1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
|
!
!---------------------------------------------------------------------
!
!Purpose:
! Support subroutines for isotropic and specular boundary conditions cases
!
!Copyright:
! Copyright (C) 2001 Ecole Polytechnique de Montreal.
!
!Author(s):
! X. Warin
!
!---------------------------------------------------------------------
!
MODULE SAL_AUX_MOD
USE PRECISION_AND_KINDS, ONLY : PDB,SMALL,PI,TWOPI,HALFPI,INFINITY
USE SAL_NUMERIC_MOD, ONLY : SAL141
CONTAINS
SUBROUTINE SAL231(RTRACK,ITRACK,DELX,EX0,EY0,ANGLE)
!
!---------------------------------------------------------------------
!
!Purpose:
! print out trajectory information
!
!Parameters: input
! RTRACK floating point vectors to store trajectory information
! ITRACK integer vectors to store trajectory information
! DELX initial point of trajectory (D=0)
! EX0 first direction cosine
! EY0 second direction cosine
! ANGLE track angle
!
!---------------------------------------------------------------------
!
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_TRACKING_TYPES, ONLY : NNN,NMAX2
!**
IMPLICIT NONE
INTEGER, INTENT(IN), DIMENSION(:) :: ITRACK
REAL(PDB), INTENT(IN), DIMENSION(:) :: RTRACK
REAL(PDB), INTENT(IN) :: DELX,EX0,EY0
REAL(PDB), INTENT(IN) :: ANGLE
!**
INTEGER :: I,KM,K,II,JSURF,JPHI,JPSI,NTRACK,NBTOT,I0
REAL(PDB) :: ANG0
REAL(PDB), PARAMETER :: SMALLT=1.E-10
INTEGER, PARAMETER :: FOUT =6
!**
ANG0=ANGLE
NTRACK=ITRACK(1)
NBTOT=ITRACK(2)
WRITE(FOUT,'(//,3X,"TRAJECTORY",/,3X,"==========", &
& //3X,"DELX = ",1P,E12.4,6X,"EX EY = ",1P,2E12.4, &
& /,3X,"WITH SMALL = ",1P,E12.4,5X,"(",1P,E12.4," DEGREES )", &
& /,3X,"ANGLE # AND WEIGHT ",I6,1P,E12.4, &
& /,3X,"NBER OF SUB-TRAJ = ",I6, &
& /,3X,"NBER OF ELEM IN TRAJ = ",I6,/)') &
DELX,EX0,EY0,SMALLT,ANG0,ITRACK(7),RTRACK(7),NBTOT,NTRACK
WRITE(FOUT,'(/,20X,"SURF",3X,"PHI",3X,"PSI",5X,"SINPHI",7X, &
& "COSPHI",/,20X,4("-"),2(3X,3("-")),5X,6("-"),7X,6("-"))')
IF(ITRACK(5)/=0)THEN
JSURF=1
JPHI=ITRACK(5)
JPSI=JPHI
WRITE(FOUT,'(3X,A14,3I6,2X,1P,2E13.4)')'LEFT SURFACE',JSURF,JPHI,JPSI, &
RTRACK(3),RTRACK(5)
ENDIF
IF(ITRACK(6)/=0)THEN
JSURF=1
JPHI=ITRACK(6)
JPSI=JPHI
WRITE(FOUT,'(3X,A14,3I6,2X,1P,2E13.4)')'RIGHT SURFACE',JSURF,JPHI,JPSI, &
RTRACK(4),RTRACK(6)
ENDIF
IF(NTRACK/=0)THEN
I0=NTRACK+NNN
! print sub-trajectories information
WRITE(FOUT,'(/," SUB-TRAJECTORIES:")')
WRITE(FOUT,'(/," NBER",2X,"NBER OF ELEM",2X," ANGLE", &
&/," ----",2X,"------------",2X," -----")')
DO I=1,NBTOT
WRITE(FOUT,'(I6,"*",4X,I6,5X,I6)')I,ITRACK(I0+2*I-1),ITRACK(I0+2*I)
ENDDO
! print trajectory
WRITE(FOUT,'(/," TRAJECTORY:",/," NBER",3(5X,"REG",2X," LENGTH",3X,"ELEM"),/, &
& 3X,"----",3(5X,"---",3X,"------",3X,"----"),1X,/)')
DO I=1,NTRACK,3
II=I+NNN
KM=MIN(I+2,NTRACK)+NNN
WRITE(FOUT,'(1P,I6,"*",3(I7,E10.2,I7))')I, &
(ITRACK(K),RTRACK(K),ITRACK(K+NMAX2),K=II,KM)
ENDDO
ELSE
WRITE(FOUT,'(1X,"==> Track without intersections")')
ENDIF
WRITE(FOUT,'(/)')
!
END SUBROUTINE SAL231
!
SUBROUTINE SAL232(ITRACK,RTRACK,FACNRM,GG,SURFN,CURRN)
!
!---------------------------------------------------------------------
!
!Purpose:
! computes numerical volumes: uses local macro arrays
!
!Parameters: input
! ITRACK integer vectors to store trajectory information
! RTRACK floating point vectors to store trajectory information
!
!Parameters: input/output
! FACNRM numerical volumes per direction
! SURFN numerical areas
! CURRN numerical currents
! GG geometry basic information.
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : T_G_BASIC
USE SAL_TRACKING_TYPES, ONLY : NNN
!***
IMPLICIT NONE
INTEGER, INTENT(IN), DIMENSION(:) :: ITRACK
REAL(PDB), INTENT(IN), DIMENSION(:) :: RTRACK
REAL(PDB), INTENT(INOUT), DIMENSION(:), OPTIONAL :: SURFN,CURRN
REAL(PDB), INTENT(INOUT), DIMENSION(:,:) :: FACNRM
TYPE(T_G_BASIC) :: GG
! DIMENSION ITRACK(*),RTRACK(*),FACNRM(NBREG,NPHI),
! SURFN(NCURR,2),CURRN(NCURR,2)
!***
INTEGER :: LASTI,II,I,ICURR,NPHI,IPHI,C,P
REAL :: WT,WR
!***
! total weight and space weight
NPHI=SIZE(FACNRM,2)
WT=REAL(RTRACK(7)) ; WR=REAL(RTRACK(8))
LASTI=ITRACK(1)
C=0; P=LASTI+NNN; IPHI=0
DO II=1+NNN,LASTI+NNN
IF((II-NNN)>C) THEN
C=C+ITRACK(P+1)
IPHI=ITRACK(P+2)
IF(IPHI>NPHI) IPHI=IPHI-NPHI
P=P+2
ENDIF
I=ITRACK(II)
IF(IPHI==0) CALL XABORT('SAL232: invalid IPHI')
FACNRM(I,IPHI)=FACNRM(I,IPHI)+RTRACK(II)*WR
ENDDO
IF(GG%NB_SURF2/=0)THEN
ICURR=ITRACK(5)
IF(ICURR>0) THEN
! left surface: convert into 2d horizontal currents:
SURFN(ICURR)=SURFN(ICURR)+WT/RTRACK(5)
CURRN(ICURR)=CURRN(ICURR)+WT
ENDIF
ICURR=ITRACK(6)
IF(ICURR>0) THEN
! right surface: convert into 2d horizontal currents:
SURFN(ICURR)=SURFN(ICURR)+WT/RTRACK(6)
CURRN(ICURR)=CURRN(ICURR)+WT
ENDIF
ENDIF
!
END SUBROUTINE SAL232
!
SUBROUTINE SAL235(NPIECE,THETA0,EX0,EY0,IPAR,RPAR,PEREXT,NPERIM)
!
!---------------------------------------------------------------------
!
!Purpose:
! computes total perimeter projection on line orthogonal to
! trajectory and with origin the center of coordinates
!
!Parameters: input
! THETA0 THETA- and THETA+ for this trajectory
! EX0 first direction cosine
! EY0 second direction cosine
! IPAR integer element data
! RPAR floating point element data
! PEREXT macro perimeter
! NPERIM number of elements in perimeter
!
!Parameters: output
! NPIECE number of pieces
!
!---------------------------------------------------------------------
!
USE SAL_GEOMETRY_TYPES, ONLY : NIPAR,NRPAR,G_ELE_TYPE
USE SAL_TRACKING_TYPES, ONLY : DPIECE
!***
IMPLICIT NONE
REAL(PDB), INTENT(IN) :: EX0,EY0
REAL(PDB), INTENT(IN), DIMENSION(:) :: THETA0
INTEGER, INTENT(OUT) :: NPIECE
INTEGER, INTENT(IN), DIMENSION(:,:) :: IPAR
REAL(PDB), INTENT(IN), DIMENSION(:,:) :: RPAR
INTEGER, INTENT(IN), DIMENSION(:) :: PEREXT
INTEGER, INTENT(IN) :: NPERIM
!***
REAL(PDB) :: X,Y,RAD,DCENT,THETA1,THETA2,THETAM,THETA,DAUX,DMIN,DMAX
INTEGER :: L,ELEM,TYPE,IEND,ISIDE
LOGICAL :: LGONE
REAL(PDB), PARAMETER, DIMENSION(2) :: SIGNV = (/-1._PDB,1._PDB/)
INTEGER, PARAMETER :: FOUT =6
!***
LGONE=.TRUE.
DMIN=0._PDB; DMAX=0._PDB;
DO L=1,NPERIM
ELEM=PEREXT(L)
! treat element
TYPE=IPAR(1,ELEM)
IF(TYPE==G_ELE_TYPE(2))THEN
! circle:
RAD=RPAR(3,ELEM)
DCENT=RPAR(1,ELEM)*EY0-RPAR(2,ELEM)*EX0
! project tangents to circle
IF(LGONE)THEN
DMIN=DCENT-RAD
DMAX=DCENT+RAD
LGONE=.FALSE.
ELSE
DMIN=MIN(DMIN,DCENT-RAD)
DMAX=MAX(DMAX,DCENT+RAD)
ENDIF
ELSE
DO IEND=1,2
CALL SAL141(TYPE,RPAR(:,ELEM),X,Y,IEND)
! project end of element
DAUX=X*EY0-Y*EX0
IF(LGONE)THEN
DMIN=DAUX
DMAX=DAUX
LGONE=.FALSE.
ELSEIF(DAUX<DMIN)THEN
DMIN=DAUX
ELSEIF(DAUX>DMAX)THEN
DMAX=DAUX
ENDIF
ENDDO
IF(TYPE==G_ELE_TYPE(3))THEN
! treat tangent to arc of circles
RAD=RPAR(3,ELEM)
DCENT=RPAR(1,ELEM)*EY0-RPAR(2,ELEM)*EX0
THETA1=RPAR(4,ELEM)
THETA2=RPAR(5,ELEM)
THETAM=THETA2-TWOPI
DO ISIDE=1,2
THETA=THETA0(ISIDE)
IF((THETA>THETA1.AND.THETA<THETA2).OR.THETA<THETAM) THEN
! check projection of tangent
DAUX=DCENT+SIGNV(ISIDE)*RAD
IF(DAUX<DMIN)THEN
DMIN=DAUX
ELSEIF(DAUX>DMAX)THEN
DMAX=DAUX
ENDIF
ENDIF
ENDDO
ELSE
IF(TYPE/=G_ELE_TYPE(1)) CALL XABORT('SAL235: not implemented')
ENDIF
ENDIF
ENDDO
NPIECE=2
DPIECE(1)=DMIN
DPIECE(2)=DMAX
!
END SUBROUTINE SAL235
!
SUBROUTINE SAL237(EX0,EY0,MQ,NQ,PROJTAB,AXIS)
!
!---------------------------------------------------------------------
!
!Purpose:
! computes geometry outline projections on the two symmetrical axis
!
!Parameters: input
! EX0,EY0 horizontal tracking angle cosines
! MQ,NQ cyclic tracking: for a rectangular geometry,
! the length of track is SQRT((MQ*A)**2+(NQ*B)**2)
! where A and B are rectangular sides.
!
!---------------------------------------------------------------------
!
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_GEOMETRY_TYPES, ONLY : LENGTHX,LENGTHY,TYPGEO
USE SAL_TRACKING_TYPES, ONLY : DELR,LENGTH_INV_CYCL
!***
IMPLICIT NONE
REAL(PDB), INTENT(IN) :: EX0,EY0
INTEGER, INTENT(IN) :: MQ,NQ
!***
INTEGER :: IAXIS,NPIECE,AXIS(2),IMQ
REAL(PDB) :: X1,X2,DX,DR,R1,R2,PROJTAB(6),NNQ
REAL, PARAMETER :: EPS3 = 1.0E-3
!***
! minimum radial interval to contain one trajectory
IF(TYPGEO.LE.7) THEN
! Cartesian geometry
IF(NQ>0) THEN ! angle different from 0
X2=LENGTHX/NQ
IF(MQ>0) THEN
X1=0.
ELSE
X1=LENGTHX-X2; X2=LENGTHX
ENDIF
R1=X1*EY0; R2=X2*EY0
NPIECE=INT((R2-R1)/DELR)
IF(NPIECE==0) NPIECE=1
DR=(R2-R1)/NPIECE
DX=DR/EY0
IAXIS=1
ELSE ! angle equal to 0
X1=LENGTHY-LENGTHY/ABS(MQ)
X2=LENGTHY
R1=X1*EX0; R2=X2*EX0
NPIECE=INT((R2-R1)/DELR)
IF(NPIECE==0) NPIECE=1
DR=(R2-R1)/NPIECE
DX=DR/EX0
IF(TYPGEO.EQ.7) DX=DX*SQRT(2.0)
IAXIS=2
ENDIF
IF(TYPGEO.EQ.7) DR=DR/2.0
PROJTAB(:)=(/EX0,EY0,X1,X2,DX,DR/)
! cyclical track length
IF(TYPGEO.EQ.5) THEN
! translation
X1=LENGTHX*ABS(MQ); X2=LENGTHY*ABS(NQ)
ELSE
! specular reflexion
X1=2.*LENGTHX*ABS(MQ); X2=2.*LENGTHY*ABS(NQ)
ENDIF
ELSE IF(TYPGEO.GE.8) THEN
! hexagonal geometry
NNQ=(NQ-ABS(MQ))/2
X2=3.*LENGTHX/REAL(ABS(MQ)+2*NNQ)
IF(X2<=LENGTHX+EPS3) THEN
IAXIS=1
IF(MQ>0) THEN
X1=0.
ELSE
X1=LENGTHX-X2; X2=LENGTHX
ENDIF
ELSE
X1=0.
IF((TYPGEO==8).OR.(TYPGEO==10).OR.(TYPGEO==12)) THEN
! MQ must be positive
IAXIS=2
X2=3.*LENGTHX/(MQ-NNQ)
ELSE
IF(MQ>0) THEN
IAXIS=2
X2=3.*LENGTHX/(2*MQ+NNQ)
ELSE
IAXIS=6
X2=3.*LENGTHX/(2*ABS(MQ)+NNQ)
ENDIF
ENDIF
ENDIF
R1=X1*EY0; R2=X2*EY0
NPIECE=INT((R2-R1)/DELR)
IF(NPIECE==0) NPIECE=1
DR=(R2-R1)/NPIECE
DX=DR/EY0
! empirical correction of track weight in hexagonal cases (don't ask why)
IF(TYPGEO==8) THEN
IMQ=ABS(MQ)
IF(((IMQ==1).AND.(NQ==15)).OR.((IMQ==7).AND.(NQ==9)).OR.((IMQ==8).AND.(NQ==6))) THEN
DR=DR/3.0
ELSE IF(((IMQ==1).AND.(NQ==9)).OR.((IMQ==4).AND.(NQ==6)).OR.((IMQ==5).AND.(NQ==3))) THEN
DR=DR/3.0
ELSE IF(((IMQ==1).AND.(NQ==7)).OR.((IMQ==3).AND.(NQ==5)).OR.((IMQ==4).AND.(NQ==2))) THEN
DR=DR*5.0/12.0
ELSE IF(((IMQ==1).AND.(NQ==5)).OR.((IMQ==2).AND.(NQ==4)).OR.((IMQ==3).AND.(NQ==1))) THEN
DR=DR*4.0/9.0
ELSE IF(((IMQ==2).AND.(NQ==8)).OR.((IMQ==3).AND.(NQ==7)).OR.((IMQ==5).AND.(NQ==1))) THEN
DR=DR*7.0/15.0
ELSE IF(((IMQ==4).AND.(NQ==14)).OR.((IMQ==5).AND.(NQ==13)).OR.((IMQ==9).AND.(NQ==1))) THEN
DR=13.0*DR/27.0
ENDIF
ELSE IF(TYPGEO==9) THEN
IF(ABS(MQ)/NQ > 1) DR=(0.5+1.5*ABS(MQ)/NQ)*DR
ELSE IF(TYPGEO==10) THEN
IMQ=ABS(MQ)
IF(((IMQ==1).AND.(NQ==15)).OR.((IMQ==8).AND.(NQ==6))) THEN
DR=0.25*DR
ELSE IF(((IMQ==1).AND.(NQ==9)).OR.((IMQ==5).AND.(NQ==3))) THEN
DR=0.25*DR
ELSE IF(((IMQ==1).AND.(NQ==7)).OR.((IMQ==4).AND.(NQ==2))) THEN
DR=DR*5.0/14.0
ELSE IF(((IMQ==1).AND.(NQ==5)).OR.((IMQ==3).AND.(NQ==1))) THEN
DR=DR*2.0/5.0
ELSE IF(((IMQ==2).AND.(NQ==8)).OR.((IMQ==5).AND.(NQ==1))) THEN
DR=DR*7.0/16.0
ELSE IF(((IMQ==4).AND.(NQ==14)).OR.((IMQ==9).AND.(NQ==1))) THEN
DR=13.0*DR/28.0
ELSE
DR=0.5*DR
ENDIF
ELSE IF(TYPGEO==11) THEN
IMQ=ABS(MQ)
IF(((IMQ==1).AND.(NQ==15)).OR.((IMQ==8).AND.(NQ==6))) THEN
DR=0.5*DR
ELSE IF(((IMQ==1).AND.(NQ==9)).OR.((IMQ==5).AND.(NQ==3))) THEN
DR=0.5*DR
ELSE IF(((IMQ==1).AND.(NQ==7)).OR.((IMQ==4).AND.(NQ==2))) THEN
DR=0.7742663247*DR
ELSE IF(((IMQ==1).AND.(NQ==5)).OR.((IMQ==3).AND.(NQ==1))) THEN
DR=0.8257638060*DR
ELSE IF(((IMQ==2).AND.(NQ==8)).OR.((IMQ==5).AND.(NQ==1))) THEN
DR=0.8863607851*DR
ELSE IF(((IMQ==4).AND.(NQ==14)).OR.((IMQ==9).AND.(NQ==1))) THEN
DR=0.9327596923*DR
ENDIF
ELSE IF(TYPGEO==12) THEN
IMQ=ABS(MQ)
IF(((IMQ==1).AND.(NQ==15)).OR.((IMQ==7).AND.(NQ==9)).OR.((IMQ==8).AND.(NQ==6))) THEN
DR=DR/6.0
ELSE IF(((IMQ==1).AND.(NQ==9)).OR.((IMQ==4).AND.(NQ==6)).OR.((IMQ==5).AND.(NQ==3))) THEN
DR=DR/6.0
ELSE IF(((IMQ==1).AND.(NQ==7)).OR.((IMQ==3).AND.(NQ==5)).OR.((IMQ==4).AND.(NQ==2))) THEN
DR=DR*5.0/24.0
ELSE IF(((IMQ==1).AND.(NQ==5)).OR.((IMQ==2).AND.(NQ==4)).OR.((IMQ==3).AND.(NQ==1))) THEN
DR=DR*2.0/9.0
ELSE IF(((IMQ==2).AND.(NQ==8)).OR.((IMQ==3).AND.(NQ==7)).OR.((IMQ==5).AND.(NQ==1))) THEN
DR=0.232645602188*DR
ELSE IF(((IMQ==4).AND.(NQ==14)).OR.((IMQ==5).AND.(NQ==13)).OR.((IMQ==9).AND.(NQ==1))) THEN
DR=13.0*DR/54.0
ENDIF
ENDIF
PROJTAB(:)=(/EX0,EY0,X1,X2,DX,DR/)
! cyclical track length
X1=LENGTHX*ABS(MQ)*1.5D0; X2=LENGTHX*(2*NNQ+ABS(MQ))*SQRT(3.D0)/2.D0
ENDIF
AXIS(:)=(/NPIECE,IAXIS/)
LENGTH_INV_CYCL=1./SQRT(X1*X1+X2*X2)
END SUBROUTINE SAL237
!
SUBROUTINE SAL220_1(ANGLE)
!
!---------------------------------------------------------------------
!
!Purpose:
! computes unit vectors for the two rotative axis
!
!Parameters: input
! ANGLE angle between the two rotative axis
!
!---------------------------------------------------------------------
!
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_GEOMETRY_TYPES, ONLY : LENGTHX,LENGTHY,TYPGEO
USE SAL_TRACKING_TYPES, ONLY : HX,HY,BX,BY
!****
IMPLICIT NONE
REAL(PDB), INTENT(IN) :: ANGLE
!****
! unit vector for the axis 1:
HX(1)=1.; HY(1)=0.
! unit vector for the axis 2:
HX(2)=COS(ANGLE); HY(2)=SIN(ANGLE)
BX(:)=0.; BY(:)=0.
IF((TYPGEO.EQ.5).OR.(TYPGEO.EQ.6)) THEN
HX(3:4)=HX(1:2); HY(3:4)=HY(1:2)
BX(4)=LENGTHX
BY(3)=LENGTHY
ELSE IF(TYPGEO.EQ.7) THEN
HX(3)=0.; HY(3)=1.
BX(3)=LENGTHX
ELSE IF((TYPGEO.EQ.8).OR.(TYPGEO.EQ.10)) THEN
HX(3)=COS(ANGLE*2.); HY(3)=SIN(ANGLE*2.)
BX(3)=LENGTHX
ELSE IF(TYPGEO.EQ.9) THEN
HX(1)=1.; HY(1)=0.; BX(1)=-LENGTHX*0.5; BY(1)=-LENGTHY
HX(4)=1.; HY(4)=0.; BX(4)=-LENGTHX*0.5; BY(4)=LENGTHY
HX(2)=COS(ANGLE*2.); HY(2)=SIN(ANGLE*2.); BX(2)=BX(1); BY(2)=BY(1)
HX(5)=HX(2); HY(5)=HY(2); BX(5)=LENGTHX; BY(5)=0.
HX(3)=COS(ANGLE); HY(3)=SIN(ANGLE); BX(3)=-LENGTHX; BY(3)=0.
HX(6)=HX(3); HY(6)=HY(3); BX(6)=LENGTHX*0.5; BY(6)=-LENGTHY
ELSE IF(TYPGEO.EQ.11) THEN
BX(3)=LENGTHX*0.5; BY(3)=LENGTHY
HX(3)=1.; HY(3)=0.
BX(4)=LENGTHX
HX(4)=COS(ANGLE); HY(4)=SIN(ANGLE)
ELSE IF(TYPGEO.EQ.12) THEN
HX(3)=COS(PI/2.0+ANGLE); HY(3)=SIN(PI/2.0+ANGLE)
BX(3)=LENGTHX
ENDIF
!
END SUBROUTINE SAL220_1
END MODULE SAL_AUX_MOD
|