF(((TYPGEO==1).AND.(NBFOLD==6)).OR.((TYPGEO==8).AND.(NBFOLD==0))) THEN
      HSYM='SIXT'
    ELSE IF(((TYPGEO==1).AND.(NBFOLD==12)).OR.((TYPGEO==12).AND.(NBFOLD==0))) THEN
      HSYM='S30'
    ELSE IF(((TYPGEO==1).AND.(NBFOLD==4)).OR.((TYPGEO==3).AND.(NBFOLD==0))) THEN
      HSYM='SYME'
    ELSE IF((TYPGEO==1).AND.(NBFOLD==2)) THEN
      HSYM='SY1D'
    ELSE IF(((TYPGEO==2).AND.(NBFOLD==6)).OR.((TYPGEO==10).AND.(NBFOLD==0))) THEN
      HSYM='RA60'
    ELSE IF((TYPGEO==5).AND.(NBFOLD==0)) THEN
      HSYM='TRAN'
    ELSE IF((TYPGEO==9).AND.(NBFOLD==0)) THEN
      HSYM='TRAN'
    ELSE IF(((TYPGEO==2).AND.(NBFOLD==3)).OR.(TYPGEO==11).AND.(NBFOLD==0)) THEN
      HSYM='R120'
    ELSE
      WRITE(*,*) "TYPGEO=",TYPGEO," NBFOLD=",NBFOLD
      CALL XABORT('SAL110: non supported type of symmetry')
    ENDIF
    ALLOCATE (GG%IPAR(NIPAR,GG%NB_ELEM), GG%RPAR(NRPAR,GG%NB_ELEM), STAT=OK)
    IF(OK/=0) CALL XABORT('SAL110: not enough memory I,R')

    !*    read surfacic file
    CALL SALINP(GG)
    !
    !*    unite the ends of elements, redefine elements
    CALL SAL128(GG%RPAR,GG%IPAR,GG%NB_ELEM)
    !
    IF((ISPEC==0).AND.(IC.EQ.4)) THEN
      !*    unfold domain
      IF(HSYM=='QUAR') THEN
        IF(PRTIND>0) WRITE(*,*) "SAL110: DIAG unfold"
        IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
        ANGGEO=2.0*ANGGEO
        CALL SALFOLD_1('DIAG',GG)
      ELSE IF(HSYM=='EIGH') THEN
        IF(PRTIND>0) WRITE(*,*) "SAL110: DIAG + SYME unfold"
        IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
        ANGGEO=2.0*ANGGEO
        CALL SALFOLD_1('DIAG',GG)
        CALL SALFOLD_1('SYMX',GG)
        CALL SALFOLD_1('SYMY',GG)
      ELSE IF(HSYM=='SYME') THEN
        IF(PRTIND>0) WRITE(*,*) "SAL110: SYME unfold"
        IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
        CALL SALFOLD_1('SYMX',GG)
        CALL SALFOLD_1('SYMY',GG)
      ELSE IF(HSYM=='SY1D') THEN
        IF(PRTIND>0) WRITE(*,*) "SAL110: SY1D unfold"
        IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
        CALL SALFOLD_1('SYMX',GG)
      ELSE IF(HSYM=='SIXT') THEN
        IF(PRTIND>0) WRITE(*,*) "SAL110: SA60 unfold"
        IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
        CALL SALFOLD_1('SA60',GG)
        CALL SALFOLD_1('SYMH',GG)
      ELSE IF(HSYM=='S30') THEN
        IF(PRTIND>0) WRITE(*,*) "SAL110: S30 unfold"
        IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
        CALL SALFOLD_1('S30 ',GG)
        CALL SALFOLD_1('SB60',GG)
        CALL SALFOLD_1('SYMX',GG)
      ELSE IF(HSYM=='RA60') THEN
        IF(PRTIND>0) WRITE(*,*) "SAL110: SR60 unfold with rotation"
        IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
        CALL SALFOLD_2('SR60',GG)
        CALL SALFOLD_2('R180',GG)
      ELSE IF(HSYM=='R120') THEN
        IF(PRTIND>0) WRITE(*,*) "SAL110: SR120 unfold with rotation"
        IF(NANIS>1) CALL XABORT('SAL110: unfold unsupported with NANIS>1')
        CALL SALFOLD_2('R120',GG)
      ELSE
        IF(PRTIND>0) WRITE(*,*) "SAL110: no unfold"
      ENDIF
      IF((TYPGEO/=0).AND.(NBFOLD==0)) THEN
        TYPGEO=6
      ELSE
        TYPGEO=0; NBFOLD=0
      ENDIF
    ENDIF
    IF(PRTIND>0) WRITE(FOUT,*) 'SAL110: after unfolding -- NB_ELEM=',GG%NB_ELEM, &
    & ' NB_PERIM=',GG%NBBCDA

    IF(PRTIND>5) THEN
      !*    print surfacic file
      WRITE(FOUT,'(5H--cut,75(1H-))')
      WRITE(FOUT,'(5HBEGIN)')
      WRITE(FOUT,'(42H* typgeo nbfold nbnode nbelem nbmacr nbreg)')
      WRITE(FOUT,'(6I7)') TYPGEO,NBFOLD,GG%NB_NODE,GG%NB_ELEM,GG%NB_MACRO,GG%NB_NODE
      WRITE(FOUT,'(20H* index  kndex  prec)')
      WRITE(FOUT,'(4I7)') 0,0,1
      WRITE(FOUT,'(18H* eps         eps0)')
      WRITE(FOUT,'(1P,2E18.9)') 1.0E-03,1.0E-05
      WRITE(FOUT,'(20H* num_of_region/mesh)')
      WRITE(FOUT,'(10I7)') (GG%NUM_MERGE(I),I=1,GG%NB_NODE)
      WRITE(FOUT,'(13H* macro names)')
      WRITE(FOUT,'(4(3x,a10,2x))') (GG%NAME_MACRO(I),I=1,GG%NB_MACRO)
      WRITE(FOUT,'(35H* macro_order_index_per_flux_region)')
      WRITE(FOUT,'(10I7)') (GG%NUM_MACRO(I),I=1,GG%NB_FLUX)
      DO ELEM=1,GG%NB_ELEM
        TYPE=GG%IPAR(1,ELEM)
        WRITE(FOUT,'(7h elem =,I6)') ELEM
        WRITE(FOUT,'(22H*type    node-   node+)')
        WRITE(FOUT,'(3I6)') (GG%IPAR(I,ELEM),I=1,3)
        WRITE(FOUT,'(63H*cx            cy            ex_or_R       ey_or_theta1  theta2)')
        IF(TYPE<=2) THEN
          WRITE(FOUT,'(1P,5E18.9)') (GG%RPAR(I,ELEM),I=1,5)
        ELSE IF(TYPE==3) THEN
          WRITE(FOUT,'(1P,5E18.9)') (GG%RPAR(I,ELEM),I=1,3),GG%RPAR(4,ELEM)/CONV, &
                                 (GG%RPAR(5,ELEM)-GG%RPAR(4,ELEM))/CONV
        ENDIF
      ENDDO
      WRITE(FOUT,'(40H*defaul  nbbcda  allsur  divsur  ndivsur)')
      WRITE(FOUT,'(1P,5I8)') GG%DEFAUL,GG%NBBCDA,ALLSUR,0,0
      WRITE(FOUT,'(17H*albedo  deltasur)')
      WRITE(FOUT,'(1P,2E18.9)') GG%ALBEDO,0.0
      DO ELEM=1,GG%NBBCDA
        WRITE(FOUT,'(37H particular boundary condition number,i12)') ELEM
        WRITE(FOUT,'(13H*type    nber)')
        WRITE(FOUT,'(1P,2I8)') GG%BCDATAREAD(ELEM)%SALTYPE,GG%BCDATAREAD(ELEM)%NBER
        WRITE(FOUT,'(14H*elems(1,nber))')
        WRITE(FOUT,'(1P,10I8)') (GG%BCDATAREAD(ELEM)%ELEMNB(I),I=1,GG%BCDATAREAD(ELEM)%NBER)
        IF(GG%BCDATAREAD(ELEM)%SALTYPE==0) THEN
          WRITE(FOUT,'(7H*albedo)')
          WRITE(FOUT,'(1P,E18.9)') GG%BCDATAREAD(ELEM)%BCDATA(6)
        ELSE
          WRITE(FOUT,'(22H*cx      cy      angle)')
          WRITE(FOUT,'(1P,3E18.9)') GG%BCDATAREAD(ELEM)%BCDATA(1:2),GG%BCDATAREAD(ELEM)%BCDATA(5)*180._PDB/PI
        ENDIF
      ENDDO
    ENDIF

    ! allocate media and element arrays 
    ALLOCATE (GG%VOL_NODE(GG%NB_NODE),GG%PPERIM_NODE(GG%NB_NODE+1),GG%IBC2_ELEM(GG%NB_ELEM), &
         GG%ISURF2_ELEM(GG%NB_ELEM),GG%MED(GG%NB_NODE), STAT=OK)
    IF(OK/=0) CALL XABORT('SAL110: not enough memory VOL')
    GG%ISURF2_ELEM(:GG%NB_ELEM)=0

    !*    2D boundary conditions and macro contacts:
    !     - defines NB_BC2, NBSUR2
    !     - defines surface strctures for each 2D macro
    !     - defines perimeter structure for each 2D macro
    !     - read 2D boundary conditions
    CALL SAL130(GG)
    !
    !*    topological check
    CALL SAL140(GG%NB_NODE,GG%RPAR,GG%IPAR,GG%PPERIM_NODE,GG%PERIM_NODE)
    !
    !*    volumes, surfaces, put local nbers in node, and read media:
    CALL SAL160(GG)
    IF(PRTIND>5) THEN
      WRITE(FOUT,'(12H* mil(nbreg))')
      WRITE(FOUT,'(10I7)') (GG%MED(I),I=1,GG%NB_NODE)
      WRITE(FOUT,'(3HEND)')
      WRITE(FOUT,'(5H--cut,75(1H-))')
    ENDIF
    !
    !*    printout basic domain
    CALL SAL170(GG)
    !
  END SUBROUTINE SAL110
  !
  SUBROUTINE SALINP(GG)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! read surfacic file
    !
    !Parameters: input/output
    ! GG    geometry descriptor
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : ALLSUR,PREC
    !****
    IMPLICIT NONE
    ! in variable
    ! ************
    TYPE(T_G_BASIC), INTENT(INOUT) :: GG
    !****
    INTEGER, PARAMETER :: N_DATAIN=25
    INTEGER, DIMENSION (N_DATAIN) :: DATAIN
    INTEGER   :: ELEM,I,TYPE,NBER
    INTEGER, PARAMETER, DIMENSION(0:4) :: READ_BC_LEN=(/1,1,3,3,3/)
    INTEGER, PARAMETER :: FOUT =6
    REAL(PDB) :: ANGLE,BCDATA_TDT(3)
    !
    !*    read element data
    DO ELEM=1,GG%NB_ELEM
       CALL SAL126(GG%RPAR(:,ELEM),GG%IPAR(:,ELEM))
    ENDDO
    !*    read
    !     DEFAUL = default bc condition
    !               0 = all external surfaces are isotropically reflected
    !                   with the same ALBEDO = ALBED0
    !               1 = all external surfaces are reflected
    !     NBBCDA = number of groups of bc conditions
    !
    CALL SALGET(DATAIN,3,F_GEO,FOUT0,'general bc data')
    GG%DEFAUL=DATAIN(1)
    GG%NBBCDA=DATAIN(2)
    ALLSUR=DATAIN(3)
    !     we can define only two default bc's
    IF(GG%DEFAUL>4.OR.GG%DEFAUL<0) THEN
         WRITE(FOUT,'(8H defaul=,I5)') GG%DEFAUL
         CALL XABORT('SALINP: wrong default bc type')
    ENDIF
    !*    read albedo : defaul bcdata
    CALL SALGET(GG%ALBEDO,F_GEO,FOUT0,PREC,'GENERAL ALBEDO')
    !
    !*    read detailed bcdata if required (motions)
    LBCDIAG=.FALSE.
    IF(GG%NBBCDA>0)THEN
       ALLOCATE(GG%BCDATAREAD(GG%NBBCDA))
       DO I=1,GG%NBBCDA
          GG%BCDATAREAD(I)%BCDATA(:6)=0.0
          CALL SALGET(DATAIN,2,F_GEO,FOUT0,'SPECIFIC BC: TYPE NBER')
          TYPE=DATAIN(1)
          NBER=DATAIN(2)
          GG%BCDATAREAD(I)%SALTYPE=TYPE
          GG%BCDATAREAD(I)%NBER=NBER
          IF(TYPE>5.OR.TYPE<0) CALL XABORT('SALINP: wrong bc type')
          IF(NBER>GG%NB_ELEM) CALL XABORT('SALINP: bc def exceeds nber of elements')
          !
          !           read order numbers of elements affected
          ALLOCATE(GG%BCDATAREAD(I)%ELEMNB(NBER))
          CALL SALGET(GG%BCDATAREAD(I)%ELEMNB,NBER,F_GEO,FOUT0,'BC ELEMENTS')
          !           read bc motion
          CALL SALGET(BCDATA_TDT,READ_BC_LEN(TYPE),F_GEO,FOUT0,PREC,'data for specific bc condition')
          IF(READ_BC_LEN(TYPE).EQ.1) THEN
            GG%BCDATAREAD(I)%BCDATA(1:5)=0._PDB
            GG%BCDATAREAD(I)%BCDATA(6)=BCDATA_TDT(1)
          ELSE
            GG%BCDATAREAD(I)%BCDATA(1:2)=BCDATA_TDT(1:2)
            ANGLE=BCDATA_TDT(3)*PI/180._PDB
            GG%BCDATAREAD(I)%BCDATA(3)=COS(ANGLE)
            GG%BCDATAREAD(I)%BCDATA(4)=SIN(ANGLE)
            GG%BCDATAREAD(I)%BCDATA(5)=ANGLE
            GG%BCDATAREAD(I)%BCDATA(6)=1._PDB
            LBCDIAG=LBCDIAG.OR.((GG%BCDATAREAD(I)%BCDATA(1)==0._PDB).AND.(GG%BCDATAREAD(I)%BCDATA(2)==0._PDB) &
                           .AND.(GG%BCDATAREAD(I)%BCDATA(5)==PI/4._PDB))
          ENDIF
       ENDDO
    ENDIF
  END SUBROUTINE SALINP
  !
  SUBROUTINE SAL126(RPAR,IPAR)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! reads one element data
    !
    !Parameters: input/output
    ! RPAR  floating point geometry descriptors
    ! IPAR  integer geometry descriptors
    !
    !---------------------------------------------------------------------
    !
    !****
    USE SAL_GEOMETRY_TYPES,  ONLY : PREC,G_ELE_TYPE
    !****
    IMPLICIT NONE
    ! in variable
    INTEGER,   INTENT(OUT), DIMENSION(:) :: IPAR
    REAL(PDB), INTENT(INOUT), DIMENSION(:) :: RPAR
    !****
    ! local variable
    INTEGER   :: TYPE,NBER,IAUX
    REAL(PDB) :: PHI1,PHI2,ANGMAX,DELPHI
    !****
    !     IPAR(1)          = 1 (segment), 2 (circle), 3(arc of circle)
    !     IPAR(2)          = order nber of node in - side
    !     IPAR(3)          = order nber of node in + side
    !
    !*    read integer element data
    CALL SALGET(IPAR,3,F_GEO,FOUT0,'integer descriptors')
    TYPE=IPAR(1)
    !
    !     ** segment:
    !        R = C+T*F  with T in (0,1)
    !        RPAR(1~5)  = CX CY FX FY F
    !
    !     ** arc of circle:
    !        R = C+R*F(THETA) with
    !            THETA in (THETA1 < THETA2)
    !            with THETA1 in (0,360)
    !        RPAR(1~5) = CX CY R THETA1 THETA2 (in degrees)
    !
    !*    read real element data

    IF(TYPE == G_ELE_TYPE(1)) THEN
      NBER=4
    ELSE IF(TYPE == G_ELE_TYPE(2)) THEN
      NBER=3
    ELSE IF(TYPE == G_ELE_TYPE(3)) THEN
      NBER=5
      ANGMAX=360._PDB
    ELSE
      WRITE(FOUT0,'(1X,''==> SAL126: unknown type '',I3)') TYPE
      CALL XABORT('SAL126: unknown element type')
    ENDIF

    CALL SALGET(RPAR,NBER,F_GEO,FOUT0,PREC,'real descriptors')

    IF(TYPE == G_ELE_TYPE(1)) THEN
      !        segment: compute length
      RPAR(5)=SQRT(RPAR(3)*RPAR(3)+RPAR(4)*RPAR(4))
      RPAR(6)=0._PDB
    ELSE IF(TYPE == G_ELE_TYPE(2)) THEN
      !        full circle: set angles
      RPAR(4)=0._PDB
      RPAR(5)=TWOPI
      RPAR(6)=0._PDB
    ELSE IF((TYPE == G_ELE_TYPE(3)).OR.(TYPE == G_ELE_TYPE(4))) THEN
      !        check angles
      PHI1=RPAR(NBER-1)
      DELPHI=RPAR(NBER)
      !        order angles in increasing values:
      IF(DELPHI>0._PDB)THEN
         IF(DELPHI>ANGMAX)THEN
            WRITE(FOUT0,'(1X,''==> SAL126: DELPHI = '',1P,E12.4, &
                 &'' > '',1P,E12.4,''  FOR TYPE'',I3)')DELPHI,ANGMAX,TYPE
            CALL XABORT('SAL126: invalid value of delphi')
         ENDIF
         PHI2=PHI1+DELPHI
      ELSE
         IF(DELPHI<-ANGMAX)THEN
            WRITE(FOUT0,'(1X,''==> SAL126: DELPHI = '',1P,E12.4, &
                 &'' < '',1P,E12.4,''  FOR TYPE'',I3)')DELPHI,-ANGMAX,TYPE
            CALL XABORT('SAL126: invalid value of delphi')
         ENDIF
         PHI2=PHI1
         PHI1=PHI1+DELPHI
      ENDIF
      IF(TYPE==G_ELE_TYPE(3))THEN
         !           arc of circle: put phi1 within 0 and 360.
         IF(PHI1>360._PDB)THEN
            IAUX=INT(PHI1/360._PDB)
            DELPHI=360._PDB*IAUX
            PHI2=PHI2-DELPHI
            PHI1=PHI1-DELPHI
         ELSEIF(PHI1<0._PDB)THEN
            IAUX=INT((-PHI1+1.D-7)/360._PDB)+1
            DELPHI=360._PDB*IAUX
            PHI2=PHI2+DELPHI
            PHI1=PHI1+DELPHI
         ENDIF
         RPAR(6)=0._PDB
      ELSE
         CALL XABORT('SAL126: unsupported option')
      ENDIF
      !        convert to radians
      RPAR(NBER-1)=PHI1*(TWOPI/360._PDB)
      RPAR(NBER)=PHI2*(TWOPI/360._PDB)
    ENDIF
    !
  END SUBROUTINE SAL126
  !
  SUBROUTINE SAL128(RPAR,IPAR,NB_ELEM)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! create library of ends of elements and redefine element discriptors
    !
    !Parameters: input/output
    ! RPAR     floating point geometry descriptors
    ! IPAR     integer geometry descriptors
    ! NB_ELEM  number of surfacic elements
    !
    !---------------------------------------------------------------------
    !
    !****
    USE SAL_GEOMETRY_TYPES, ONLY : G_ELE_TYPE,EPS,KNDEX,TYPGEO
    ! in variable
    !************
    IMPLICIT NONE
    INTEGER,   INTENT(IN), DIMENSION(:,:)     :: IPAR
    REAL(PDB), INTENT(INOUT), DIMENSION(:,:)  :: RPAR
    INTEGER , INTENT(IN) :: NB_ELEM
    ! local variable
    ! ***************
    REAL(PDB), DIMENSION (:,:), ALLOCATABLE :: POINT    ! coordinates of the ends of elements
    INTEGER, DIMENSION (:,:), ALLOCATABLE  :: ELEM_NEW  ! point nbers of two ends of elements
    !****
    !     NN               = total number of points
    !     NBP              = count of number of ends having the same coordinates
    INTEGER   :: TYPE,NN,ELEM,I,P,POS,I1,I2,OK
    REAL(PDB) :: X(2),Y(2),D,DX,DY
    REAL      :: EPS2
    LOGICAL   :: LGONE
    INTEGER, DIMENSION(NB_ELEM)     :: NBP
    INTEGER, PARAMETER :: FOUT =6
    !****
    !     - POINT(2,NB_ELEM)    = coordinates of the ends of elements
    !     - ELEM_NEW(2,NB_ELEM) = point nbers of two ends of elements
    !
    ALLOCATE(POINT(2,NB_ELEM),ELEM_NEW(2,NB_ELEM),STAT=OK)
    IF(OK/=0) CALL XABORT('SAL100_3_1: not enough memory I,CH')

    EPS2=EPS*EPS
    IF(KNDEX/=0)WRITE(FOUT,'(//,&
         &" reunite the ends of elements of distance less than ",E13.4)') EPS
    !
    !*    nn counts the nber of points
    NBP(1:NB_ELEM)=0
    NN=0
    DO ELEM=1,NB_ELEM
       TYPE=IPAR(1,ELEM)
       IF(TYPE/=G_ELE_TYPE(2)) THEN
          DO I=1,2
             !              get coordinates of end
             CALL SAL141(TYPE,RPAR(:,ELEM),X(I),Y(I),I)
             !              find if there is a defined neighbouring point
             LGONE=.FALSE.
             DO P=1,NN
                DX=POINT(1,P)-X(I)
                DY=POINT(2,P)-Y(I)
                D=DX*DX+DY*DY
                IF(D<EPS2) THEN
                   LGONE=.TRUE.
                   POS=P
                   EXIT
                ENDIF
             ENDDO
             IF(LGONE) THEN
                !                 choose average value
                X(I)=(X(I)+POINT(1,POS)*NBP(POS))/REAL(NBP(POS)+1)
                Y(I)=(Y(I)+POINT(2,POS)*NBP(POS))/REAL(NBP(POS)+1)
             ELSE
                !                 add points
                NN=NN+1
                IF(NN > NB_ELEM) CALL XABORT('SAL128: point overflow')
                POS=NN
             ENDIF
             POINT(1,POS)=X(I)
             POINT(2,POS)=Y(I)
             NBP(POS)=NBP(POS)+1
             !              define the end of element
             ELEM_NEW(I,ELEM)=POS
          ENDDO
       ELSE
          ELEM_NEW(1:2,ELEM)=0
       ENDIF
    ENDDO
    !*    adjust points on the axes
    SELECT CASE(TYPGEO)
       CASE(5:6)
       CALL SAL128_3(NN,POINT,EPS,EPS2)
       CASE(7)
       CALL SAL128_4(NN,POINT,EPS,EPS2)
       CASE(8,12) 
       CALL SAL128_5(NN,POINT,EPS,EPS2)
       CASE(9) 
       CALL SAL128_6(NN,POINT,EPS,EPS2)
       CASE(10) 
       CALL SAL128_7(NN,POINT,EPS,EPS2)
       CASE(11) 
       CALL SAL128_8(NN,POINT,EPS,EPS2)
    END SELECT

    !*    redefine the elements in rpar
    IF(KNDEX/=0)WRITE(FOUT,'(/," redefine elements : ",/)')
    DO ELEM=1,NB_ELEM
       TYPE=IPAR(1,ELEM)
       IF(TYPE/=G_ELE_TYPE(2)) THEN
          I1=ELEM_NEW(1,ELEM)
          I2=ELEM_NEW(2,ELEM)
          CALL SAL129(POINT(1,I1),POINT(2,I1),POINT(1,I2),POINT(2,I2), &
               TYPE,RPAR(:,ELEM),ELEM,KNDEX,FOUT)
       ENDIF
    ENDDO
    !
    DEALLOCATE(POINT,ELEM_NEW)
    !
  END SUBROUTINE SAL128
  !
  SUBROUTINE SAL128_3(NN,POINT,EPS,EPS2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! process retangular geometry with translation or symmetry boundary condition
    ! (TYPGEO=5,6): adjusts points on the axes, computes the lengths of the
    ! retangle sides; in case of with translation,element lengths on the opposite
    ! axes will be adjusted to be the same
    !
    !Parameters: input
    ! NN        total number of points
    ! EPS       when distance of points to axes less than EPS, displace
    !           the points onto the axes
    ! EPS2      variable set to EPS*EPS
    !
    !Parameters: input/output
    ! POINT     coordinates of points
    !
    !---------------------------------------------------------------------
    !
    USE PRECISION_AND_KINDS,    ONLY : PDB
    USE SAL_GEOMETRY_TYPES,     ONLY : TYPGEO,KNDEX,LX=>LENGTHX,LY=>LENGTHY
    !****
    IMPLICIT NONE
    INTEGER,   INTENT(IN)     :: NN
    REAL,      INTENT(IN)     :: EPS,EPS2
    REAL(PDB), INTENT(INOUT), DIMENSION(:,:)  :: POINT
    !     DIMENSION        POINT(2,NN)
    !****
    INTEGER   :: NP,NAXIS,I,J,K,M,P,IPOINT(4,NN),BP(4),IP(4)
    LOGICAL   :: LGADJUST
    REAL(PDB) :: D,AUX,EX(4),EY(4),DIS(4),AX(4),AY(4),D_AXIS(4,NN)
    INTEGER, PARAMETER :: FOUT =6
    !****
    !     flag to adjust the element lengths on the opposite axes
    LGADJUST=TYPGEO==5
    !     compute sides of the rectangle
    LX=0.; LY=0.
    DO P=1,NN
       IF(ABS(POINT(1,P))<EPS) THEN
          IF(LY<POINT(2,P)) LY=POINT(2,P)
       ENDIF
       IF(ABS(POINT(2,P))<EPS) THEN
          IF(LX<POINT(1,P)) LX=POINT(1,P)
       ENDIF
    ENDDO
    !*    axis directions and their distance to (0,0)
    NAXIS=4
    EX(1)=1.; EY(1)=0.; DIS(1)=0.
    EX(2)=1.; EY(2)=0.; DIS(2)=-LY
    EX(3)=0.; EY(3)=1.; DIS(3)=0.
    EX(4)=0.; EY(4)=1.; DIS(4)=LX
    NP=4
    AX(1)=0.; AY(1)=0.
    AX(2)=0.; AY(2)=LY
    AX(3)=LX; AY(3)=0.
    AX(4)=LX; AY(4)=LY
    !     beginning point of the axes
    IF(LGADJUST) THEN
       !     axis numbering:
       !                M=2
       !           ************
       !           *          *
       !      M=3  *          *  M=4
       !           ************
       !                M=1
       !
       BP(1)=1; BP(2)=2; BP(3)=1; BP(4)=3
       IP=0
    ENDIF
    ITER0:DO P=1,NN
       DO I=1,NP
          !           if it is the 4 corners of the rectangle
          D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
          IF(D.LT.EPS2) THEN
             !              move point to the corners
             POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
             IF(LGADJUST) THEN
                !                 put distance to the axis origin
                SELECT CASE(I)
                   CASE(2)
                   !                    end of axis 3,keep its distance and number
                   IP(3)=IP(3)+1
                   D_AXIS(3,IP(3))=AY(I)
                   IPOINT(3,IP(3))=P
                   CASE(3)
                   !                    end of axis 1,keep its distance and number
                   IP(1)=IP(1)+1
                   D_AXIS(1,IP(1))=AX(I)
                   IPOINT(1,IP(1))=P
                   CASE(4)
                   !                    end of axes 2&4,keep its distance and number
                   IP(2)=IP(2)+1
                   D_AXIS(2,IP(2))=AX(I)
                   IPOINT(2,IP(2))=P
                   IP(4)=IP(4)+1
                   D_AXIS(4,IP(4))=AY(I)
                   IPOINT(4,IP(4))=P
                END SELECT
             ENDIF
             CYCLE ITER0
          ENDIF
       ENDDO
       DO I=1,NAXIS
          !           distance to the axis
          D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
          !           when aux>0,the point is near the half axis
          AUX=POINT(1,P)*EX(I)+POINT(2,P)*EY(I)
          IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
             !              move point to the axis
             POINT(1,P)=POINT(1,P)-D*EY(I)
             POINT(2,P)=POINT(2,P)+D*EX(I)
             IF(LGADJUST) THEN
                !                 compute distance to the axis origin
                D=SQRT((POINT(1,P)-AX(BP(I)))**2+(POINT(2,P)-AY(BP(I)))**2)
                IP(I)=IP(I)+1
                D_AXIS(I,IP(I))=D
                IPOINT(I,IP(I))=P
             ENDIF
             CYCLE ITER0
          ENDIF
       ENDDO
    ENDDO ITER0
    !
    IF(LGADJUST) THEN
       DO I=1,NAXIS,2
          IF(IP(I)/=IP(I+1)) &
               CALL XABORT('SAL128_3: axial points nber not the same,axis')
          !           sort the 'd_axis' table
          DO J=I,I+1
             DO P=1,IP(J)
                DO K=P+1,IP(J)
                   IF(D_AXIS(J,P)>D_AXIS(J,K)) THEN
                      D=D_AXIS(J,P)
                      D_AXIS(J,P)=D_AXIS(J,K)
                      D_AXIS(J,K)=D
                      M=IPOINT(J,P)
                      IPOINT(J,P)=IPOINT(J,K)
                      IPOINT(J,K)=M
                   ENDIF
                ENDDO
             ENDDO
          ENDDO
          DO P=1,IP(I)
             IF(ABS(D_AXIS(I,P)-D_AXIS(I+1,P))>EPS) THEN
                IF(KNDEX/=0) &
                     WRITE(FOUT,'(" warning: too great axial length difference",&
                     & 2(/,2X,"axis = ",I3," point = ",I3," d = ",E13.6))')&
                     I,P,D_AXIS(I,P),I+1,P,D_AXIS(I+1,P)
             ENDIF
             D=(D_AXIS(I,P)+D_AXIS(I+1,P))*0.5
             DO J=I,I+1
                K=IPOINT(J,P)
                POINT(1,K)=D*EX(J)+AX(BP(J))
                POINT(2,K)=D*EY(J)+AY(BP(J))
             ENDDO
          ENDDO
       ENDDO
    ENDIF
    !
  END SUBROUTINE SAL128_3
  !
  SUBROUTINE SAL128_4(NN,POINT,EPS,EPS2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! process a 1/8 square geometry (typgeo=7): adjusts points on the axes,
    ! computes the square side length
    !
    !Parameters: input
    ! NN        total number of points
    ! EPS       when distance of points to axes less than EPS, displace
    !           the points onto the axes
    ! EPS2      variable set to EPS*EPS
    !
    !Parameters: input/output
    ! POINT     coordinates of points
    !
    !---------------------------------------------------------------------
    !
    USE PRECISION_AND_KINDS,    ONLY : PDB
    USE SAL_GEOMETRY_TYPES,     ONLY : ANGGEO,KNDEX,LX=>LENGTHX,LY=>LENGTHY
    !****
    IMPLICIT NONE
    INTEGER,   INTENT(IN)     :: NN
    REAL,      INTENT(IN)     :: EPS,EPS2
    REAL(PDB), INTENT(INOUT), DIMENSION(:,:) :: POINT
    !****
    INTEGER   :: NP,NAXIS,I,P
    REAL(PDB) :: D,AUX,EX(3),EY(3),DIS(3),AX(3),AY(3)
    INTEGER, PARAMETER :: FOUT =6
    !****
    !     compute the square sides
    LX=0.; LY=0.
    DO P=1,NN
       IF(LY<POINT(2,P)) LY=POINT(2,P)
       IF(LX<POINT(1,P)) LX=POINT(1,P)
    ENDDO
    IF(KNDEX>0.AND.ABS(LY-LX)>EPS) &
         WRITE(FOUT,'(" warning: the square sides are not the same!", &
         &  " lx = ",E12.4," ly = ",E12.4)')LX,LY
    LX=(LX+LY)*0.5
    LY=LX
    !*    adjust points on the axes
    NAXIS=3
    !     axis directions
    EX(1)=1.; EY(1)=0.; DIS(1)=0.
    EX(2)=COS(ANGGEO); EY(2)=SIN(ANGGEO); DIS(2)=0.
    EX(3)=0.; EY(3)=1.; DIS(3)=LX
    NP=3
    !     axis ends
    AX(1)=0.; AY(1)=0.
    AX(2)=LX; AY(2)=0.
    AX(3)=LX; AY(3)=LY
    ITER0:DO P=1,NN
       DO I=1,NP
          D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
          IF(D.LT.EPS2) THEN
             !              move point to the axis origin
             POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
             CYCLE ITER0
          ENDIF
       ENDDO
       DO I=1,NAXIS
          !           distance to the axis
          D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
          !           when aux>0,the point is near the half axis
          AUX=POINT(1,P)*EX(I)+POINT(2,P)*EY(I)
          IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
             !        move point to the axis
             POINT(1,P)=POINT(1,P)-D*EY(I)
             POINT(2,P)=POINT(2,P)+D*EX(I)
             CYCLE ITER0
          ENDIF
       ENDDO
    ENDDO ITER0
    !
  END SUBROUTINE SAL128_4
  !
  SUBROUTINE SAL128_5(NN,POINT,EPS,EPS2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! process a trianglar geometry (TYPGEO=8 or 12) with specular reflection:
    ! adjusts points on the axes, computes the triangular side length
    !
    !Parameters: input
    ! NN        total number of points
    ! EPS       when distance of points to axes less than EPS, displace
    !           the points onto the axes
    ! EPS2      variable set to EPS*EPS
    !
    !Parameters: input/output
    ! POINT     coordinates of points
    !
    !---------------------------------------------------------------------
    !
    USE PRECISION_AND_KINDS,    ONLY : PDB
    USE SAL_GEOMETRY_TYPES,     ONLY : ANGGEO,KNDEX,LX=>LENGTHX,LY=>LENGTHY
    !****
    IMPLICIT NONE
    INTEGER,   INTENT(IN)     :: NN
    REAL,      INTENT(IN)     :: EPS,EPS2
    REAL(PDB), INTENT(INOUT), DIMENSION(:,:)  :: POINT
    !****
    INTEGER   :: NP,NAXIS,I,P
    REAL(PDB) :: D,AUX,EX(3),EY(3),DIS(3),AX(3),AY(3)
    INTEGER, PARAMETER :: FOUT =6
    !****
    !     compute the triangular side
    LX=0.; LY=0.
    DO P=1,NN
       IF(ABS(POINT(2,P))<EPS) THEN
          IF(LX<POINT(1,P)) LX=POINT(1,P)
       ENDIF
       IF(LY<POINT(2,P)) LY=POINT(2,P)
    ENDDO
    IF(KNDEX>0.AND.ABS(LY-LX*SIN(ANGGEO))>EPS) &
         WRITE(FOUT,'(" warning: h is different from a*sin(anggeo)!", &
         &  " a = ",E12.4," h = ",E12.4)')LX,LY
    !     adjust h according a
    LY=LX*SIN(ANGGEO)
    !*    adjust points on the axes
    NAXIS=3
    !     axis directions
    EX(1)=1.; EY(1)=0.; DIS(1)=0.
    EX(2)=COS(ANGGEO); EY(2)=SIN(ANGGEO); DIS(2)=0.
    EX(3)=COS(ANGGEO*2.); EY(3)=SIN(ANGGEO*2.); DIS(3)=LY
    NP=3
    !     axis ends
    AX(1)=0.; AY(1)=0.
    AX(2)=LX; AY(2)=0.
    AX(3)=LX*0.5; AY(3)=LY
    ITER0:DO P=1,NN
       DO I=1,NP
          D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
          IF(D.LT.EPS2) THEN
             !              move point to the axis origin
             POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
             CYCLE ITER0
          ENDIF
       ENDDO
       DO I=1,NAXIS
          !           distance to the axis
          D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
          !           when aux>0,the point is near the half axis
          AUX=POINT(1,P)*EX(I)+POINT(2,P)*EY(I)
          IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
             !              move point to the axis
             POINT(1,P)=POINT(1,P)-D*EY(I)
             POINT(2,P)=POINT(2,P)+D*EX(I)
             CYCLE ITER0
          ENDIF
       ENDDO
    ENDDO ITER0
    !
  END SUBROUTINE SAL128_5
  !
  SUBROUTINE SAL128_6(NN,POINT,EPS,EPS2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! process a hexagonal geometry with translations on all sides (typgeo=9):
    ! adjusts points on the axes, computes the lengths of hexagon sides;
    ! element lengths on the opposite axes will be adjusted to be the same
    !
    !Parameters: input
    ! NN        total number of points
    ! EPS       when distance of points to axes less than EPS, displace
    !           the points onto the axes
    ! EPS2      variable set to EPS*EPS
    !
    !Parameters: input/output
    ! POINT     coordinates of points
    !
    !---------------------------------------------------------------------
    !
    USE PRECISION_AND_KINDS,    ONLY : PDB
    USE SAL_GEOMETRY_TYPES,     ONLY : ANGGEO,KNDEX,LX=>LENGTHX,LY=>LENGTHY
    !****
    IMPLICIT NONE
    INTEGER,   INTENT(IN)     :: NN
    REAL,      INTENT(IN)     :: EPS,EPS2
    REAL(PDB), INTENT(INOUT), DIMENSION(:,:)  :: POINT
    !****
    INTEGER   :: NP,NAXIS,I,J,K,M,P,IPOINT(6,NN),BP(6),IP(6)
    REAL(PDB) :: D,AUX,EX(6),EY(6),DIS(6),AX(6),AY(6),D_AXIS(6,NN)
    INTEGER, PARAMETER :: FOUT =6
    !****
    !     compute sides of the hexagon: LX=SIDE LENGTH,LY=LX*SIN(A)
    LX=0.; LY=0.
    DO P=1,NN
       IF(ABS(POINT(2,P))<EPS) THEN
          IF(LX<POINT(1,P)) LX=POINT(1,P)
       ENDIF
       IF(LY<POINT(2,P)) LY=POINT(2,P)
    ENDDO
    IF(KNDEX>0.AND.ABS(LY-LX*SIN(ANGGEO))>EPS) &
         WRITE(FOUT,'(" warning: h is different from A*SIN(ANGGEO)!", &
         & " a = ",E12.4," h = ",E12.4)')LX,LY
    !*    axis directions and their distance to (0,0)
    NAXIS=6
    EX(1)=1.; EY(1)=0.; DIS(1)=LY
    EX(2)=1.; EY(2)=0.; DIS(2)=-LY
    EX(3)=COS(ANGGEO); EY(3)=SIN(ANGGEO); DIS(3)=LY
    EX(4)=EX(3);       EY(4)=EY(3);       DIS(4)=-LY
    EX(5)=COS(2.*ANGGEO); EY(5)=SIN(2.*ANGGEO); DIS(5)=LY
    EX(6)=EX(5);          EY(6)=EY(5);          DIS(6)=-LY
    NP=6
    AX(1)=-LX*0.5; AY(1)=-LY
    AX(2)=LX*0.5;  AY(2)=-LY
    AX(3)=LX;      AY(3)=0.
    AX(4)=LX*0.5;  AY(4)=LY
    AX(5)=-LX*0.5; AY(5)=LY
    AX(6)=-LX;     AY(6)=0.
    !     axis numbering:
    !               M=2
    !              *****
    !         M=4 *     *   M=5
    !            *   *   *
    !         M=6 *     *   M=3
    !              *****
    !               M=1
    !
    BP(1)=1; BP(2)=5; BP(3)=2; BP(4)=6; BP(5)=3; BP(6)=1
    IP=0
    ITER0:DO P=1,NN
       DO I=1,NP
          !           if it is the 6 corners of the hexagon
          D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
          IF(D.LT.EPS2) THEN
             !              move point to the corner
             POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
             !              put distance to the axis origin
             J=0
             SELECT CASE(I)
                CASE(1)
                CYCLE ITER0
                CASE(2)
                !                 END OF AXIS 1
                J=1
                CASE(3)
                !                 END OF AXIS 3
                J=3
                CASE(4)
                !                 END OF AXES 2&5
                J=2
                CASE(5)
                !                 END OF AXIS 4
                J=4
                CASE(6)
                !                 END OF AXIS 6
                J=6
             END SELECT
             !              keep its distance and number
10           IP(J)=IP(J)+1
             D_AXIS(J,IP(J))=LX
             IPOINT(J,IP(J))=P
             IF(J==2) THEN
                J=5
                GOTO 10
             ENDIF
             CYCLE ITER0
          ENDIF
       ENDDO
       DO I=1,NAXIS
          !           distance to the axis
          D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
          !           when aux>0,the point is near the half axis
          AUX=(POINT(1,P)-AX(BP(I)))*EX(I)+(POINT(2,P)-AY(BP(I)))*EY(I)
          IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
             !              move point to the axis
             POINT(1,P)=POINT(1,P)-D*EY(I)
             POINT(2,P)=POINT(2,P)+D*EX(I)
             !              compute distance to the axis origin
             D=SQRT((POINT(1,P)-AX(BP(I)))**2+(POINT(2,P)-AY(BP(I)))**2)
             IP(I)=IP(I)+1
             D_AXIS(I,IP(I))=D
             IPOINT(I,IP(I))=P
             CYCLE ITER0
          ENDIF
       ENDDO
    ENDDO ITER0
    !
    DO I=1,NAXIS,2
       IF(IP(I)/=IP(I+1)) &
            CALL XABORT('SAL128_6: axial points nber not the same,axis')
       !        sort the 'd_axis' table
       DO J=I,I+1
          DO P=1,IP(J)
             DO K=P+1,IP(J)
                IF(D_AXIS(J,P)>D_AXIS(J,K)) THEN
                   D=D_AXIS(J,P)
                   D_AXIS(J,P)=D_AXIS(J,K)
                   D_AXIS(J,K)=D
                   M=IPOINT(J,P)
                   IPOINT(J,P)=IPOINT(J,K)
                   IPOINT(J,K)=M
                ENDIF
             ENDDO
          ENDDO
       ENDDO
       DO P=1,IP(I)
          IF(ABS(D_AXIS(I,P)-D_AXIS(I+1,P))>EPS) THEN
             IF(KNDEX/=0) &
                  WRITE(FOUT,'(" warning: too great axial length difference",&
                  & 2(/,2X,"axis = ",I3," point = ",I3," d = ",E13.6))')&
                  I,P,D_AXIS(I,P),I+1,P,D_AXIS(I+1,P)
          ENDIF
          D=(D_AXIS(I,P)+D_AXIS(I+1,P))*0.5
          DO J=I,I+1
             K=IPOINT(J,P)
             POINT(1,K)=D*EX(J)+AX(BP(J))
             POINT(2,K)=D*EY(J)+AY(BP(J))
          ENDDO
       ENDDO
    ENDDO
    !
  END SUBROUTINE SAL128_6
  !
  SUBROUTINE SAL128_7(NN,POINT,EPS,EPS2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! process an isocel trianglar geometry (TYPGEO=10) with RA60 rotation:
    ! adjusts points on the axes, computes the triangular side length
    !
    !Parameters: input
    ! NN        total number of points
    ! EPS       when distance of points to axes less than EPS, displace
    !           the points onto the axes
    ! EPS2      variable set to EPS*EPS
    !
    !Parameters: input/output
    ! POINT     coordinates of points
    !
    !---------------------------------------------------------------------
    !
    USE PRECISION_AND_KINDS,    ONLY : PDB
    USE SAL_GEOMETRY_TYPES,     ONLY : ANGGEO,LX=>LENGTHX,LY=>LENGTHY
    !****
    IMPLICIT NONE
    INTEGER,   INTENT(IN)     :: NN
    REAL,      INTENT(IN)     :: EPS,EPS2
    REAL(PDB), INTENT(INOUT), DIMENSION(:,:)  :: POINT
    !****
    INTEGER   :: NP,NAXIS,I,P
    REAL(PDB) :: D,AUX,EX(3),EY(3),DIS(3),AX(3),AY(3)
    INTEGER, PARAMETER :: FOUT =6
    !****
    !     compute the triangular side
    LX=0.; LY=0.
    DO P=1,NN
       IF(ABS(POINT(2,P))<EPS) THEN
          IF(LX<POINT(1,P)) LX=POINT(1,P)
       ENDIF
       IF(LY<POINT(2,P)) LY=POINT(2,P)
    ENDDO
    IF(KNDEX>0.AND.ABS(LY-LX*SIN(ANGGEO))>EPS) &
         WRITE(FOUT,'(" warning: h is different from a*sin(anggeo)!", &
         &  " a = ",E12.4," h = ",E12.4)')LX,LY
    !     adjust h according a
    LY=LX*SIN(ANGGEO)
    !*    adjust points on the axes
    NAXIS=3
    !     axis directions
    EX(1)=1.; EY(1)=0.; DIS(1)=0.
    EX(2)=COS(ANGGEO); EY(2)=SIN(ANGGEO); DIS(2)=0.
    EX(3)=COS(ANGGEO*2.); EY(3)=SIN(ANGGEO*2.); DIS(3)=LY
    NP=3
    !     axis ends
    AX(1)=0.; AY(1)=0.
    AX(2)=LX; AY(2)=0.
    AX(3)=LX*0.5; AY(3)=LY
    ITER0:DO P=1,NN
       DO I=1,NP
          D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
          IF(D.LT.EPS2) THEN
             !              move point to the axis origin
             POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
             CYCLE ITER0
          ENDIF
       ENDDO
       DO I=1,NAXIS
          !           distance to the axis
          D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
          !           when aux>0,the point is near the half axis
          AUX=POINT(1,P)*EX(I)+POINT(2,P)*EY(I)
          IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
             !              move point to the axis
             POINT(1,P)=POINT(1,P)-D*EY(I)
             POINT(2,P)=POINT(2,P)+D*EX(I)
             CYCLE ITER0
          ENDIF
       ENDDO
    ENDDO ITER0
    !
  END SUBROUTINE SAL128_7
  !
  SUBROUTINE SAL128_8(NN,POINT,EPS,EPS2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! process R120 lozenge geometry (TYPGEO=11): adjusts points on the axes,
    ! computes the lozenge side length
    !
    !Parameters: input
    ! NN        total number of points
    ! EPS       when distance of points to axes less than EPS, displace
    !           the points onto the axes
    ! EPS2      variable set to EPS*EPS
    !
    !Parameters: input/output
    ! POINT     coordinates of points
    !
    !---------------------------------------------------------------------
    !
    USE PRECISION_AND_KINDS,    ONLY : PDB
    USE SAL_GEOMETRY_TYPES,     ONLY : ANGGEO,LX=>LENGTHX,LY=>LENGTHY
    !****
    IMPLICIT NONE
    INTEGER,   INTENT(IN)     :: NN
    REAL,      INTENT(IN)     :: EPS,EPS2
    REAL(PDB), INTENT(INOUT), DIMENSION(:,:)  :: POINT
    !****
    INTEGER   :: NP,NAXIS,I,P
    REAL(PDB) :: D,AUX,EX(4),EY(4),DIS(4),AX(4),AY(4)
    INTEGER, PARAMETER :: FOUT =6
    !****
    !     compute the triangular side
    LX=0.; LY=0.
    DO P=1,NN
       IF(ABS(POINT(2,P))<EPS) THEN
          IF(LX<POINT(1,P)) LX=POINT(1,P)
       ENDIF
       IF(LY<POINT(2,P)) LY=POINT(2,P)
    ENDDO
    IF(ABS(LY-LX*SIN(ANGGEO))>EPS) &
         WRITE(FOUT,'(" warning: h is different from a*sin(anggeo)!", &
         &  " a = ",E12.4," h = ",E12.4)') LX,LY
    !     adjust h according to base
    LY=LX*SIN(ANGGEO)
    !*    adjust points on the axes
    NAXIS=4
    !     axis directions
    EX(1)=1.; EY(1)=0.; DIS(1)=0.
    EX(2)=1.; EY(2)=0.; DIS(2)=-LY
    EX(3)=COS(ANGGEO); EY(3)=SIN(ANGGEO); DIS(3)=0.
    EX(4)=COS(ANGGEO); EY(4)=SIN(ANGGEO); DIS(4)=LY
    NP=4
    !     axis ends
    AX(1)=0.    ; AY(1)=0.
    AX(2)=LX*0.5; AY(2)=LY
    AX(3)=LX    ; AY(3)=0.
    AX(4)=LX*1.5; AY(4)=LY
    ITER0:DO P=1,NN
       DO I=1,NP
          D=(POINT(1,P)-AX(I))**2+(POINT(2,P)-AY(I))**2
          IF(D.LT.EPS2) THEN
             !              move point to the axis origin
             POINT(1,P)=AX(I) ; POINT(2,P)=AY(I)
             CYCLE ITER0
          ENDIF
       ENDDO
       DO I=1,NAXIS
          !           distance to the axis
          D=POINT(1,P)*EY(I)-POINT(2,P)*EX(I)-DIS(I)
          !           when aux>0,the point is near the half axis
          AUX=POINT(1,P)*EX(I)+POINT(2,P)*EY(I)
          IF(ABS(D).LT.EPS.AND.AUX>=0) THEN
             !        move point to the axis
             POINT(1,P)=POINT(1,P)-D*EY(I)
             POINT(2,P)=POINT(2,P)+D*EX(I)
             CYCLE ITER0
          ENDIF
       ENDDO
    ENDDO ITER0
    !
  END SUBROUTINE SAL128_8
  !
  SUBROUTINE SAL129(X1,Y1,X2,Y2,TYPE,RPAR,II,KNDEX,FOUT)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! recompute element data by giving two ends of the element
    !
    !Parameters: input
    ! X1      new position in X for the end 1
    ! Y1      new position in Y for the end 1
    ! X2      new position in X for the end 2
    ! Y2      new position in Y for the end 2
    ! TYPE    type of element  1 (segment)  3 (arc of circle)
    ! II      element to be changed
    ! KNDEX   if not 0 print out data when motion>EPS
    ! FOUT    printout file
    !
    !Parameters: input/output
    ! RPAR    descriptors of the element
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES,     ONLY : NRPAR,EPS,G_ELE_TYPE,G_ELE_LEN
    USE SAL_NUMERIC_MOD, ONLY : SALACO
    !****
    IMPLICIT NONE
    ! in variable
    ! ***********
    INTEGER, INTENT(IN)                    :: TYPE,KNDEX,FOUT,II
    REAL(PDB), INTENT(IN)                  :: X1,Y1,X2,Y2
    REAL(PDB), INTENT(INOUT), DIMENSION(:) :: RPAR
    !****

    ! local variable
    ! **************
    REAL(PDB) :: CX,CY,DELX,DELY,R,THETA,SX,SY,VX,VY,V2,DIST,MOV1,MOV2
    INTEGER   :: I
    REAL(PDB) :: RPAR_OLD(NRPAR)
    !****
    !     keep old parameters:
    RPAR_OLD(1:NRPAR)=RPAR(1:NRPAR)
    !
    MOV1=0._PDB; MOV2=0._PDB;
    IF(TYPE == G_ELE_TYPE(1)) THEN
      !*       segment :
      !        compute the motions of two ends
      DELX=X1-RPAR(1)
      DELY=Y1-RPAR(2)
      MOV1=SQRT(DELX*DELX+DELY*DELY)
      DELX=X2-(RPAR(1)+RPAR(3))
      DELY=Y2-(RPAR(2)+RPAR(4))
      MOV2=SQRT(DELX*DELX+DELY*DELY)
      !        set new ends, compute direction
      RPAR(1)=X1
      RPAR(2)=Y1
      RPAR(3)=X2-X1
      RPAR(4)=Y2-Y1
      RPAR(5)=SQRT(RPAR(3)*RPAR(3)+RPAR(4)*RPAR(4))
    ELSE IF(TYPE == G_ELE_TYPE(3)) THEN
      !*       arc of circle :
      !        get old radius
      CX=RPAR(1); CY=RPAR(2)
      !        compute the motion of two ends
      R=RPAR(3)
      THETA=RPAR(4)
      DELX=CX+R*COS(THETA)-X1
      DELY=CY+R*SIN(THETA)-Y1
      MOV1=SQRT(DELX*DELX+DELY*DELY)
      THETA=RPAR(5)
      DELX=CX+R*COS(THETA)-X2
      DELY=CY+R*SIN(THETA)-Y2
      MOV2=SQRT(DELX*DELX+DELY*DELY)
      !        compute new radius, new center and new angles
      SX=X1-CX
      SY=Y1-CY
      !        get demi-vector from (x1,y1) to (x2,y2)
      VX=(X2-X1)/2.0
      VY=(Y2-Y1)/2.0
      V2=VX*VX+VY*VY
      !        get center closest to old center, change radius
      !        compute new r
      R=SQRT(V2+(SX*VY-SY*VX)**2/V2)
      RPAR(3)=R
      !        compute new center
      DIST=1.0_PDB+(VX*SX+VY*SY)/V2
      !        get new center and compute angles
      CX=CX+VX*DIST
      CY=CY+VY*DIST
      RPAR(1)=CX
      RPAR(2)=CY
      THETA=SALACO((X1-CX)/R,Y1-CY)
      RPAR(4)=THETA
      THETA=SALACO((X2-CX)/R,Y2-CY)
      RPAR(5)=THETA
      !        if phi1 > phi2 put phi2 equal to phi2+twopi
      IF(RPAR(4)>RPAR(5)) RPAR(5)=RPAR(5)+TWOPI
    ENDIF
    IF(KNDEX/=0) THEN
       IF(MOV1>EPS.OR.MOV2>EPS) THEN
          WRITE(FOUT,'(/," old element ",I4," : ",6(1P,E13.4))') &
               II,(RPAR_OLD(I),I=1,G_ELE_LEN(TYPE))
          WRITE(FOUT,'(" new element ",I4," : ",6(1P,E13.4))') &
               II,(RPAR(I),I=1,G_ELE_LEN(TYPE))
       ENDIF
    ENDIF
    !
  END SUBROUTINE SAL129
  !
  SUBROUTINE SAL130(GG)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! perform domain definition and set boundary conditions
    !   - computes node perimeters per 2d macro
    !   - reads boundary conditions
    !   - computes external perimeters 
    !
    !Parameters: input/output
    ! GG    geometry descriptor
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES,      ONLY : G_BC_TYPE,TYPGEO
    !****
    IMPLICIT NONE
    ! in variable
    ! ************
    TYPE(T_G_BASIC), INTENT(INOUT):: GG
    ! local variable
    !****
    INTEGER :: NN,OK
    INTEGER, DIMENSION(GG%NB_ELEM*2) :: AUX_ARR
    !****
    !*    compute node perimeters for the macro
    CALL SAL130_2(GG%NB_ELEM,GG%NB_NODE,GG%IPAR,GG%PPERIM_NODE, &
         GG%PERIM_NODE,AUX_ARR)
    !
    !*    - compute number of bc's per 2D macro,
    !       NB_BC2 counts total nber of 2D bc's
    !     - compute IBC2_ELEM, keep relative 2D bc nber to elements
    !     - allocation : 2D bc structures
    !                    2D perimeter structure for a macro
    !     - get list of elements in 2d macro perimeter

    CALL SAL130_4(GG%NB_ELEM,NN,GG%IPAR,GG%IBC2_ELEM,AUX_ARR)
    
    GG%NB_BC2=NN

    ALLOCATE (GG%TYPE_BC2(NN),GG%IDATA_BC2(NN),GG%PERIM_MAC2(NN), &
         GG%PPERIM_MAC2(7),STAT=OK)
    IF(OK/=0) CALL XABORT('SAL130: not enough memory I,R')
    GG%PPERIM_MAC2(:7)=0
    GG%PERIM_MAC2(1:NN)=AUX_ARR(1:NN)
    GG%NPERIM_MAC2=NN
    !
    !*    read boundary conditions:
    CALL SAL131(GG)
    !
    !     - define IELEM_SURF2
    IF(GG%NB_SURF2>0) THEN
       ! allocate
       ALLOCATE(GG%SURF2(GG%NB_SURF2),STAT = OK)
       IF(OK /= 0) CALL XABORT('SAL130: not enough memory I,R')
       CALL SAL130_6(GG%NB_SURF2,GG%IBC2_SURF2,GG%PERIM_MAC2,GG%IELEM_SURF2)
    ENDIF
    !
    !*    construct perimeter structures for rotative or symmetrical geometry
    SELECT CASE(TYPGEO)
       CASE(1:2)
       CALL SAL130_8(GG%NPERIM_MAC2,GG%PERIM_MAC2,GG%PPERIM_MAC2,GG%DIST_AXIS, &
            GG%IBC2_ELEM,GG%TYPE_BC2,GG%IDATA_BC2,GG%BCDATA,GG%IPAR,GG%RPAR)
       CASE(5:12)
       CALL SAL130_10(GG%NPERIM_MAC2,GG%PERIM_MAC2,GG%PPERIM_MAC2,GG%DIST_AXIS, &
            GG%IBC2_ELEM,GG%TYPE_BC2,GG%IDATA_BC2,GG%BCDATA,GG%IPAR,GG%RPAR)
    END SELECT
    !
  END SUBROUTINE SAL130
  !
  SUBROUTINE SAL130_2(NB_ELEM,NB_NODE,IPAR,PPERIM,PERIM,LIST)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! compute node perimeters for one 2D macro
    !
    !Parameters: input
    ! NB_ELEM   number of elements
    ! NB_NODE   number of nodes
    ! IPAR      integer descriptors for elements
    !
    !Parameters: output
    ! PPERIM    array pointer to list of elements in perimeter per node
    ! PERIM     elements in perimeters per node
    ! LIST      temporary array
    !
    !---------------------------------------------------------------------
    !
    IMPLICIT NONE
    INTEGER, INTENT(IN)                    :: NB_ELEM,NB_NODE
    INTEGER, INTENT(IN),   DIMENSION(:,:)  :: IPAR
    INTEGER, INTENT(OUT),  DIMENSION(:)    :: LIST
    INTEGER, INTENT(OUT),  DIMENSION(:)    :: PPERIM
    INTEGER, POINTER,      DIMENSION(:)    :: PERIM
    !****
    INTEGER :: NT,NN,NODE,ELEM,OK
    CHARACTER(LEN=131) :: HSMG
    !****
    NT=0
    PPERIM(1)=1
    DO NODE=1,NB_NODE
       DO ELEM=1, NB_ELEM
          IF(IPAR(2,ELEM)==NODE.OR.IPAR(3,ELEM)==NODE) THEN
             NT=NT+1
             LIST(NT)=ELEM
          ENDIF
       ENDDO
       NN=NT+1-PPERIM(NODE)
       IF(NN>0) THEN
          PPERIM(NODE+1)=NT+1
       ELSE
          WRITE(HSMG,'(15HSAL130_2: node=,i5,19H without perimeter.)') NODE
          CALL XABORT(HSMG)
       ENDIF
    ENDDO
    IF(NT>0) THEN
       ALLOCATE (PERIM(NT), STAT=OK)
       IF(OK/=0) CALL XABORT('SAL130_2: not enough memory I')
       PERIM(1:NT)=LIST(1:NT)
    ENDIF
    !
  END SUBROUTINE SAL130_2
  !
  SUBROUTINE SAL130_4(NB_ELEM,NB_BC,IPAR,IBC2_ELEM,LIST_BC)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! count number of bc's in a 2D macro
    !
    !Parameters: input
    ! NB_ELEM   number of elements
    !
    !Parameters: input/output
    ! IPAR      integer descriptors for elements
    !
    !Parameters: output
    ! NB_BC     nber of bc's
    ! IBC2_ELEM relative 2D bc index per element
    ! LIST_BC   list of elements in boundary
    !
    !---------------------------------------------------------------------
    !
    IMPLICIT NONE
    INTEGER, INTENT(IN)                 :: NB_ELEM
    INTEGER, INTENT(OUT)                :: NB_BC
    INTEGER, INTENT(IN), DIMENSION(:,:) :: IPAR
    INTEGER, INTENT(OUT),  DIMENSION(:) :: IBC2_ELEM,LIST_BC
    !****
    INTEGER :: ELEM
    !****
    !     initiation
    IBC2_ELEM(:)=0
    NB_BC=0
    DO ELEM=1, NB_ELEM
       IF(IPAR(2,ELEM)<=0.AND.IPAR(3,ELEM)<=0) THEN
          CALL XABORT('SAL130_4: two boundaries for element')
       ELSE IF(IPAR(2,ELEM)<=0.OR.IPAR(3,ELEM)<=0) THEN
          NB_BC=NB_BC+1
          LIST_BC(NB_BC)=ELEM
          IF(IBC2_ELEM(ELEM)/=0) CALL XABORT('SAL130_4: two surfaces to element')
          IBC2_ELEM(ELEM)=NB_BC
          !           set mark for the macro connection surface :
       ENDIF
    ENDDO
    !
  END SUBROUTINE SAL130_4
  !
  SUBROUTINE SAL130_6(NSURF,IBC2_SURF2,IELEM_BC2,IELEM_SURF2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! get element order indices per surface
    !
    !Parameters: input
    ! NSURF       number of surfaces
    ! IBC2_SURF2  2D bc order index per surface
    ! IELEM_BC2   element order index per bc
    !
    !Parameters: output
    ! IELEM_SURF2 element order index per surface
    !
    !---------------------------------------------------------------------
    !
    !****
    USE SAL_GEOMETRY_TYPES, ONLY : G_BC_TYPE
    !****
    IMPLICIT NONE
    INTEGER, INTENT(IN)                 :: NSURF
    INTEGER, INTENT(IN),   DIMENSION(:) :: IBC2_SURF2,IELEM_BC2
    INTEGER, INTENT(OUT),  DIMENSION(:) :: IELEM_SURF2
    !****
    INTEGER :: SURF,IBC,ELEM
    !****
    IF(NSURF > 0) THEN
       DO SURF=1, NSURF
          !           get relative bc order number
          IBC=IBC2_SURF2(SURF)
          !           get relative element
          ELEM=IELEM_BC2(IBC)
          !           define ielem_surf2
          IELEM_SURF2(SURF)=ELEM
       ENDDO
    ENDIF
    !
  END SUBROUTINE SAL130_6
  !
  SUBROUTINE SAL130_8(NPERIM,PERIM,PPERIM,DIST_AXIS,IBC2_ELEM,TYPE_BC2,IDATA_BC2, &
       BCDATA,IPAR,RPAR)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! calculate PERIM_MAC2,DIST_AXIS for rotative or symmetrical geometry
    ! (TYPGEO=1 & 2)
    !
    !Parameters: input
    ! NPERIM     number of elements in perimeter
    ! IBC2_ELEM  2D bc order number per element
    ! TYPE_BC2   type of boundary conditions per 2D bc
    ! IDATA_BC2  position in the 'bcdata' table for each 2D bc
    ! BCDATA     table of boundary conditions data
    ! IPAR       integer element descriptor table
    ! RPAR       floating point element descriptor table
    !
    !Parameters: input/output
    ! PERIM      list of elements in perimeter,in return it will be in following
    !            order: (elems on axis 1)+(elems on axis 2)+(other elems)
    !
    !Parameters: output
    ! PPERIM     pointers to the table 'perim':
    !            (1): first elem on axis 1 (2): first elem on axis 2
    !            (3): first of other elems (4): NPERIM + 1
    ! DIST_AXIS  distance of points on axis to the center (0,0),in order of:
    !            (distances of points on axis 1)+(distances of points on axis 2)
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES,     ONLY : ANGGEO,EPS,G_BC_TYPE
    USE SAL_NUMERIC_MOD, ONLY : SAL141
    !****
    IMPLICIT NONE
    INTEGER, INTENT(IN)                  :: NPERIM
    INTEGER, INTENT(IN),    DIMENSION(:) :: IBC2_ELEM,TYPE_BC2,IDATA_BC2
    INTEGER, INTENT(INOUT), DIMENSION(:) :: PERIM
    INTEGER, INTENT(OUT),   DIMENSION(:) :: PPERIM
    REAL(PDB), POINTER,     DIMENSION(:) :: DIST_AXIS
    INTEGER, INTENT(IN),  DIMENSION(:,:) :: IPAR
    REAL(PDB), INTENT(INOUT),DIMENSION(:,:) :: RPAR
    REAL(PDB), INTENT(IN),DIMENSION(:,:) :: BCDATA
    !****
    !     LIST_ELEMS = table of elements,elements on axis are in increasing order
    !                  of distance to (0,0):
    !                  1=elements on axis 1; 2=elements on axis 2; 3=other elements
    !     AUX_DIST   = max distance of element ends to the beginnings of the axes:
    !                  1=distances on axis 1; 2=distances on axis 2
    INTEGER,   DIMENSION(NPERIM,3) :: LIST_ELEMS
    REAL(PDB), DIMENSION(NPERIM,2) :: AUX_DIST
    INTEGER   :: I,J,K,M,ELEM,TYPBC,IBC,IDATA,NBE(3),OK,NAXES
    REAL(PDB) :: ANGLE,X,Y,D
    !****
    NAXES=2
    !*    calculate number of elements on axis 1 & 2
    !     and their distances to the beginning of the axes
    NBE=0
    DO I=1,NPERIM
       ELEM=PERIM(I)
       IBC=IBC2_ELEM(ELEM)
       TYPBC=TYPE_BC2(IBC)
       IDATA=IDATA_BC2(IBC)
       !        default is the elements not on axis
       M=NAXES+1
       IF(TYPBC==G_BC_TYPE(3)) THEN
          !*          rotation:
          ANGLE=BCDATA(5,IDATA)
          IF(ABS(ANGLE-ANGGEO)<EPS) THEN
             !              element is on the axis 1 (angle=anggeo)
             M=1
          ELSEIF(ABS(ANGLE+ANGGEO)<EPS) THEN
             !              element is on the axis 2 (angle=-anggeo)
             M=2
          ENDIF
       ELSEIF(TYPBC==G_BC_TYPE(4)) THEN
          !*          symmetry:
          ANGLE=BCDATA(5,IDATA)
          IF(ABS(ANGLE)<EPS) THEN
             !              element is on the axis 1 (angle=0)
             M=1
          ELSEIF(ABS(ANGLE-ANGGEO)<EPS) THEN
             !              element is on the axis 2 (angle=anggeo)
             M=2
          ENDIF
       ENDIF
       NBE(M)=NBE(M)+1
       LIST_ELEMS(NBE(M),M)=ELEM
       IF(M/=NAXES+1) THEN
          !           sort the element list according their distance to (0,0)
          D=0.
          DO K=1,2
             CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
             D=MAX(D,SQRT(X*X+Y*Y))
          ENDDO
          AUX_DIST(NBE(M),M)=D
          IF(NBE(M)>1) THEN
             DO K=1,NBE(M)-1
                IF(AUX_DIST(NBE(M),M)<AUX_DIST(K,M)) THEN
                   !                    insert the last element to position k
                   D=AUX_DIST(NBE(M),M)
                   ELEM=LIST_ELEMS(NBE(M),M)
                   DO J=NBE(M),K+1,-1
                      AUX_DIST(J,M)=AUX_DIST(J-1,M)
                      LIST_ELEMS(J,M)=LIST_ELEMS(J-1,M)
                   ENDDO
                   AUX_DIST(K,M)=D
                   LIST_ELEMS(K,M)=ELEM
                   EXIT
                ENDIF
             ENDDO
          ENDIF
       ENDIF
    ENDDO
    !     nber of blocks in 'perim'
    M=NAXES+1
    !*    organize elements as:
    !       (elems on axis 1)+(elems on axis 2)+(other elems)
    PPERIM(:)=0
    PPERIM(1)=1
    DO I=1,M
       PPERIM(I+1)=PPERIM(I)+NBE(I)
    ENDDO
    DO I=1,M
       PERIM(PPERIM(I):PPERIM(I+1)-1)=LIST_ELEMS(1:NBE(I),I)
    ENDDO
    !*    allocate and set dist_axis
    IF(PPERIM(NAXES+1)-1>0) THEN
       ALLOCATE(DIST_AXIS(PPERIM(NAXES+1)-1),STAT=OK)
       IF(OK.NE.0) CALL XABORT('SAL130_8: not enough memory R')
       DO I=1,NAXES
          DIST_AXIS(PPERIM(I):PPERIM(I+1)-1)=AUX_DIST(1:NBE(I),I)
       ENDDO
    ELSE
       NULLIFY(DIST_AXIS)
    ENDIF
    !
  end subroutine sal130_8
  !
  SUBROUTINE SAL130_10(NPERIM,PERIM,PPERIM,DIST_AXIS,IBC2_ELEM,TYPE_BC2,IDATA_BC2, &
       BCDATA,IPAR,RPAR)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! calculate PERIM_MAC2 and DIST_AXIS for the cyclical geometries:
    ! type 5&6: retangle with translations or symmetries on all sides
    ! type 7  : 1/8 assembly with symmetries on all sides
    ! type 8  : equilateral triangle with symmetries on all sides
    ! type 9  : hexagon with translations on all sides
    ! type 10 : hexagon with RA60 rotation
    ! type 11 : hexagon with R120 rotation
    ! type 12 : rectangular S30 triangle geometry
    !
    !Parameters: input
    ! NPERIM     number of elements in perimeter
    ! IBC2_ELEM  2D bc order number per element
    ! TYPE_BC2   type of boundary conditions per 2D bc
    ! IDATA_BC2  position in the 'bcdata' table for each 2D bc
    ! BCDATA     table of boundary conditions data
    ! IPAR       integer element descriptor table
    ! RPAR       floating point element descriptor table
    !
    !Parameters: input/output
    ! PERIM      list of elements in perimeter,in return it will be in following
    !            order: (elems on axis 1)+(elems on axis 2)+(other elems)
    !
    !Parameters: output
    ! PPERIM     pointers to the table 'perim':
    ! DIST_AXIS  distance of points on axis to the axis origin
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES,     ONLY : TYPGEO,ANGGEO,EPS,LX=>LENGTHX,LY=>LENGTHY,G_BC_TYPE
    USE SAL_NUMERIC_MOD, ONLY : SAL141
    !****
    IMPLICIT NONE
    INTEGER, INTENT(IN)                  :: NPERIM
    INTEGER, INTENT(IN),    DIMENSION(:) :: IBC2_ELEM,TYPE_BC2,IDATA_BC2
    INTEGER, INTENT(INOUT), DIMENSION(:) :: PERIM
    INTEGER, INTENT(OUT),   DIMENSION(:) :: PPERIM
    REAL(PDB), POINTER,     DIMENSION(:) :: DIST_AXIS
    INTEGER, INTENT(IN),  DIMENSION(:,:) :: IPAR
    REAL(PDB), INTENT(INOUT),DIMENSION(:,:) :: RPAR
    REAL(PDB), INTENT(IN),DIMENSION(:,:) :: BCDATA
    !****
    !     LIST_ELEMS = table of elements,elements on axis are in increasing order
    !                  of distance to axis origin:
    !                  1=elements on axis 1; 2=elements on axis 2; ...
    !     AUX_DIST   = max distance of element ends to axis origin:
    !                  1=distances on axis 1; 2=distances on axis 2; ...
    INTEGER,   DIMENSION(NPERIM,6) :: LIST_ELEMS
    REAL(PDB), DIMENSION(NPERIM,6) :: AUX_DIST
    INTEGER   :: I,J,K,M,ELEM,TYPBC,IBC,IDATA,NBE(6),OK,NAXES
    REAL(PDB) :: ANGLE,X,Y,D
    !****
    NAXES=0
    IF((TYPGEO==5).OR.(TYPGEO==6).OR.(TYPGEO==11)) THEN
       NAXES=4
    ELSEIF((TYPGEO==7).OR.(TYPGEO==8).OR.(TYPGEO==10).OR.(TYPGEO==12)) THEN
       NAXES=3
    ELSEIF(TYPGEO==9) THEN
       NAXES=6
    ENDIF
    !*    calculate number of elements on axes,
    !     and their distances to the origin of the axis
    NBE=0

    DO I=1,NPERIM
       ELEM=PERIM(I)
       IBC=IBC2_ELEM(ELEM)
       TYPBC=TYPE_BC2(IBC)
       IDATA=IDATA_BC2(IBC)
    ENDDO
    DO I=1,NPERIM
       ELEM=PERIM(I)
       IBC=IBC2_ELEM(ELEM)
       TYPBC=TYPE_BC2(IBC)
       IDATA=IDATA_BC2(IBC)
       ANGLE=BCDATA(5,IDATA)
       !        default is the elements not on axis
       M=NAXES+1
       SELECT CASE(TYPGEO)
          CASE(5)
          !*          rectangle with translations:
          !           axes definition:
          !                       M=3
          !                  ************
          !                  *          *
          !              M=2 *          * M=4
          !                  ************
          !                       M=1
          IF(TYPBC==G_BC_TYPE(2)) THEN
             IF(BCDATA(2,IDATA)>0) THEN
                M=1
             ELSEIF(BCDATA(2,IDATA)<0) THEN
                M=3
             ELSEIF(BCDATA(1,IDATA)>0) THEN
                M=2
             ELSEIF(BCDATA(1,IDATA)<0) THEN
                M=4
             ENDIF
          ELSE
             CALL XABORT('SAL130_10: wrong boundary condition for TYPGEO=5.')
          ENDIF
          CASE(6)
          !*          rectangle with symmetries:
          !           axes definition:
          !                       M=3
          !                  ************
          !                  *          *
          !              M=2 *          * M=4
          !                  ************
          !                       M=1
          IF(TYPBC==G_BC_TYPE(4)) THEN
             IF(ABS(ANGLE)<EPS) THEN
                IF(BCDATA(2,IDATA)>0) THEN
                   !                    cy>0: element is on the axis 3 (angle=0)
                   M=3
                ELSE
                   !                    cy=0: element is on the axis 1 (angle=0)
                   M=1
                ENDIF
             ELSEIF(ABS(ANGLE-ANGGEO)<EPS) THEN
                IF(BCDATA(1,IDATA)>0) THEN
                   !                    cx>0: element is on the axis 4 (angle=anggeo)
                   M=4
                ELSE
                   !                    cx=0: element is on the axis 2 (angle=anggeo)
                   M=2
                ENDIF
             ENDIF
          ELSE
             CALL XABORT('SAL130_10: wrong boundary condition for TYPGEO=6.')
          ENDIF
          CASE(7,8,12)
          !*          triangles with symmetries:
          !           typgeo=7 axes definition:
          !                        *
          !                 M=2  * * M=3
          !                    *   *
          !                  *******
          !                     M=1
          !           typgeo=8 axes definition:
          !                        *
          !                M=2   *   *    M=3
          !                    *       *
          !                  *************
          !                        M=1
          IF(TYPBC==G_BC_TYPE(4)) THEN
             IF(ABS(ANGLE)<EPS) THEN
                !                 element is on the axis 1 (angle=0)
                M=1
             ELSEIF(ABS(ANGLE-ANGGEO)<EPS) THEN
                !                 element is on the axis 2 (angle=anggeo)
                M=2
             ELSEIF(ABS(ANGLE-HALFPI)<EPS) THEN
                !                 typgeo=7:element is on the axis 3 (angle=pi/2)
                M=3
             ELSEIF(ABS(ANGLE-2.*ANGGEO)<EPS) THEN
                !                 typgeo=8:element is on the axis 3 (angle=2*anggeo)
                M=3
             ELSEIF(ABS(ANGLE-2.*PI/3.)<EPS) THEN
                !                 typgeo=12:element is on the axis 3 (angle=2*pi/3)
                M=3
             ELSE
                CALL XABORT('SAL130_10: boundary condition data error in element for TYPGEO=7,8,12.')
             ENDIF
          ELSE
             CALL XABORT('SAL130_10: wrong boundary condition for TYPGEO=7,8.')
          ENDIF
          CASE(9)
          !*          hexagon with translations:
          !           axes definition:
          !                                   M=4 (0,-2ly)
          !                                  *****
          !                 M=3 (3/2lx,-ly) *     *  M=5 (-3/2lx,-ly)
          !                                *       *
          !                 M=2 (3/2lx, ly) *     *  M=6 (-3/2lx, ly)
          !                                  *****
          !                                   M=1 (0, 2ly)
          !           origins of axes:
          !           axis 1&2: (-lx/2,-ly)
          !           axis 3:   (-lx  ,  0)
          !           axis 4:   (-lx/2, ly)
          !           axis 5:   ( lx  ,  0)
          !           axis 6:   ( lx/2,-ly)
          IF(TYPBC==G_BC_TYPE(2)) THEN
             IF(ABS(BCDATA(1,IDATA))<EPS) THEN
                IF(BCDATA(2,IDATA)>0) THEN
                   M=1
                ELSE
                   M=4
                ENDIF
             ELSEIF(BCDATA(1,IDATA)>0.AND.BCDATA(2,IDATA)>0) THEN
                M=2
             ELSEIF(BCDATA(1,IDATA)>0.AND.BCDATA(2,IDATA)<0) THEN
                M=3
             ELSEIF(BCDATA(1,IDATA)<0.AND.BCDATA(2,IDATA)>0) THEN
                M=6
             ELSEIF(BCDATA(1,IDATA)<0.AND.BCDATA(2,IDATA)<0) THEN
                M=5
             ENDIF
          ELSE
             CALL XABORT('SAL130_10: wrong boundary condition for TYPGEO=9.')
          ENDIF
          CASE(10)
          !*          triangles with rotations and translations:
          !           typgeo=10 axes definition:
          !                        *
          !                M=2   *   *    M=3
          !                    *       *
          !                  *************
          !                        M=1
          IF((TYPBC==G_BC_TYPE(2)).OR.(TYPBC==G_BC_TYPE(3))) THEN
             IF(ABS(ANGLE)<EPS) THEN
                !                 element is on the axis 1 (angle=0)
                M=1
             ELSEIF(ABS(ANGLE-ANGGEO)<EPS) THEN
                !                 element is on the axis 2 (angle=anggeo)
                M=2
             ELSEIF(ABS(ANGLE-2.*ANGGEO)<EPS) THEN
                !                 element is on the axis 3 (angle=2*anggeo)
                M=3
             ELSE
                CALL XABORT('SAL130_10: boundary condition data error in element for TYPGEO=10.')
             ENDIF
          ELSE
             CALL XABORT('SAL130_10: wrong boundary condition for TYPGEO=10.')
          ENDIF
          CASE(11)
          !*          lozenge with rotations and translations:
          !           axes definition:
          !                          M=3
          !                     ************
          !                    *          *
          !              M=2  *          *  M=4
          !                  ************
          !                       M=1
          IF((TYPBC==G_BC_TYPE(2)).OR.(TYPBC==G_BC_TYPE(3))) THEN
             IF(ABS(ANGLE)<EPS) THEN
                IF(BCDATA(2,IDATA)>0) THEN
                   !                    cy>0: element is on the axis 3 (angle=0)
                   M=3
                ELSE
                   !                    cy=0: element is on the axis 1 (angle=0)
                   M=1
                ENDIF
             ELSE
                IF(BCDATA(1,IDATA)>0) THEN
                   !                    cx>0: element is on the axis 4 (angle>0)
                   M=4
                ELSE
                   !                    cx=0: element is on the axis 2 (angle>0)
                   M=2
                ENDIF
             ENDIF
          ELSE
             CALL XABORT('SAL130_10: TYPGEO=11:wrong boundary condition type.')
          ENDIF
          CASE DEFAULT
             CALL XABORT('SAL130_10: boundary condition not implemented.')
       END SELECT
       IF(M>=NAXES+1) CALL XABORT('SAL130_10: element not on axes')
       NBE(M)=NBE(M)+1
       LIST_ELEMS(NBE(M),M)=ELEM
       !        sort the element list according their distance to
       !        the origins of the axes
       D=0.
       SELECT CASE(TYPGEO)
          CASE(5:6)
          SELECT CASE(M)
             CASE(1:2)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT(X*X+Y*Y))
             ENDDO
             CASE(3)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,X)
             ENDDO
             CASE(4)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,Y)
             ENDDO
          END SELECT
          CASE(7)
          SELECT CASE(M)
             CASE(1:2)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT(X*X+Y*Y))
             ENDDO
             CASE(3)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,Y)
             ENDDO
          END SELECT
          CASE(8,10,12)
          SELECT CASE(M)
             CASE(1:2)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT(X*X+Y*Y))
             ENDDO
             CASE(3)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                !                 axis origin is (lx,0)
                D=MAX(D,SQRT((X-LX)*(X-LX)+Y*Y))
             ENDDO
          END SELECT
          CASE(9)
          !           origins of axes:
          !           axis 1&2: (-lx/2,-ly)
          !           axis 3:   (-lx  ,  0)
          !           axis 4:   (-lx/2, ly)
          !           axis 5:   ( lx  ,  0)
          !           axis 6:   ( lx/2,-ly)
          SELECT CASE(M)
             CASE(1:2)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT((X+LX*0.5)*(X+LX*0.5)+(Y+LY)*(Y+LY)))
             ENDDO
             CASE(3)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT((X+LX)*(X+LX)+Y*Y))
             ENDDO
             CASE(4)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT((X+LX*0.5)*(X+LX*0.5)+(Y-LY)*(Y-LY)))
             ENDDO
             CASE(5)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT((X-LX)*(X-LX)+Y*Y))
             ENDDO
             CASE(6)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT((X-LX*0.5)*(X-LX*0.5)+(Y+LY)*(Y+LY)))
             ENDDO
          END SELECT
          CASE(11)
          SELECT CASE(M)
             CASE(1:2)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT(X*X+Y*Y))
             ENDDO
             CASE(3)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT((X-LX*0.5)*(X-LX*0.5)+(Y-LY)*(Y-LY)))
             ENDDO
             CASE(4)
             DO K=1,2
                CALL SAL141(IPAR(1,ELEM),RPAR(:,ELEM),X,Y,K)
                D=MAX(D,SQRT((X-LX)*(X-LX)+Y*Y))
             ENDDO
          END SELECT
       END SELECT
       AUX_DIST(NBE(M),M)=D
       IF(NBE(M)>1) THEN
          DO K=1,NBE(M)-1
             IF(AUX_DIST(NBE(M),M)<AUX_DIST(K,M)) THEN
                !                 insert the last element to position k
                D=AUX_DIST(NBE(M),M)
                ELEM=LIST_ELEMS(NBE(M),M)
                DO J=NBE(M),K+1,-1
                   AUX_DIST(J,M)=AUX_DIST(J-1,M)
                   LIST_ELEMS(J,M)=LIST_ELEMS(J-1,M)
                ENDDO
                AUX_DIST(K,M)=D
                LIST_ELEMS(K,M)=ELEM
                EXIT
             ENDIF
          ENDDO
       ENDIF
    ENDDO
    !     nber of blocks in 'perim'
    M=NAXES
    !*    organize elements as: (elems on axis 1)+(elems on axis 2)+...
    PPERIM(1)=1
    DO I=1,M
       PPERIM(I+1)=PPERIM(I)+NBE(I)
    ENDDO
    DO I=1,M
       PERIM(PPERIM(I):PPERIM(I+1)-1)=LIST_ELEMS(1:NBE(I),I)
    ENDDO
    !*    allocate and set dist_axis
    IF(PPERIM(NAXES+1)-1>0) THEN
       ALLOCATE(DIST_AXIS(PPERIM(NAXES+1)-1),STAT=OK)
       IF(OK.NE.0) CALL XABORT('SAL130_10: not enough memory R')
       DO I=1,NAXES
          DIST_AXIS(PPERIM(I):PPERIM(I+1)-1)=AUX_DIST(1:NBE(I),I)
       ENDDO
    ELSE
       NULLIFY(DIST_AXIS)
    ENDIF
    !
  END SUBROUTINE SAL130_10
  !
  SUBROUTINE SAL131(GG)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! modifies GG%IPAR and constructs bcdata (modifies GG%IPAR and
    ! constructs BCDATA)
    !
    !Parameters: input/output
    ! GG    geometry descriptor
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : G_BC_MAX_LEN,G_BC_LEN,G_BC_TYPE,NIPAR,EPS, &
                                   ANGGEO,TYPGEO,LENGTHX,LENGTHY,ALLSUR
    !****
    IMPLICIT NONE
    ! in variable
    ! ************
    TYPE(T_G_BASIC), INTENT(INOUT) :: GG
    !****
    LOGICAL   :: LGBC,LGALLS
    INTEGER   :: TYPE,II,NN,NBER,I,J,ITBC,IELEM
    REAL(PDB) :: ANGLE
    INTEGER   :: ELEM,IBC,OK,IDATA(2)
    INTEGER, POINTER, DIMENSION(:) :: TYPE_BC2,ISURF2_ELEM,IELEM_BC2
    !*****
    !**   TMP_BCDATA        = description of motions at the boundary
    !**   IPAR              = pointer to geometry descriptors
    INTEGER, DIMENSION(GG%NB_ELEM) :: AUX_ARR
    REAL(PDB), DIMENSION(G_BC_MAX_LEN,GG%NB_ELEM+5) :: TMP_BCDATA
    !*****
    !*    initialization
    IF(TYPGEO==1.OR.TYPGEO==2) IDATA(:)=0
    !*    BCDATA for surfaces of type G_BC_TYPE(-1)
    !
    LGALLS=ALLSUR/=0
    ITBC=0      ! the first bc data
    !
    !*    treat approximate boundary condictions
    IF(LGALLS)THEN
       ITBC=1
       !        ALL BC'S PRODUIT SURFACES
       IF(GG%DEFAUL==1)THEN
          !           SPECULAR REFLEXION -> ISOTROPIC REFLEXION WITH ALBEDO=1
          GG%DEFAUL=0 ; TMP_BCDATA(6,ITBC)=1._PDB
       ENDIF
    ENDIF
    !
    !*    put default value in all bc elements:
    CALL SAL131_2(GG%NB_ELEM,GG%DEFAUL,GG%IPAR,GG%IBC2_ELEM,GG%TYPE_BC2,GG%IDATA_BC2)
    !
    IF(GG%NBBCDA>0)THEN
       ANGLE=0._PDB
       DO I=1,GG%NBBCDA
          ITBC=ITBC+1
          IF(ITBC.GT.GG%NB_ELEM+5) CALL XABORT('SAL131: BCDATA overflow')
          TMP_BCDATA(:,ITBC)=GG%BCDATAREAD(I)%BCDATA(:)
          TYPE=GG%BCDATAREAD(I)%SALTYPE
          SELECT CASE(TYPE)
             CASE(1)
             IF(LGALLS)THEN
                !                specular reflexion -> isotropic reflexion with albedo=1
                TYPE=0 ; TMP_BCDATA(6,ITBC)=1._PDB
             ENDIF
             CASE(2)
             ANGLE=TMP_BCDATA(5,ITBC)
             SELECT CASE(TYPGEO)
                CASE(5) 
                !                adjust translation data according to the sides of rectangle
                IF(TMP_BCDATA(1,ITBC)/=0) TMP_BCDATA(1,ITBC)=SIGN(LENGTHX,TMP_BCDATA(1,ITBC))
                IF(TMP_BCDATA(2,ITBC)/=0) TMP_BCDATA(2,ITBC)=SIGN(LENGTHY,TMP_BCDATA(2,ITBC))
                CASE(9)
                !                adjust translation data according to the hexagonal sides
                IF(ABS(TMP_BCDATA(1,ITBC))<EPS) THEN
                   !                    axes 1 & 4
                   TMP_BCDATA(2,ITBC)=SIGN(2.*LENGTHY,TMP_BCDATA(2,ITBC))
                ELSE
                   TMP_BCDATA(1,ITBC)=SIGN(LENGTHX*1.5,TMP_BCDATA(1,ITBC))
                   TMP_BCDATA(2,ITBC)=SIGN(LENGTHY,TMP_BCDATA(2,ITBC))
                ENDIF
                TMP_BCDATA(3,ITBC)=COS(ANGLE)
                TMP_BCDATA(4,ITBC)=SIN(ANGLE)
                TMP_BCDATA(5,ITBC)=ANGLE
                CASE(11)
                !                adjust translation data according to the hexagonal sides
                IF(ABS(ANGLE)<EPS) THEN
                   IF(TMP_BCDATA(2,ITBC)>0.) THEN
                     !                    cy>0 and angle=0
                     TMP_BCDATA(1,ITBC)=LENGTHX/2.0
                     TMP_BCDATA(2,ITBC)=LENGTHY
                   ELSE
                     !                    cy=0 and angle=0
                     TMP_BCDATA(1,ITBC)=0.0
                     TMP_BCDATA(2,ITBC)=0.0
                   ENDIF
                ELSE
                   IF(TMP_BCDATA(1,ITBC)>0.) THEN
                     !                    cx>0 and angle=pi/3 rad
                     TMP_BCDATA(1,ITBC)=LENGTHX
                     TMP_BCDATA(2,ITBC)=0.0
                   ELSE
                     !                    cx=0 and angle=pi/3 rad
                     TMP_BCDATA(1,ITBC)=0.0
                     TMP_BCDATA(2,ITBC)=0.0
                   ENDIF
                ENDIF
                TMP_BCDATA(3,ITBC)=COS(ANGLE)
                TMP_BCDATA(4,ITBC)=SIN(ANGLE)
                TMP_BCDATA(5,ITBC)=ANGLE
             END SELECT
             IF(LGALLS)THEN
                !                 translation -> isotropic translation with albedo=1
                TYPE=TYPE+4
                !                 perform array shift
                TMP_BCDATA(:,ITBC)=CSHIFT(TMP_BCDATA(:,ITBC),1)
                !                 albedo=1
                TMP_BCDATA(6,ITBC)=1._PDB
             ENDIF
             CASE(3) 
             !              cases of rotation:
             !              read angle, compute cos and sin
             ANGLE=TMP_BCDATA(5,ITBC)
             IF(TYPGEO==1.OR.TYPGEO==2) THEN
                IF(ABS(ANGLE-ANGGEO)<EPS) THEN
                   !                    for the axis 1:keep anggeo,cos(anggeo),sin(anggeo)
                   ANGLE=ANGGEO
                   IF(IDATA(1)==0) IDATA(1)=ITBC
                ELSEIF(ABS(ANGLE+ANGGEO)<EPS) THEN
                   !                    for the axis 2:keep -anggeo,cos(-anggeo),sin(-anggeo)
                   ANGLE=-ANGGEO
                   IF(IDATA(2)==0) IDATA(2)=ITBC
                ELSE
                   CALL XABORT('SAL131: error in angle of rotative axis')
                ENDIF
             ENDIF
             TMP_BCDATA(3,ITBC)=COS(ANGLE)
             TMP_BCDATA(4,ITBC)=SIN(ANGLE)
             TMP_BCDATA(5,ITBC)=ANGLE
             IF(LGALLS)THEN
                !                 rotation -> isotropic rotation with albedo=1
                !                 axial symmetry -> isotropic axial symmetry with albedo=1
                TYPE=TYPE+4
                !                 perform array shift
                TMP_BCDATA(:,ITBC)=CSHIFT(TMP_BCDATA(:,ITBC),1)
                !                 albedo=1
                TMP_BCDATA(6,ITBC)=1._PDB
             ENDIF
             CASE(4)
             !              cases of specular symmetry:
             !              read center and angle, compute cos and sin
             ANGLE=TMP_BCDATA(5,ITBC)
             SELECT CASE(TYPGEO)
                CASE(1,2)
                IF(ABS(ANGLE-0.)<EPS) THEN
                   IF(IDATA(1)==0) IDATA(1)=ITBC
                ELSE
                   IF(IDATA(2)==0) IDATA(2)=ITBC
                ENDIF
                CASE(6:8)
                !                 adjust translation data according to the rectangle/triangle sides
                IF(TMP_BCDATA(1,ITBC)/=0) TMP_BCDATA(1,ITBC)=SIGN(LENGTHX,TMP_BCDATA(1,ITBC))
                IF(TMP_BCDATA(2,ITBC)/=0) TMP_BCDATA(2,ITBC)=SIGN(LENGTHY,TMP_BCDATA(2,ITBC))
             END SELECT
             TMP_BCDATA(3,ITBC)=COS(ANGLE)
             TMP_BCDATA(4,ITBC)=SIN(ANGLE)
             TMP_BCDATA(5,ITBC)=ANGLE
             IF(LGALLS)THEN
                !                 rotation -> isotropic rotation with albedo=1
                !                 axial symmetry -> isotropic axial symmetry with albedo=1
                TYPE=TYPE+4
                !                 perform array shift
                TMP_BCDATA(:,ITBC)=CSHIFT(TMP_BCDATA(:,ITBC),1)
                !                 albedo=1
                TMP_BCDATA(6,ITBC)=1._PDB
             ENDIF
          END SELECT
          !
          !           modify notation for boundary conditions
          NBER=GG%BCDATAREAD(I)%NBER
          DO J=1,NBER
             ELEM=GG%BCDATAREAD(I)%ELEMNB(J)
             IF(ELEM>GG%NB_ELEM.OR.ELEM<=0) CALL XABORT('SAL131: unknown bc element')
             !        get local surface nber
             IBC=GG%IBC2_ELEM(ELEM)
             LGBC=GG%IPAR(2,ELEM)<=0
             II=0
             IF(LGBC)THEN
                II=2
             ELSE
                LGBC=GG%IPAR(3,ELEM)<=0
                IF(LGBC) II=3
             ENDIF
             IF(.NOT.LGBC) THEN
                WRITE(*,*) 'elem :',ELEM
                WRITE(*,*) 'GG%IPAR(:,ELEM) :',GG%IPAR(:,ELEM)
                CALL XABORT('SAL131: wrong bc element')
             ENDIF
             !              put bc type
             GG%IPAR(II,ELEM)=G_BC_TYPE(TYPE)
             GG%TYPE_BC2(IBC)=G_BC_TYPE(TYPE)
             !              put bc data position :
             GG%IDATA_BC2(IBC)=ITBC
          ENDDO
       ENDDO
    ENDIF
    !
    !*    - set BCDATA position for surfaces of type G_BC_TYPE(-1)
    !     - compute the nber of surfaces (type -1,0,-12,-13,-14,-15) : nbsur2
    !     - allocate structures for the surfaces
    !     - compute surf_mac2
    TYPE_BC2=>GG%TYPE_BC2
    ISURF2_ELEM=>GG%ISURF2_ELEM
    IELEM_BC2=>GG%PERIM_MAC2
    NN=0
    DO IBC=1,GG%NB_BC2
       IF(TYPE_BC2(IBC)==G_BC_TYPE(-1)) THEN
          !              macro contact surfaces : set bcdata position to 1
          GG%IDATA_BC2(IBC)=1
       ENDIF
       !           relative element nber
       IELEM=IELEM_BC2(IBC)
       !           count 2D surfaces number
       IF(TYPE_BC2(IBC)==G_BC_TYPE(-1) .OR. TYPE_BC2(IBC)==G_BC_TYPE(0) .OR. &
          TYPE_BC2(IBC)==G_BC_TYPE(1)) THEN
          NN=NN+1
          AUX_ARR(NN)=IBC
          ISURF2_ELEM(IELEM)=NN
       ELSE
          ISURF2_ELEM(IELEM)=0
       ENDIF
    ENDDO
    GG%NB_SURF2=NN
    IF(NN>0) THEN
       ALLOCATE (GG%IBC2_SURF2(NN),GG%IELEM_SURF2(NN),STAT=OK)
       IF(OK/=0) CALL XABORT('SAL131: NOT ENOUGH MEMORY I,R')
       GG%IBC2_SURF2(1:NN)=AUX_ARR(1:NN)
    ELSE
       NULLIFY(GG%IBC2_SURF2,GG%IELEM_SURF2)
    ENDIF
    !
    !*    allocate idata_axis
    IF(TYPGEO==1.OR.TYPGEO==2) THEN
       DO I=1,2
          IF(IDATA(I)==0) THEN
             !              there is no elements on this axis,add a bcdata for this axis
             ITBC=ITBC+1
             ANGLE=0._PDB
             IF(TYPGEO==1) THEN
                !                 symmetry
                IF(I==1) THEN
                   ANGLE=0._PDB
                ELSE
                   ANGLE=ANGGEO
                ENDIF
             ELSEIF(TYPGEO==2) THEN
                !                 rotation
                IF(I==1) THEN
                   ANGLE=ANGGEO
                ELSE
                   ANGLE=-ANGGEO
                ENDIF
             ENDIF
             TMP_BCDATA(1,ITBC)=0._PDB
             TMP_BCDATA(2,ITBC)=0._PDB
             TMP_BCDATA(3,ITBC)=COS(ANGLE)
             TMP_BCDATA(4,ITBC)=SIN(ANGLE)
             TMP_BCDATA(5,ITBC)=ANGLE
             IDATA(I)=ITBC
          ENDIF
       ENDDO
       ALLOCATE(GG%IDATA_AXIS(2), STAT=OK)
       IF(OK.NE.0) CALL XABORT('SAL131: not enough memory I')
       GG%IDATA_AXIS=IDATA
    ENDIF
    !*    allocate bcdata
    ALLOCATE (GG%BCDATA(G_BC_MAX_LEN,ITBC), STAT=OK)
    IF(OK/=0) CALL XABORT('SAL131: not enough memory R')
    GG%BCDATA(:,1:ITBC)=TMP_BCDATA(:,1:ITBC)
    GG%NALBG=ITBC
    !
  END SUBROUTINE SAL131
  !
  SUBROUTINE SAL131_2(NB_ELEM,DEFAUL,IPAR,IBC2_ELEM,TYPE_BC2,IDATA_BC2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! put default bc type and BCDATA to a 2D macro
    !
    !Parameters: input
    ! NB_ELEM    nber of elements
    ! DEFAUL     default bc type
    ! IBC2_ELEM  relative 2D bc number per element
    !
    !Parameters: input/output
    ! IPAR       integer descriptors for elements
    !
    !Parameters: input
    ! TYPE_BC2    2D boundary condiction type
    ! IDATA_BC2   position in bcdata par 2D bc
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : G_BC_TYPE
    !****
    IMPLICIT NONE
    INTEGER, INTENT(IN)                    :: NB_ELEM,DEFAUL
    INTEGER, INTENT(INOUT), DIMENSION(:,:) :: IPAR
    INTEGER, INTENT(IN),   DIMENSION(:)    :: IBC2_ELEM
    INTEGER, INTENT(OUT),  DIMENSION(:)    :: TYPE_BC2
    INTEGER, INTENT(OUT),  DIMENSION(:)    :: IDATA_BC2
    !****
    INTEGER :: ELEM,II,IBC
    LOGICAL :: LGBC
    !****
    !     initiation
    TYPE_BC2=G_BC_TYPE(-1)
    !
    DO ELEM=1,NB_ELEM
       LGBC=IPAR(2,ELEM)==0
       II=0
       IF(LGBC) THEN
          II=2
          IF(IPAR(3,ELEM)<=0) CALL XABORT('SAL131_2: element with 2 bc''s')
       ELSE
          LGBC=IPAR(3,ELEM)==0
          IF(LGBC) II=3
       ENDIF
       IF(LGBC) THEN
          !           put bc type value to ipar
          IPAR(II,ELEM)=G_BC_TYPE(DEFAUL)
          !           put bc type value to bc type structure
          IBC=IBC2_ELEM(ELEM)
          IF(IBC==0) CALL XABORT('SAL131_2: surf-element relation error')
          IF(TYPE_BC2(IBC)/=G_BC_TYPE(-1)) CALL XABORT('SAL131_2: two elements to a surface')
          TYPE_BC2(IBC)=G_BC_TYPE(DEFAUL)
          !           put position of "defaul" in bcdata table (use default albedo)
          IDATA_BC2(IBC)=0
       ENDIF
    ENDDO
    !
  END SUBROUTINE SAL131_2
  !
  SUBROUTINE SAL140(NB_NODE,RPAR,IPAR,PPERIM,PERIM)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! checks domain topology in a 2D macro
    !
    !Parameters: input
    ! NB_NODE    number of nodes in macro
    !
    !Parameters: input/output
    ! RPAR       floating point geometry descriptors
    ! IPAR       integer descriptors for elements
    ! PPERIM     pointer to list of elements in perimeter
    ! PERIM      list of perimeters
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : NRPAR,NIPAR
    !****
    IMPLICIT NONE
    INTEGER,   INTENT(IN)   :: NB_NODE
    INTEGER,   INTENT(IN),    DIMENSION (:)   :: PPERIM
    INTEGER,   INTENT(INOUT), DIMENSION (:,:) :: IPAR
    INTEGER,   INTENT(INOUT), DIMENSION (:)   :: PERIM
    REAL(PDB), INTENT(INOUT), DIMENSION (:,:) :: RPAR
    !****
    INTEGER   :: ELEM,NODE,ID,L,FIRST,LAST,NEXT,NLOOP, &
         NEWEND,KEEP,IEND,I1,I2
    REAL(PDB) :: X,Y,XNEW,YNEW,DIST
    LOGICAL   :: LGOPEN,LGON,LGERR
    INTEGER, PARAMETER      :: MXKEEP = 20
    REAL, DIMENSION(MXKEEP) :: KEEPD
    INTEGER, PARAMETER :: FOUT =6
    REAL(PDB),PARAMETER :: EPS2=1.0E-7_PDB
    !*****
    NEXT=0
    !*    checks topology of each node
    DO NODE=1,NB_NODE
       I1=PPERIM(NODE)
       !        ID counts elements in the perimeter already treated
       ID=I1-1
       I2=PPERIM(NODE+1)-1
       IF(I2<I1) CALL XABORT('SAL140: node without perimeter')
       !        mark elements in perimeter of node as untreated
       !        (except full circle: ipar=2)
       DO L=I1,I2
          ELEM=PERIM(L)
          IF(IPAR(1,ELEM)==2)THEN
             ID=ID+1
             IF(ID<L)THEN
                ! move circles at beginning
                PERIM(L)=PERIM(ID)
                PERIM(ID)=ELEM
             ENDIF
          ENDIF
       ENDDO
       ID=ID+1
       !        nloop counts nber of loops for node
       NLOOP=ID-1
       !        treat all elements in perimeter until they have been all done:
       DO WHILE (ID<I2)
          !           an element in the perimeter that has not been done
          FIRST=PERIM(ID)
          NLOOP=NLOOP+1
          !           get first end for this element:
          IEND=1
          !           determine the loop defined by element last:
          LGOPEN=.TRUE.
          LAST=FIRST
          DO WHILE(LGOPEN)
             !              get coordinates x and y of end of element last
             CALL SAL141(IPAR(1,LAST),RPAR(:,LAST),X,Y,IEND)
             !              get next element in the perimeter in touch with
             !              last element at its end iend
             LGON=.TRUE.
             L=ID+1
             KEEP=0
             DO WHILE(LGON.AND.L<=I2)
                NEXT=PERIM(L)
                !                 check whether next is really 'next' to last
                CALL SAL142(X,Y,XNEW,YNEW,IPAR(1,NEXT),RPAR(:,NEXT),NEWEND,EPS2,DIST)
                IF(KEEP<MXKEEP)KEEP=KEEP+1
                KEEPD(KEEP)=REAL(DIST)
                LGON=NEWEND<0
                IF(LGON)L=L+1
             ENDDO
             LGOPEN=.NOT.LGON
             IF(LGOPEN)THEN
                !                 replace last element in order in the perimeter
                ID=ID+1
                IF(ID<L)THEN
                   PERIM(L)=PERIM(ID)
                   PERIM(ID)=NEXT
                ENDIF
             ELSE
                LGERR=.FALSE.
                !                 try to close with first element of loop:
                CALL SAL142(X,Y,XNEW,YNEW,IPAR(1,FIRST),RPAR(:,FIRST),NEWEND,EPS2,DIST)
                LGOPEN=NEWEND<0
                IF(LGOPEN)THEN
                   !                    fatal error: cannot close loop for this node
                   WRITE(FOUT,'(//,''==> cannot close node '',i5, &
                        &''   AT ELEMENT'',I5,/)')NODE,LAST
                   LGERR=.TRUE.
                ELSEIF(FIRST==LAST)THEN
                   WRITE(FOUT,'(//,''==> node '',i5,''    with '', &
                        &''isolated element'',i5,/)')NODE,LAST
                   LGERR=.TRUE.
                ENDIF
                IF(LGERR) CALL XABORT('SAL140: node not closed')
                NEXT=FIRST
             ENDIF
             !              define last = next element and proceed
             LAST=NEXT
             IEND=3-NEWEND
          ENDDO
          ID=ID+1
       ENDDO
    ENDDO
    !
  END SUBROUTINE SAL140
  !
  SUBROUTINE SAL142(X,Y,XNEW,YNEW,TYPE,RPAR,IEND,EPS2,DIST)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! checks whether element is very close to point (X,Y)
    !
    !Parameters: input
    ! X        abscissa coordinate
    ! Y        ordinate coordinate
    ! TYPE     type of element  1 (segment), 3 (arc of circle)
    ! EPS2     criterium for closeness
    !
    !Parameters: input/output
    ! XNEW     abscissa coordinate of end of element close to point
    ! YNEW     ordinate coordinate of end of element close to point
    ! RPAR     floating point geometry descriptors
    ! IEND     =  1 (beginning is close to point dist < EPS2)
    !             2 (end is close to point DIST < EPS2)
    !            -1 (beginning is close to point dist > EPS2)
    !            -2 (end is close to point DIST > EPS2)
    ! DIST     distance from end of element to point (X,Y)
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : G_ELE_TYPE
    !****
    IMPLICIT NONE
    INTEGER,   INTENT(IN)               :: TYPE
    INTEGER,   INTENT(OUT)              :: IEND
    REAL(PDB), INTENT(IN)               :: X,Y,EPS2
    REAL(PDB), INTENT(OUT)              :: XNEW,YNEW,DIST
    REAL(PDB), INTENT(IN), DIMENSION(:) :: RPAR
    !     DIMENSION        RPAR(NRPAR)
    !****
    REAL(PDB) :: CX,CY,THETA,R,DIST2
    !****
    !*    function giving distance between two points:
    REAL(PDB) :: FUNC,X1,Y1,X2,Y2
    FUNC(X1,Y1,X2,Y2)=(X1-X2)**2+(Y1-Y2)**2
    !****
    CX=RPAR(1)
    CY=RPAR(2)
    DIST2=0._PDB
    IF(TYPE==G_ELE_TYPE(1))THEN
       !*       segment
       XNEW=CX
       YNEW=CY
       DIST=FUNC(XNEW,YNEW,X,Y)
       IF(DIST<=EPS2)THEN
          IEND=1
          RETURN
       ELSE
          XNEW=CX+RPAR(3)
          YNEW=CY+RPAR(4)
          DIST2=FUNC(XNEW,YNEW,X,Y)
       ENDIF
    ELSEIF(TYPE<=G_ELE_TYPE(3))THEN
       !*       arc of circle
       R=RPAR(3)
       THETA=RPAR(4)
       XNEW=CX+R*COS(THETA)
       YNEW=CY+R*SIN(THETA)
       DIST=FUNC(XNEW,YNEW,X,Y)
       IF(DIST<=EPS2)THEN
          IEND=1
          RETURN
       ELSE
          THETA=RPAR(5)
          XNEW=CX+R*COS(THETA)
          YNEW=CY+R*SIN(THETA)
          DIST2=FUNC(XNEW,YNEW,X,Y)
       ENDIF
    ELSE
       CALL XABORT('SAL142: not implemented')
    ENDIF
    !
    IF(DIST2<=EPS2)THEN
       DIST=DIST2
       IEND=2
       RETURN
    ELSE
       IF(DIST<=DIST2)THEN
          IEND=-1
       ELSE
          DIST=DIST2
          IEND=-2
       ENDIF
    ENDIF
    !
  END SUBROUTINE SAL142
  !
  SUBROUTINE SAL160(GG)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! analyse domain definition: 2D volumes, surfaces
    !  - compute node volumes
    !  - compute areas of 2d surfaces
    !  - read medium data
    !
    !Parameters: input/output
    ! GG    geometry descriptor
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : G_BC_TYPE,NBMED
    !****
    IMPLICIT NONE
    TYPE(T_G_BASIC), INTENT(INOUT)  :: GG
    !****
    INTEGER :: INB,IMED
    INTEGER, DIMENSION(GG%NB_NODE) :: DATAIN
    !****
    !     SUBROUTINE SAL160_2(NB_ELEM,IPAR,RPAR,VOL2,ISURF2_ELEM,NB_SURF2,SURF2)
    IF(GG%NB_SURF2==0) THEN
      CALL SAL160_2(GG%NB_ELEM,GG%IPAR,GG%RPAR,GG%VOL_NODE,GG%ISURF2_ELEM, &
         GG%NB_SURF2)
    ELSE
      CALL SAL160_2(GG%NB_ELEM,GG%IPAR,GG%RPAR,GG%VOL_NODE,GG%ISURF2_ELEM, &
         GG%NB_SURF2,GG%SURF2)
    ENDIF
    !
    !*    read medium per region
    CALL SALGET(DATAIN,GG%NB_NODE,F_GEO,FOUT0,'media per node')
  
    ! number of media fixed to maximum of datain
    NBMED = MAXVAL(DATAIN(1:GG%NB_NODE))
    !
    !*    check and define med for code regions
    DO INB=1,GG%NB_NODE
       IMED=DATAIN(INB)
       IF(IMED>NBMED.OR.IMED<0)THEN
          WRITE(*,*) 'medium : ',IMED
          WRITE(*,*) 'inb, nbmed, nbnode : ',INB,NBMED,GG%NB_NODE
          CALL XABORT('SAL160: wrong medium in a region')
       ENDIF
       GG%MED(INB)=IMED
    ENDDO
    !
  END SUBROUTINE SAL160
  !
  SUBROUTINE SAL160_2(NB_ELEM,IPAR,RPAR,VOL2,ISURF2_ELEM,NB_SURF2,SURF2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! compute 2D volumes and surfaces
    !  - compute node volumes
    !  - compute 2D surface areas
    !
    !Parameters: input
    ! NB_ELEM      number of elements
    ! NB_NODE      number of nodes
    ! IPAR         integer descriptors for elements
    ! RPAR         floating point descriptors for elements
    ! ISURF2_ELEM  2D surface nber per elem
    ! NB_SURF2     number of 2D surface
    !
    !Parameters: output
    ! VOL2         2D volumes of node 
    ! SURF2        2D areas of node
    !
    !---------------------------------------------------------------------
    !
    USE PRECISION_AND_KINDS, ONLY : PDB
    USE SAL_GEOMETRY_TYPES, ONLY : G_BC_TYPE
    !****
    IMPLICIT NONE
    INTEGER, INTENT(IN)                    :: NB_ELEM
    INTEGER, INTENT(IN),   DIMENSION(:,:)  :: IPAR
    REAL(PDB), INTENT(IN), DIMENSION(:,:)  :: RPAR
    REAL(PDB), INTENT(OUT),  DIMENSION(:)  :: VOL2
    INTEGER, INTENT(IN),   DIMENSION(:)    :: ISURF2_ELEM
    INTEGER, INTENT(IN)                    :: NB_SURF2
    REAL(PDB), INTENT(OUT), OPTIONAL,  DIMENSION(:)  :: SURF2
    !****
    INTEGER :: ELEM,NODEBC,NODE,ISURF
    LOGICAL :: LGBC
    REAL(PDB) :: AUX
    !****
    !     initiation
    VOL2=0._PDB
    IF(NB_SURF2 > 0) SURF2=0._PDB
    DO ELEM=1,NB_ELEM
       !*       compute volume of node and add to volume of region (local)
       CALL SAL161(IPAR(1,ELEM),RPAR(:,ELEM),AUX)
       NODEBC=IPAR(2,ELEM)
       LGBC=NODEBC<=0
       IF(.NOT.LGBC) VOL2(NODEBC)=VOL2(NODEBC)+AUX
       NODE=IPAR(3,ELEM)
       IF(NODE>0)THEN
          VOL2(NODE)=VOL2(NODE)-AUX
       ELSE
          IF(LGBC) CALL XABORT('SAL160_2: isolated element')
          LGBC=.TRUE.
          NODEBC=NODE
       ENDIF
       IF(LGBC) THEN
          IF(NODEBC==G_BC_TYPE(-1).OR.NODEBC==G_BC_TYPE(0).OR.NODEBC==G_BC_TYPE(1))THEN
             !  compute external surface (loaded in total order number)
             ISURF=ISURF2_ELEM(ELEM)
             IF(ISURF==0) CALL XABORT('SAL160_2: wrong relation of element - surf ')
             CALL SAL162(IPAR(1,ELEM),RPAR(:,ELEM),SURF2(ISURF))
          ENDIF
       ENDIF
    ENDDO
    !
  END SUBROUTINE SAL160_2
  !
  SUBROUTINE SAL161(TYPE,RPAR,VOL2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! computes 'volume' between an element and the x axis
    !
    !Parameters: input
    ! TYPE         type of element
    ! RPAR         floating point descriptors for elements
    !
    !Parameters: output
    ! VOL2         '2D area' between the element and the horizontal axis
    !
    !---------------------------------------------------------------------
    !
    IMPLICIT NONE
    INTEGER,   INTENT(IN)                 :: TYPE
    REAL(PDB), INTENT(IN),  DIMENSION (:) :: RPAR
    REAL(PDB), INTENT(OUT)                :: VOL2
    !     DIMENSION        RPAR(*)
    !****
    REAL(PDB) :: YC,EX,EY,R,PHI1,PHI2,COS1,COS2
    !****
    !     volume is added to node- and substracted from node+
    YC=RPAR(2)
    IF(TYPE==1)THEN
       !        segment:
       EX=RPAR(3)
       EY=RPAR(4)
       VOL2=EX*(YC+EY/2.)
    ELSEIF(TYPE==2)THEN
       !        whole circle
       VOL2=PI*RPAR(3)*RPAR(3)
    ELSEIF(TYPE==3)THEN
       !        arc of circle:
       R=RPAR(3)
       PHI1=RPAR(4)
       PHI2=RPAR(5)
       COS1=COS(PHI1)
       COS2=COS(PHI2)
       VOL2=R*(YC*(COS1-COS2)+(R/2.0)*(PHI2-PHI1+ &
            & (SIN(PHI1)*COS1-SIN(PHI2)*COS2)))
    ELSE
       CALL XABORT('SAL161: not implemented')
    ENDIF
    !
  END SUBROUTINE SAL161
  !
  SUBROUTINE SAL162(TYPE,RPAR,SURF2)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! computes surface of a boundary element
    !
    !Parameters: input
    ! TYPE         type of element
    ! RPAR         floating point descriptors for elements
    !
    !Parameters: output
    ! SURF2        '2D length' of element
    !
    !---------------------------------------------------------------------
    !
    IMPLICIT NONE
    INTEGER,   INTENT(IN)                :: TYPE
    REAL(PDB), INTENT(IN), DIMENSION (:) :: RPAR
    REAL(PDB), INTENT(OUT)               :: SURF2
    !****
    IF(TYPE==1)THEN
       !        segment
       SURF2=RPAR(5)
    ELSEIF(TYPE<=3)THEN
       !        arc of circle
       SURF2=(RPAR(5)-RPAR(4))*RPAR(3)
    ELSE
       CALL XABORT('SAL162: not implemented')
    ENDIF
    !
  END SUBROUTINE SAL162
  !
  SUBROUTINE SAL170(GG)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! prints out volume, surface and medium info for 2D macros
    !
    !Parameters: input/output
    ! GG    geometry descriptor
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES,      ONLY : G_BC_TYPE
    USE SAL_TRACKING_TYPES,      ONLY : PRTIND
    !****
    IMPLICIT NONE
    TYPE(T_G_BASIC), INTENT(INOUT)  :: GG
    INTEGER, PARAMETER :: FOUT =6

    !****
     IF(PRTIND == 1) THEN
         WRITE(FOUT,'(//,10x,''2D geometry'',/,10X,11(''=''),//, &
         &I8,''  regions'',/, &
         &I8,''  external surfaces'',//)') GG%NB_NODE,GG%NB_SURF2
     ENDIF
    !
  END SUBROUTINE SAL170
  !
  SUBROUTINE SALSYM(X1,Y1,X2,Y2,X0,Y0,X4,Y4)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! set the symmetric point (x4,y4) of (x0,y0) relative to symmetry axis
    ! (x1,y1)->(x2,y2)
    !
    !Parameters: input
    ! X1   abscissa coordinate of a point on the symmetry axis
    ! Y1   ordinate coordinate of a point on the symmetry axis
    ! X2   abscissa coordinate of a point on the symmetry axis
    ! Y2   ordinate coordinate of a point on the symmetry axis
    ! X0   abscissa coordinate of the point to mirror
    ! Y0   ordinate coordinate of the point to mirror
    !
    !Parameters: output
    ! X4   abscissa coordinate of the symmetric point
    ! Y4   ordinate coordinate of the symmetric point
    !
    !---------------------------------------------------------------------
    !
    IMPLICIT NONE
    REAL(PDB),INTENT(IN)  :: X1,Y1,X2,Y2,X0,Y0
    REAL(PDB),INTENT(OUT) :: X4,Y4

    REAL(PDB) :: A,B,C,DEN,X3,Y3
    A=Y2-Y1; B=X1-X2; C=X2*Y1-X1*Y2;
    DEN=A*A+B*B;
    IF(DEN==0._PDB) CALL XABORT('SALSYM: division by zero')
    X3=(B*(B*X0-A*Y0)-A*C)/DEN;
    Y3=(A*(-B*X0+A*Y0)-B*C)/DEN;
    X4=X0+2._PDB*(X3-X0); Y4=Y0+2._PDB*(Y3-Y0);
  END SUBROUTINE SALSYM
  !
  SUBROUTINE SALROT(X0,Y0,THETA,X3,Y3,X4,Y4)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! set the symmetric point (x4,y4) of (x3,y3) relative to the rotation
    ! center (x1,y1) with angle theta.
    !
    !Parameters: input
    ! X0    abscissa coordinate of the rotation center
    ! Y0    ordinate coordinate of the rotation center
    ! THETA rotation angle
    ! X3    abscissa coordinate of the point to mirror
    ! Y3    ordinate coordinate of the point to mirror
    !
    !Parameters: output
    ! X4    abscissa coordinate of the symmetric point
    ! Y4    ordinate coordinate of the symmetric point
    !
    !---------------------------------------------------------------------
    !
    IMPLICIT NONE
    REAL(PDB),INTENT(IN)  :: X0,Y0,THETA,X3,Y3
    REAL(PDB),INTENT(OUT) :: X4,Y4

    REAL(PDB) :: A,B
    IF(THETA==0.0_PDB) THEN
      X4=X3; Y4=Y3
    ELSE
      A=X3-X0; B=Y3-Y0
      X4=X0+A*COS(THETA)-B*SIN(THETA); Y4=Y0+A*SIN(THETA)+B*COS(THETA)
    ENDIF
  END SUBROUTINE SALROT
  !
  SUBROUTINE SALFOLD_0(GG,IPASS,IB,NBBCDA,ALIGN,LFOLD,IFOLD)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! unfold the domain with reflection relative to axis AXIS_XY
    !
    !Parameters: input
    ! IB     actual unfolding axis
    ! NBBCDA number of perimeters before unfolding
    ! ALIGN  unfolding axes
    ! LFOLD  identification flag to all unfolding axes
    !
    !Parameters: input/output
    ! GG     geometry descriptor
    !
    !Parameters: output
    ! IFOLD folded element indices corresponding to unfolded ones
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : NIPAR,NRPAR,LENGTHX,LENGTHY
    USE SAL_NUMERIC_MOD,  ONLY : FINDLC,DET_ROSETTA
    IMPLICIT NONE
    INTEGER, INTENT(IN) :: IPASS,IB,NBBCDA
    LOGICAL, DIMENSION(NBBCDA), INTENT(IN) :: LFOLD
    REAL(PDB), DIMENSION(3,3,NBBCDA), INTENT(INOUT) :: ALIGN
    TYPE(T_G_BASIC), INTENT(INOUT) :: GG
    INTEGER, DIMENSION(:), INTENT(OUT) :: IFOLD
    !
    ! AXIS_XY values of AXIS_X1, AXIS_Y1, AXIS_X2 and AXIS_Y2 for the
    !         reflecting axis
    INTEGER :: ELEM,TYPE,OK,TMP_NB_ELEM,TMP_NBBCDA,I,J,IBC,INDBC,IAUX
    INTEGER, DIMENSION(3) :: IPAR_TMP
    REAL(PDB), DIMENSION(4) :: AXIS_XY
    REAL(PDB), DIMENSION(6) :: RPAR_TMP
    REAL(PDB),PARAMETER :: EPS=1.0E-5_PDB
    REAL(PDB) :: X1,X2,X4,Y1,Y2,Y4,DX4,DY4,RAD,THETA1,THETA2,X1B,Y1B,X4B, &
                 Y4B,XMIN,YMIN,XMAX,YMAX,PHI1,PHI2,DELPHI,DET1,DET2
    !
    ! allocatable arrays
    INTEGER, ALLOCATABLE, DIMENSION(:) :: PERIM_ELEM
    LOGICAL, ALLOCATABLE, DIMENSION(:) :: ISPERIM
    INTEGER, POINTER, DIMENSION(:,:) :: TMP_IPAR
    INTEGER, ALLOCATABLE, DIMENSION(:,:) :: I2
    REAL(PDB), ALLOCATABLE, DIMENSION(:) :: ANGLE,ALBEDO
    REAL(PDB), POINTER, DIMENSION(:,:) :: TMP_RPAR
    REAL(PDB), ALLOCATABLE, DIMENSION(:,:,:) :: ALIGN2
    TYPE(T_SALBCDATA), POINTER, DIMENSION(:) :: TMP_BCDATAREAD
    !
    ! compute size of the unfold geometry
    XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
    DO ELEM=1,GG%NB_ELEM
      TYPE=GG%IPAR(1,ELEM)
      IF(TYPE==1) THEN
        X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM);
        XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
        X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
        XMIN=MIN(XMIN,X2); YMIN=MIN(YMIN,Y2); XMAX=MAX(XMAX,X2); YMAX=MAX(YMAX,Y2);
      ENDIF
    ENDDO
    LENGTHX=XMAX-XMIN; LENGTHY=YMAX-YMIN;
    !
    ! allocate new surfacic element containers
    XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
    ALLOCATE(TMP_IPAR(NIPAR,3*GG%NB_ELEM), TMP_RPAR(NRPAR,3*GG%NB_ELEM), &
             I2(2,GG%NB_ELEM), STAT=OK)
    IF(OK/=0) CALL XABORT('SALFOLD_0: not enough memory')
    TMP_IPAR(:,:)=0; TMP_RPAR(:,:)=0._PDB;
    !
    ! loop over old elements
    TMP_NB_ELEM=0
    THETA1=0._PDB; THETA2=0._PDB;
    I2(:2,:GG%NB_ELEM)=0
    AXIS_XY(1)=ALIGN(1,1,IB) ; AXIS_XY(2)=ALIGN(1,2,IB)
    AXIS_XY(3)=ALIGN(2,1,IB) ; AXIS_XY(4)=ALIGN(2,2,IB)
    OUT1: DO ELEM=1,GG%NB_ELEM
      TYPE=GG%IPAR(1,ELEM)
      X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM); RAD=GG%RPAR(3,ELEM)
      IF(TYPE==1) THEN
        XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
        X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM)
        ! Cycle if this element is sitting on an unfolding axe
        DO IBC=1,NBBCDA
          IF(.NOT.LFOLD(IBC)) CYCLE
          IF((IPASS.EQ.1).AND.(IBC.NE.IB)) CYCLE
          ALIGN(3,1,IBC)=X1; ALIGN(3,2,IBC)=Y1
          DET1 = DET_ROSETTA(ALIGN(1,1,IBC),3)
          ALIGN(3,1,IBC)=X2; ALIGN(3,2,IBC)=Y2;
          DET2 = DET_ROSETTA(ALIGN(1,1,IBC),3)
          IF((ABS(DET1).LE.1.0E-4).AND.(ABS(DET2).LE.1.0E-4)) CYCLE OUT1
        ENDDO
        !
        CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X1,Y1,X4,Y4)
        CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X2,Y2,DX4,DY4)
      ELSE IF(TYPE==2) THEN
        CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X1,Y1,X4,Y4)
        THETA1=0._PDB; THETA2=0._PDB;
      ELSE IF(TYPE==3) THEN
        CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X1,Y1,X4,Y4)
        X1B=X1+RAD*COS(GG%RPAR(4,ELEM)); Y1B=Y1+RAD*SIN(GG%RPAR(4,ELEM));
        CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X1B,Y1B,X4B,Y4B)
        IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 > 0._PDB)) THEN
          THETA1=PI/2._PDB
        ELSE IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 < 0._PDB)) THEN
          THETA1=3._PDB*PI/2._PDB
        ELSE IF(X4B-X4 > 0._PDB) THEN
          THETA1=ATAN((Y4B-Y4)/(X4B-X4))
        ELSE
          THETA1=ATAN((Y4B-Y4)/(X4B-X4))+PI
        ENDIF
        X1B=X1+RAD*COS(GG%RPAR(5,ELEM)); Y1B=Y1+RAD*SIN(GG%RPAR(5,ELEM));
        CALL SALSYM(AXIS_XY(1),AXIS_XY(2),AXIS_XY(3),AXIS_XY(4),X1B,Y1B,X4B,Y4B)
        IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 > 0._PDB)) THEN
          THETA2=PI/2._PDB
        ELSE IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 < 0._PDB)) THEN
          THETA2=3._PDB*PI/2._PDB
        ELSE IF(X4B-X4 > 0._PDB) THEN
          THETA2=ATAN((Y4B-Y4)/(X4B-X4))
        ELSE
          THETA2=ATAN((Y4B-Y4)/(X4B-X4))+PI
        ENDIF
      ELSE
        WRITE(*,*) " elem=",ELEM," type=",TYPE
        CALL XABORT('SALFOLD_0: invalid type of surfacic element')
      ENDIF
      IPAR_TMP(:3)=0
      RPAR_TMP(:6)=0_PDB
      RPAR_TMP(1)=X4; RPAR_TMP(2)=Y4;
      IPAR_TMP(1)=TYPE;
      IF(TYPE==1) THEN
        RPAR_TMP(3)=DX4-X4; RPAR_TMP(4)=DY4-Y4;
        RPAR_TMP(5)=SQRT(RPAR_TMP(3)**2+RPAR_TMP(4)**2)
        XMIN=MIN(XMIN,X4); YMIN=MIN(YMIN,Y4); XMAX=MAX(XMAX,X4); YMAX=MAX(YMAX,Y4);
        XMIN=MIN(XMIN,DX4); YMIN=MIN(YMIN,DY4); XMAX=MAX(XMAX,DX4); YMAX=MAX(YMAX,DY4);
        IPAR_TMP(2)=GG%IPAR(3,ELEM); IPAR_TMP(3)=GG%IPAR(2,ELEM);
      ELSE IF((TYPE==2).OR.(TYPE==3)) THEN
        RPAR_TMP(3)=GG%RPAR(3,ELEM) ! RADIUS
        IF(THETA2>THETA1) THETA1=THETA1+2._PDB*PI
        PHI1=THETA2; DELPHI=THETA1-THETA2;
        IF(DELPHI>0._PDB)THEN
          PHI2=PHI1+DELPHI
        ELSE
          PHI2=PHI1
          PHI1=PHI1+DELPHI
        ENDIF
        IF(TYPE==3)THEN
          ! arc of circle: put phi1 within 0 and 2*pi
          IF(PHI1>2._PDB*PI)THEN
            IAUX=INT(PHI1/(2._PDB*PI))
            DELPHI=(2._PDB*PI)*IAUX
            PHI1=PHI1-DELPHI ; PHI2=PHI2-DELPHI
          ELSEIF(PHI1<0._PDB)THEN
            IAUX=INT((-PHI1+1.D-7)/(2._PDB*PI))+1
            DELPHI=(2._PDB*PI)*IAUX
            PHI1=PHI1+DELPHI ; PHI2=PHI2+DELPHI
          ENDIF
        ENDIF
        RPAR_TMP(4)=PHI1; RPAR_TMP(5)=PHI2; ! ANGLES
        IPAR_TMP(2)=GG%IPAR(2,ELEM); IPAR_TMP(3)=GG%IPAR(3,ELEM)
      ENDIF
      RPAR_TMP(6)=0._PDB
      IF(IPASS==2) THEN
        ! remove identical elements at pass 2
        DO I=1,TMP_NB_ELEM
          IF((ABS(TMP_RPAR(1,I)-RPAR_TMP(1))<=10.0*EPS).AND. &
             (ABS(TMP_RPAR(2,I)-RPAR_TMP(2))<=10.0*EPS).AND. &
             (ABS(TMP_RPAR(3,I)-RPAR_TMP(3))<=10.0*EPS).AND. &
             (ABS(TMP_RPAR(4,I)-RPAR_TMP(4))<=10.0*EPS).AND. &
             (ABS(TMP_RPAR(5,I)-RPAR_TMP(5))<=10.0*EPS)) THEN
             CYCLE OUT1
          ENDIF
        ENDDO
      ENDIF
      TMP_NB_ELEM=TMP_NB_ELEM+1
      IF(TMP_NB_ELEM>3*GG%NB_ELEM) CALL XABORT('SALFOLD_0: tmp_nb_elem overflow(1)')
      TMP_IPAR(:3,TMP_NB_ELEM)=IPAR_TMP(:3)
      TMP_RPAR(:6,TMP_NB_ELEM)=RPAR_TMP(:6)
      I2(2,ELEM)=TMP_NB_ELEM
      IF(IPASS==2) THEN
        ! remove identical elements at pass 2
        DO I=1,TMP_NB_ELEM
          IF((ABS(TMP_RPAR(1,I)-GG%RPAR(1,ELEM))<=10.0*EPS).AND. &
             (ABS(TMP_RPAR(2,I)-GG%RPAR(2,ELEM))<=10.0*EPS).AND. &
             (ABS(TMP_RPAR(3,I)-GG%RPAR(3,ELEM))<=10.0*EPS).AND. &
             (ABS(TMP_RPAR(4,I)-GG%RPAR(4,ELEM))<=10.0*EPS).AND. &
             (ABS(TMP_RPAR(5,I)-GG%RPAR(5,ELEM))<=10.0*EPS)) THEN
             CYCLE OUT1
          ENDIF
        ENDDO
      ENDIF
      TMP_NB_ELEM=TMP_NB_ELEM+1
      IF(TMP_NB_ELEM>3*GG%NB_ELEM) CALL XABORT('SALFOLD_0: tmp_nb_elem overflow(2)')
      TMP_IPAR(:,TMP_NB_ELEM)=GG%IPAR(:,ELEM)
      TMP_RPAR(:,TMP_NB_ELEM)=GG%RPAR(:,ELEM)
      I2(1,ELEM)=TMP_NB_ELEM
    ENDDO OUT1
    DEALLOCATE(GG%IPAR,GG%RPAR)
    DO ELEM=1,GG%NB_ELEM
      IF(I2(1,ELEM).GT.2*GG%NB_ELEM) CALL XABORT('SALFOLD_0: IFOLD overflow')
      IF(I2(1,ELEM).NE.0) IFOLD(I2(1,ELEM))=ELEM
      IF(I2(2,ELEM).NE.0) IFOLD(I2(2,ELEM))=ELEM
    ENDDO
    GG%IPAR=>TMP_IPAR; GG%RPAR=>TMP_RPAR;
    GG%NB_ELEM=TMP_NB_ELEM
    !
    ! loop over boundary conditions
    ALLOCATE(ISPERIM(GG%NB_ELEM),ALIGN2(3,3,GG%NB_ELEM),ANGLE(GG%NB_ELEM), &
    & ALBEDO(GG%NB_ELEM),PERIM_ELEM(GG%NB_ELEM))
    ALIGN2(:3,3,:GG%NB_ELEM)=1.0_PDB
    PERIM_ELEM(:GG%NB_ELEM)=0
    ISPERIM(:GG%NB_ELEM)=.FALSE.
    TMP_NBBCDA=0
    DO IBC=1,GG%NBBCDA
      DO I=1,GG%BCDATAREAD(IBC)%NBER
        INDBC=GG%BCDATAREAD(IBC)%ELEMNB(I)
        IF(INDBC==0) CYCLE
        IF(I2(1,INDBC)/=0) ISPERIM(I2(1,INDBC))=.TRUE.
        IF(I2(2,INDBC)/=0) ISPERIM(I2(2,INDBC))=.TRUE.
      ENDDO
    ENDDO
    ITER0: DO ELEM=1,GG%NB_ELEM
      IF(.NOT.ISPERIM(ELEM)) CYCLE
      X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM);
      X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
      DO J=1,TMP_NBBCDA
        ALIGN2(3,1,J)=X1; ALIGN2(3,2,J)=Y1;
        DET1 = DET_ROSETTA(ALIGN2(1,1,J),3)
        ALIGN2(3,1,J)=X2; ALIGN2(3,2,J)=Y2;
        DET2 = DET_ROSETTA(ALIGN2(1,1,J),3)
        IF((ABS(DET1).LE.1.0E-4).AND.(ABS(DET2).LE.1.0E-4)) THEN
          PERIM_ELEM(ELEM) = J
          CYCLE ITER0
        ENDIF
      ENDDO
      TMP_NBBCDA=TMP_NBBCDA+1
      PERIM_ELEM(ELEM) = TMP_NBBCDA
      ANGLE(TMP_NBBCDA)=ATAN((Y2-Y1)/(X2-X1))
      IF(ABS(ANGLE(TMP_NBBCDA)).LE.1.0E-5) ANGLE(TMP_NBBCDA)=0.0
      ALIGN2(1,1,TMP_NBBCDA)=X1; ALIGN2(1,2,TMP_NBBCDA)=Y1
      ALIGN2(2,1,TMP_NBBCDA)=X2; ALIGN2(2,2,TMP_NBBCDA)=Y2
      ! Recover albedo from folded geometry
      ALBEDO(TMP_NBBCDA)=1.0
      DO IBC=1,GG%NBBCDA
        J = FINDLC(GG%BCDATAREAD(IBC)%ELEMNB,ELEM)
        IF(J.EQ.1) THEN
          ALBEDO(TMP_NBBCDA)=GG%BCDATAREAD(IBC)%BCDATA(6)
          EXIT
        ENDIF
      ENDDO
    ENDDO ITER0
    ALLOCATE(TMP_BCDATAREAD(TMP_NBBCDA))
    DO IBC=1,TMP_NBBCDA
      TMP_BCDATAREAD(IBC)%NBER = COUNT(PERIM_ELEM(:GG%NB_ELEM) == IBC)
      ALLOCATE(TMP_BCDATAREAD(IBC)%ELEMNB(TMP_BCDATAREAD(IBC)%NBER))
      TMP_BCDATAREAD(IBC)%SALTYPE = 0
      J=0
      DO I=1,GG%NB_ELEM
        IF(PERIM_ELEM(I) == IBC) THEN
          J=J+1
          TMP_BCDATAREAD(IBC)%ELEMNB(J) = I
        ENDIF
      ENDDO
      TMP_BCDATAREAD(IBC)%BCDATA(1) = ALIGN2(1,1,IBC)
      TMP_BCDATAREAD(IBC)%BCDATA(2) = ALIGN2(1,2,IBC)
      TMP_BCDATAREAD(IBC)%BCDATA(3) = COS(ANGLE(IBC))
      TMP_BCDATAREAD(IBC)%BCDATA(4) = SIN(ANGLE(IBC))
      TMP_BCDATAREAD(IBC)%BCDATA(5) = ANGLE(IBC)
      TMP_BCDATAREAD(IBC)%BCDATA(6) = ALBEDO(IBC)
    ENDDO
    DEALLOCATE(I2,PERIM_ELEM,ALBEDO,ANGLE,ALIGN2,ISPERIM)
    DEALLOCATE(GG%BCDATAREAD)
    GG%BCDATAREAD=>TMP_BCDATAREAD
    GG%NBBCDA=TMP_NBBCDA
    GG%ALBEDO=1.D0
  END SUBROUTINE SALFOLD_0
  !
  SUBROUTINE SALFOLD_1(HSYM,GG)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! unfold the domain with reflection
    !
    !Parameters: input
    ! HSYM: type of symmetry: 'DIAG': diagonal symmetry; 'SYMX': symmetry
    !       relative to X axis; 'SYMY': symmetry relative to Y axis;
    !       'SA60': SA60 symmetry; 'S30': S30 symmetry
    !
    !Parameters: input/output
    ! GG    geometry descriptor
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : NIPAR,NRPAR,LENGTHX,LENGTHY
    USE SAL_NUMERIC_MOD,  ONLY : FINDLC,DET_ROSETTA
    IMPLICIT NONE
    CHARACTER(LEN=4),INTENT(IN)  :: HSYM
    TYPE(T_G_BASIC), INTENT(INOUT) :: GG
    !
    INTEGER :: ELEM,TYPE,OK,TMP_NB_ELEM,TMP_NBBCDA,I,J,IBC,INDBC,IAUX,ISYM,NSYM
    REAL(PDB),PARAMETER :: EPS=1.0E-5_PDB
    REAL(PDB) :: AXIS_X1(2),AXIS_X2(2),AXIS_Y1(2),AXIS_Y2(2)
    REAL(PDB) :: X1,X2,X4,Y1,Y2,Y4,DX4,DY4,RAD,THETA1,THETA2,X1B,Y1B,X4B, &
                 Y4B,XMIN,YMIN,XMAX,YMAX,PHI1,PHI2,DELPHI,DET1,DET2
    LOGICAL :: NOCOPY(2)
    !
    ! allocatable arrays
    INTEGER, ALLOCATABLE, DIMENSION(:) :: PERIM_ELEM
    LOGICAL, ALLOCATABLE, DIMENSION(:) :: ISPERIM
    INTEGER, POINTER, DIMENSION(:,:) :: TMP_IPAR
    INTEGER, ALLOCATABLE, DIMENSION(:,:) :: I2
    REAL(PDB), ALLOCATABLE, DIMENSION(:) :: ANGLE,ALBEDO
    REAL(PDB), POINTER, DIMENSION(:,:) :: TMP_RPAR
    REAL(PDB), ALLOCATABLE, DIMENSION(:,:,:) :: ALIGN
    TYPE(T_SALBCDATA), POINTER, DIMENSION(:) :: TMP_BCDATAREAD
    !
    ! compute size of the unfold geometry
    XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
    DO ELEM=1,GG%NB_ELEM
      TYPE=GG%IPAR(1,ELEM)
      IF(TYPE==1) THEN
        X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM);
        XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
        X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
        XMIN=MIN(XMIN,X2); YMIN=MIN(YMIN,Y2); XMAX=MAX(XMAX,X2); YMAX=MAX(YMAX,Y2);
      ENDIF
    ENDDO
    LENGTHX=XMAX-XMIN; LENGTHY=YMAX-YMIN;
    !
    NSYM=1
    IF(HSYM=='SYMX') THEN ! define symmetry axis
      AXIS_X1(1)=0._PDB; AXIS_X2(1)=100._PDB; AXIS_Y1(1)=0._PDB; AXIS_Y2(1)=0._PDB;
    ELSE IF(HSYM=='SYMY') THEN
      AXIS_X1(1)=0._PDB; AXIS_X2(1)=0._PDB; AXIS_Y1(1)=0._PDB; AXIS_Y2(1)=100._PDB;
    ELSE IF(HSYM=='DIAG') THEN
      AXIS_X1(1)=0._PDB; AXIS_X2(1)=100._PDB; AXIS_Y1(1)=0._PDB; AXIS_Y2(1)=100._PDB;
    ELSE IF(HSYM=='SA60') THEN
      ! the hexagon side is on south
      NSYM=2
      AXIS_X1(1)=XMIN; AXIS_Y1(1)=YMIN; AXIS_X2(1)=XMIN+0.5_PDB*LENGTHX
      AXIS_Y2(1)=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
      AXIS_X1(2)=XMIN+LENGTHX; AXIS_Y1(2)=YMIN; AXIS_X2(2)=XMIN+0.5_PDB*LENGTHX
      AXIS_Y2(2)=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
    ELSE IF(HSYM=='SB60') THEN
      ! the hexagon side is on north-east
      NSYM=2
      AXIS_X1(1)=XMIN; AXIS_Y1(1)=YMIN; AXIS_X2(1)=XMIN+0.5_PDB*LENGTHX
      AXIS_Y2(1)=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
      AXIS_X1(2)=XMIN; AXIS_Y1(2)=YMIN; AXIS_X2(2)=XMIN
      AXIS_Y2(2)=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
    ELSE IF(HSYM=='S30') THEN
      AXIS_X1(1)=XMIN; AXIS_Y1(1)=YMIN; AXIS_X2(1)=XMIN+0.75_PDB*LENGTHX
      AXIS_Y2(1)=YMIN+0.25_PDB*SQRT(3._PDB)*LENGTHX
    ELSE IF(HSYM=='SYMH') THEN
      AXIS_X1(1)=XMIN ; AXIS_Y1(1)=YMIN+0.25_PDB*SQRT(3._PDB)*LENGTHX
      AXIS_X2(1)=XMIN+LENGTHX ; AXIS_Y2(1)=AXIS_Y1(1)
    ELSE
      CALL XABORT('SALFOLD_1: invalid type of symmetry axis')
    ENDIF
    XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
    !
    ! allocate new surfacic element containers
    ALLOCATE(TMP_IPAR(NIPAR,3*GG%NB_ELEM), TMP_RPAR(NRPAR,3*GG%NB_ELEM), &
             I2(3,GG%NB_ELEM), STAT=OK)
    IF(OK/=0) CALL XABORT('SALFOLD_1: not enough memory')
    TMP_IPAR(:,:)=0; TMP_RPAR(:,:)=0._PDB;
    !
    ! loop over old elements
    TMP_NB_ELEM=0
    THETA1=0._PDB; THETA2=0._PDB;
    DO ELEM=1,GG%NB_ELEM
      I2(:,ELEM)=0
      TYPE=GG%IPAR(1,ELEM)
      NOCOPY(:2)=.FALSE.
      DO ISYM=1,NSYM
        X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM); RAD=GG%RPAR(3,ELEM)
        IF(TYPE==1) THEN
          XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
          X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
          CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X1,Y1,X4,Y4)
          CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X2,Y2,DX4,DY4)
          NOCOPY(ISYM)=ABS(X1-X4)<10.0*EPS .AND. ABS(Y1-Y4)<10.0*EPS .AND. &
            ABS(X2-DX4)<10.0*EPS .AND. ABS(Y2-DY4)<10.0*EPS
          IF((HSYM=='SB60').AND.(ISYM==2)) THEN
            NOCOPY(2)=(ABS(2._PDB*ABS(Y1-YMIN)-ABS(X4-X1)*SQRT(3._PDB))<10.0*EPS .AND. &
              ABS(Y1-Y4)<10.0*EPS .AND. ABS(2._PDB*ABS(Y2-YMIN)-ABS(DX4-X2)*SQRT(3._PDB))<10.0*EPS &
              .AND. ABS(Y2-DY4)<10.0*EPS)
          ENDIF
          IF(NOCOPY(ISYM)) CYCLE
        ELSE IF(TYPE==2) THEN
          CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X1,Y1,X4,Y4)
          THETA1=0._PDB; THETA2=0._PDB;
        ELSE IF(TYPE==3) THEN
          CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X1,Y1,X4,Y4)
          X1B=X1+RAD*COS(GG%RPAR(4,ELEM)); Y1B=Y1+RAD*SIN(GG%RPAR(4,ELEM));
          CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X1B,Y1B,X4B,Y4B)
          IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 > 0._PDB)) THEN
            THETA1=PI/2._PDB
          ELSE IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 < 0._PDB)) THEN
            THETA1=3._PDB*PI/2._PDB
          ELSE IF(X4B-X4 > 0._PDB) THEN
            THETA1=ATAN((Y4B-Y4)/(X4B-X4))
          ELSE
            THETA1=ATAN((Y4B-Y4)/(X4B-X4))+PI
          ENDIF
          X1B=X1+RAD*COS(GG%RPAR(5,ELEM)); Y1B=Y1+RAD*SIN(GG%RPAR(5,ELEM));
          CALL SALSYM(AXIS_X1(ISYM),AXIS_Y1(ISYM),AXIS_X2(ISYM),AXIS_Y2(ISYM),X1B,Y1B,X4B,Y4B)
          IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 > 0._PDB)) THEN
            THETA2=PI/2._PDB
          ELSE IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 < 0._PDB)) THEN
            THETA2=3._PDB*PI/2._PDB
          ELSE IF(X4B-X4 > 0._PDB) THEN
            THETA2=ATAN((Y4B-Y4)/(X4B-X4))
          ELSE
            THETA2=ATAN((Y4B-Y4)/(X4B-X4))+PI
          ENDIF
        ELSE
          WRITE(*,*) " elem=",ELEM," type=",TYPE," isym=",ISYM
          CALL XABORT('SALFOLD_1: invalid type of surfacic element')
        ENDIF
        IF((TYPE==1).AND.(HSYM=='SB60').AND.(ISYM==1).AND.(ABS(Y1)<10.0*EPS).AND.(ABS(Y2)<10.0*EPS)) CYCLE
        TMP_NB_ELEM=TMP_NB_ELEM+1
        IF(TMP_NB_ELEM>3*GG%NB_ELEM) CALL XABORT('SALFOLD_1: tmp_nb_elem overflow(1)')
        I2(ISYM+1,ELEM)=TMP_NB_ELEM
        TMP_RPAR(1,TMP_NB_ELEM)=X4; TMP_RPAR(2,TMP_NB_ELEM)=Y4;
        TMP_IPAR(1,TMP_NB_ELEM)=TYPE;
        IF(TYPE==1) THEN
          TMP_RPAR(3,TMP_NB_ELEM)=DX4-X4; TMP_RPAR(4,TMP_NB_ELEM)=DY4-Y4;
          TMP_RPAR(5,TMP_NB_ELEM)=SQRT(TMP_RPAR(3,TMP_NB_ELEM)**2+TMP_RPAR(4,TMP_NB_ELEM)**2)
          XMIN=MIN(XMIN,X4); YMIN=MIN(YMIN,Y4); XMAX=MAX(XMAX,X4); YMAX=MAX(YMAX,Y4);
          XMIN=MIN(XMIN,DX4); YMIN=MIN(YMIN,DY4); XMAX=MAX(XMAX,DX4); YMAX=MAX(YMAX,DY4);
          TMP_IPAR(2,TMP_NB_ELEM)=GG%IPAR(3,ELEM); TMP_IPAR(3,TMP_NB_ELEM)=GG%IPAR(2,ELEM);
        ELSE IF((TYPE==2).OR.(TYPE==3)) THEN
          TMP_RPAR(3,TMP_NB_ELEM)=GG%RPAR(3,ELEM) ! RADIUS
          IF(THETA2>THETA1) THETA1=THETA1+2._PDB*PI
          PHI1=THETA2; DELPHI=THETA1-THETA2;
          IF(DELPHI>0._PDB)THEN
            PHI2=PHI1+DELPHI
          ELSE
            PHI2=PHI1
            PHI1=PHI1+DELPHI
          ENDIF
          IF(TYPE==3)THEN
            ! arc of circle: put phi1 within 0 and 2*pi
            IF(PHI1>2._PDB*PI)THEN
              IAUX=INT(PHI1/(2._PDB*PI))
              DELPHI=(2._PDB*PI)*IAUX
              PHI1=PHI1-DELPHI ; PHI2=PHI2-DELPHI
            ELSEIF(PHI1<0._PDB)THEN
              IAUX=INT((-PHI1+1.D-7)/(2._PDB*PI))+1
              DELPHI=(2._PDB*PI)*IAUX
              PHI1=PHI1+DELPHI ; PHI2=PHI2+DELPHI
            ENDIF
          ENDIF
          TMP_RPAR(4,TMP_NB_ELEM)=PHI1; TMP_RPAR(5,TMP_NB_ELEM)=PHI2; ! ANGLES
          TMP_IPAR(2,TMP_NB_ELEM)=GG%IPAR(2,ELEM); TMP_IPAR(3,TMP_NB_ELEM)=GG%IPAR(3,ELEM)
        ENDIF
        TMP_RPAR(6,TMP_NB_ELEM)=0._PDB
      ENDDO
      IF((.NOT.NOCOPY(1)).AND.(.NOT.NOCOPY(2))) THEN
        TMP_NB_ELEM=TMP_NB_ELEM+1
        IF(TMP_NB_ELEM>3*GG%NB_ELEM) CALL XABORT('SALFOLD_1: tmp_nb_elem overflow(2)')
        TMP_IPAR(:,TMP_NB_ELEM)=GG%IPAR(:,ELEM)
        TMP_RPAR(:,TMP_NB_ELEM)=GG%RPAR(:,ELEM)
        I2(1,ELEM)=TMP_NB_ELEM
      ENDIF
    ENDDO
    DEALLOCATE(GG%IPAR,GG%RPAR)
    GG%IPAR=>TMP_IPAR; GG%RPAR=>TMP_RPAR;
    GG%NB_ELEM=TMP_NB_ELEM
    !
    ! translate the domain
    DO ELEM=1,GG%NB_ELEM
      GG%RPAR(1,ELEM)=GG%RPAR(1,ELEM)-XMIN
      GG%RPAR(2,ELEM)=GG%RPAR(2,ELEM)-YMIN
    ENDDO
    LENGTHX=XMAX-XMIN ; LENGTHY=YMAX-YMIN ;
    !
    ! loop over boundary conditions
    TMP_NBBCDA=0
    ALLOCATE(ISPERIM(GG%NB_ELEM),ALIGN(3,3,GG%NB_ELEM),ANGLE(GG%NB_ELEM), &
    & ALBEDO(GG%NB_ELEM),PERIM_ELEM(GG%NB_ELEM))
    ALIGN(:3,3,:GG%NB_ELEM)=1.0_PDB
    PERIM_ELEM(:GG%NB_ELEM)=0
    ISPERIM(:GG%NB_ELEM)=.FALSE.
    DO IBC=1,GG%NBBCDA
      DO I=1,GG%BCDATAREAD(IBC)%NBER
        INDBC=GG%BCDATAREAD(IBC)%ELEMNB(I)
        IF(INDBC==0) CYCLE
        DO ISYM=1,NSYM+1
          IF(I2(ISYM,INDBC)/=0) ISPERIM(I2(ISYM,INDBC))=.TRUE.
        ENDDO
      ENDDO
    ENDDO
    ITER0: DO ELEM=1,GG%NB_ELEM
      IF(.NOT.ISPERIM(ELEM)) CYCLE
      X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM);
      X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
      DO J=1,TMP_NBBCDA
        ALIGN(3,1,J)=X1; ALIGN(3,2,J)=Y1;
        DET1 = DET_ROSETTA(ALIGN(1,1,J),3)
        ALIGN(3,1,J)=X2; ALIGN(3,2,J)=Y2;
        DET2 = DET_ROSETTA(ALIGN(1,1,J),3)
        IF((ABS(DET1).LE.1.0E-4).AND.(ABS(DET2).LE.1.0E-4)) THEN
          PERIM_ELEM(ELEM) = J
          CYCLE ITER0
        ENDIF
      ENDDO
      TMP_NBBCDA=TMP_NBBCDA+1
      PERIM_ELEM(ELEM) = TMP_NBBCDA
      ANGLE(TMP_NBBCDA)=ATAN((Y2-Y1)/(X2-X1))
      IF(ABS(ANGLE(TMP_NBBCDA)).LE.1.0E-5) ANGLE(TMP_NBBCDA)=0.0
      ALIGN(1,1,TMP_NBBCDA)=X1; ALIGN(1,2,TMP_NBBCDA)=Y1
      ALIGN(2,1,TMP_NBBCDA)=X2; ALIGN(2,2,TMP_NBBCDA)=Y2
      ! Recover albedo from folded geometry
      ALBEDO(TMP_NBBCDA)=1.0
      DO IBC=1,GG%NBBCDA
        J = FINDLC(GG%BCDATAREAD(IBC)%ELEMNB,ELEM)
        IF(J.EQ.1) THEN
          ALBEDO(TMP_NBBCDA)=GG%BCDATAREAD(IBC)%BCDATA(6)
          EXIT
        ENDIF
      ENDDO
    ENDDO ITER0
    ALLOCATE(TMP_BCDATAREAD(TMP_NBBCDA))
    DO IBC=1,TMP_NBBCDA
      TMP_BCDATAREAD(IBC)%NBER = COUNT(PERIM_ELEM(:GG%NB_ELEM) == IBC)
      ALLOCATE(TMP_BCDATAREAD(IBC)%ELEMNB(TMP_BCDATAREAD(IBC)%NBER))
      TMP_BCDATAREAD(IBC)%SALTYPE = 0
      J=0
      DO I=1,GG%NB_ELEM
        IF(PERIM_ELEM(I) == IBC) THEN
          J=J+1
          TMP_BCDATAREAD(IBC)%ELEMNB(J) = I
        ENDIF
      ENDDO
      TMP_BCDATAREAD(IBC)%BCDATA(1) = ALIGN(1,1,IBC)
      TMP_BCDATAREAD(IBC)%BCDATA(2) = ALIGN(1,2,IBC)
      TMP_BCDATAREAD(IBC)%BCDATA(3) = COS(ANGLE(IBC))
      TMP_BCDATAREAD(IBC)%BCDATA(4) = SIN(ANGLE(IBC))
      TMP_BCDATAREAD(IBC)%BCDATA(5) = ANGLE(IBC)
      TMP_BCDATAREAD(IBC)%BCDATA(6) = ALBEDO(IBC)
    ENDDO
    DEALLOCATE(I2,PERIM_ELEM,ALBEDO,ANGLE,ALIGN,ISPERIM)
    DEALLOCATE(GG%BCDATAREAD)
    GG%BCDATAREAD=>TMP_BCDATAREAD
    GG%NBBCDA=TMP_NBBCDA
    GG%ALBEDO=1.D0
  END SUBROUTINE SALFOLD_1
  !
  SUBROUTINE SALFOLD_2(HSYM,GG)
    !
    !---------------------------------------------------------------------
    !
    !Purpose:
    ! unfold the domain with rotation
    !
    !Parameters: input
    ! HSYM: type of symmetry: SR60': dual 60-degree rotation; R180: 180-degree
    !       rotation; R120: dual 120-degree rotation
    !
    !Parameters: input/output
    ! GG    geometry descriptor
    !
    !---------------------------------------------------------------------
    !
    USE SAL_GEOMETRY_TYPES, ONLY : NIPAR,NRPAR,LENGTHX,LENGTHY
    IMPLICIT NONE
    CHARACTER(LEN=4),INTENT(IN)  :: HSYM
    TYPE(T_G_BASIC), INTENT(INOUT) :: GG
    !
    INTEGER :: ELEM,ELEM2,TYPE,OK,TMP_NB_ELEM,ISYM,NSYM,IAUX
    REAL(PDB) :: THROT(3),X1,X2,X4,Y1,Y2,Y4,DX4,DY4,RAD,THETA1,THETA2,X1B,Y1B,X4B, &
                 Y4B,XMIN,YMIN,XMAX,YMAX,CENTER_X,CENTER_Y,DELPHI
    REAL(PDB),PARAMETER :: EPS=1.0E-5_PDB
    !
    ! allocatable arrays
    LOGICAL, ALLOCATABLE, DIMENSION(:) :: ELEM_DUP
    INTEGER, POINTER, DIMENSION(:,:) :: TMP_IPAR
    INTEGER, ALLOCATABLE, DIMENSION(:,:) :: I2
    REAL(PDB), POINTER, DIMENSION(:,:) :: TMP_RPAR
    !
    ! compute size of the unfold geometry
    XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
    DO ELEM=1,GG%NB_ELEM
      TYPE=GG%IPAR(1,ELEM)
      IF(TYPE==1) THEN
        X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM);
        XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
        X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
        XMIN=MIN(XMIN,X2); YMIN=MIN(YMIN,Y2); XMAX=MAX(XMAX,X2); YMAX=MAX(YMAX,Y2);
      ENDIF
    ENDDO
    LENGTHX=XMAX-XMIN; LENGTHY=YMAX-YMIN;
    !
    NSYM=0
    IF(HSYM=='SR60') THEN ! define rotation center
      NSYM=3
      CENTER_X=XMIN+0.5_PDB*LENGTHX; CENTER_Y=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX
      THROT(1)=0.0_PDB; THROT(2)=-PI/3.0_PDB; THROT(3)=PI/3.0_PDB
    ELSE IF(HSYM=='R180') THEN
      NSYM=2
      CENTER_X=XMIN+0.5_PDB*LENGTHX; CENTER_Y=YMIN+0.25_PDB*SQRT(3._PDB)*LENGTHX
      THROT(1)=0.0_PDB; THROT(2)=PI; 
    ELSE IF(HSYM=='R120') THEN
      NSYM=3
      CENTER_X=XMIN+0.5_PDB*LENGTHX/1.5_PDB; CENTER_Y=YMIN+0.5_PDB*SQRT(3._PDB)*LENGTHX/1.5_PDB
      THROT(1)=0.0_PDB; THROT(2)=-2.0_PDB*PI/3.0_PDB; THROT(3)=2.0_PDB*PI/3.0_PDB
    ELSE
      CALL XABORT('SALFOLD_2: invalid type of symmetry axis')
    ENDIF
    XMIN=1.E10_PDB; YMIN=1.E10_PDB; XMAX=-1.E10_PDB; YMAX=-1.E10_PDB;
    !
    ! allocate new surfacic element containers
    ALLOCATE(I2(NSYM,GG%NB_ELEM))
    ALLOCATE(TMP_IPAR(NIPAR,3*GG%NB_ELEM), TMP_RPAR(NRPAR,3*GG%NB_ELEM), STAT=OK)
    IF(OK/=0) CALL XABORT('SALFOLD_2: not enough memory')
    I2(:NSYM,:GG%NB_ELEM)=0
    TMP_IPAR(:,:)=0; TMP_RPAR(:,:)=0._PDB;
    !
    ! loop over old elements
    TMP_NB_ELEM=0
    THETA1=0._PDB; THETA2=0._PDB;
    DO ELEM=1,GG%NB_ELEM
      TYPE=GG%IPAR(1,ELEM)
      DO ISYM=1,NSYM
        X1=GG%RPAR(1,ELEM); Y1=GG%RPAR(2,ELEM); RAD=GG%RPAR(3,ELEM)
        IF(TYPE==1) THEN
          XMIN=MIN(XMIN,X1); YMIN=MIN(YMIN,Y1); XMAX=MAX(XMAX,X1); YMAX=MAX(YMAX,Y1);
          X2=X1+GG%RPAR(3,ELEM); Y2=Y1+GG%RPAR(4,ELEM);
          CALL SALROT(CENTER_X,CENTER_Y,THROT(ISYM),X1,Y1,X4,Y4)
          CALL SALROT(CENTER_X,CENTER_Y,THROT(ISYM),X2,Y2,DX4,DY4)
        ELSE IF(TYPE==2) THEN
          CALL SALROT(CENTER_X,CENTER_Y,THROT(ISYM),X1,Y1,X4,Y4)
          THETA1=0._PDB; THETA2=0._PDB;
        ELSE IF(TYPE==3) THEN
          DELPHI=GG%RPAR(5,ELEM)-GG%RPAR(4,ELEM)
          X1B=X1+RAD*COS(GG%RPAR(4,ELEM)); Y1B=Y1+RAD*SIN(GG%RPAR(4,ELEM));
          CALL SALROT(CENTER_X,CENTER_Y,THROT(ISYM),X1,Y1,X4,Y4)
          CALL SALROT(CENTER_X,CENTER_Y,THROT(ISYM),X1B,Y1B,X4B,Y4B)
          IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 > 0._PDB)) THEN
            THETA1=PI/2._PDB
          ELSE IF((ABS(X4B-X4)<EPS*ABS(RAD)).AND.(Y4B-Y4 < 0._PDB)) THEN
            THETA1=3._PDB*PI/2._PDB
          ELSE IF(X4B-X4 > 0._PDB) THEN
            THETA1=ATAN((Y4B-Y4)/(X4B-X4))
          ELSE
            THETA1=ATAN((Y4B-Y4)/(X4B-X4))+PI
          ENDIF
          THETA2=THETA1+DELPHI
          ! put THETA1 within 0 and 2*pi
          IF(THETA1>2._PDB*PI)THEN
            IAUX=INT(THETA1/(2._PDB*PI))
            DELPHI=(2._PDB*PI)*IAUX
            THETA1=THETA1-DELPHI ; THETA2=THETA2-DELPHI
          ELSEIF(THETA1<0._PDB)THEN
            IAUX=INT((-THETA1+1.D-7)/(2._PDB*PI))+1
            DELPHI=(2._PDB*PI)*IAUX
            THETA1=THETA1+DELPHI ; THETA2=THETA2+DELPHI
          ENDIF
        ELSE
          WRITE(*,*) " elem=",ELEM," type=",TYPE," isym=",ISYM
          CALL XABORT('SALFOLD_2: invalid type of surfacic element')
        ENDIF
        TMP_NB_ELEM=TMP_NB_ELEM+1
        IF(TMP_NB_ELEM>3*GG%NB_ELEM) CALL XABORT('SALFOLD_2: TMP_NB_ELEM overflow')
        I2(ISYM,ELEM)=TMP_NB_ELEM
        TMP_RPAR(1,TMP_NB_ELEM)=X4; TMP_RPAR(2,TMP_NB_ELEM)=Y4;
        TMP_IPAR(1,TMP_NB_ELEM)=TYPE;
        IF(TYPE==1) THEN
          TMP_RPAR(3,TMP_NB_ELEM)=DX4-X4; TMP_RPAR(4,TMP_NB_ELEM)=DY4-Y4;
          TMP_RPAR(5,TMP_NB_ELEM)=SQRT(TMP_RPAR(3,TMP_NB_ELEM)**2+TMP_RPAR(4,TMP_NB_ELEM)**2)
          XMIN=MIN(XMIN,X4); YMIN=MIN(YMIN,Y4); XMAX=MAX(XMAX,X4); YMAX=MAX(YMAX,Y4);
          XMIN=MIN(XMIN,DX4); YMIN=MIN(YMIN,DY4); XMAX=MAX(XMAX,DX4); YMAX=MAX(YMAX,DY4);
          TMP_IPAR(2,TMP_NB_ELEM)=GG%IPAR(2,ELEM); TMP_IPAR(3,TMP_NB_ELEM)=GG%IPAR(3,ELEM)
        ELSE IF((TYPE==2).OR.(TYPE==3)) THEN
          TMP_RPAR(3,TMP_NB_ELEM)=GG%RPAR(3,ELEM) ! RADIUS
          TMP_RPAR(4,TMP_NB_ELEM)=THETA1; TMP_RPAR(5,TMP_NB_ELEM)=THETA2; ! ANGLES
          TMP_IPAR(2,TMP_NB_ELEM)=GG%IPAR(2,ELEM); TMP_IPAR(3,TMP_NB_ELEM)=GG%IPAR(3,ELEM)
        ENDIF
        TMP_RPAR(6,TMP_NB_ELEM)=0._PDB
      ENDDO
    ENDDO
    DEALLOCATE(GG%IPAR,GG%RPAR)
    !
    ! eliminate duplicate elements
    ALLOCATE(ELEM_DUP(TMP_NB_ELEM))
    ELEM_DUP(:TMP_NB_ELEM)=.FALSE.
    DO ELEM=1,TMP_NB_ELEM
      TYPE=TMP_IPAR(1,ELEM)
      IF((TYPE==1).AND.((TMP_IPAR(2,ELEM)==0).OR.(TMP_IPAR(3,ELEM)==0))) THEN
        X4=TMP_RPAR(1,ELEM); Y4=TMP_RPAR(2,ELEM)
        DX4=X4+TMP_RPAR(3,ELEM); DY4=Y4+TMP_RPAR(4,ELEM)
        DO ELEM2=ELEM+1,TMP_NB_ELEM
          IF(TMP_IPAR(1,ELEM2)/=1) CYCLE
          X1=TMP_RPAR(1,ELEM2); Y1=TMP_RPAR(2,ELEM2)
          X2=X1+TMP_RPAR(3,ELEM2); Y2=Y1+TMP_RPAR(4,ELEM2)
          IF(((ABS(X1-X4)<10.0*EPS  .AND. ABS(Y1-Y4)<10.0*EPS  .AND. &
               ABS(X2-DX4)<10.0*EPS .AND. ABS(Y2-DY4)<10.0*EPS)).OR. &
             ((ABS(X1-DX4)<10.0*EPS .AND. ABS(Y1-DY4)<10.0*EPS .AND. &
               ABS(X2-X4)<10.0*EPS  .AND. ABS(Y2-Y4)<10.0*EPS))) THEN
            ELEM_DUP(ELEM2)=.TRUE.
            IF(TMP_IPAR(2,ELEM)==0) TMP_IPAR(2,ELEM)=MAX(TMP_IPAR(2,ELEM2),TMP_IPAR(3,ELEM2))
            IF(TMP_IPAR(3,ELEM)==0) TMP_IPAR(3,ELEM)=MAX(TMP_IPAR(2,ELEM2),TMP_IPAR(3,ELEM2))
            IF(TMP_IPAR(2,ELEM)==TMP_IPAR(3,ELEM)) ELEM_DUP(ELEM)=.TRUE.
            EXIT
          ENDIF
        ENDDO
      ENDIF
    ENDDO
    !
    ELEM=1
    DO WHILE(ELEM<=TMP_NB_ELEM)
      IF(ELEM_DUP(ELEM)) THEN
        TMP_NB_ELEM=TMP_NB_ELEM-1
        DO ELEM2=ELEM,TMP_NB_ELEM
          TMP_IPAR(:,ELEM2)=TMP_IPAR(:,ELEM2+1); TMP_RPAR(:,ELEM2)=TMP_RPAR(:,ELEM2+1)
          ELEM_DUP(ELEM2)=ELEM_DUP(ELEM2+1)
        ENDDO
      ELSE
        ELEM=ELEM+1
      ENDIF
    ENDDO
    GG%IPAR=>TMP_IPAR; GG%RPAR=>TMP_RPAR;
    GG%NB_ELEM=TMP_NB_ELEM
    !
    ! translate the domain
    DO ELEM=1,GG%NB_ELEM
      GG%RPAR(1,ELEM)=GG%RPAR(1,ELEM)-XMIN
      GG%RPAR(2,ELEM)=GG%RPAR(2,ELEM)-YMIN
    ENDDO
    LENGTHX=XMAX-XMIN ; LENGTHY=YMAX-YMIN ;
    GG%NBBCDA=0; GG%ALBEDO=1.D0
    !
    DEALLOCATE(ELEM_DUP,I2)
  END SUBROUTINE SALFOLD_2
END MODULE SAL_GEOMETRY_MOD