1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
!---------------------------------------------------------------------
!
!Purpose:
! To analyze and track a geometry data structure using the Sanchez
! algorithm for the multicell surfacic approximation.
!
!Copyright:
! Copyright (C) 2025 Ecole Polytechnique de Montreal.
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s):
! A. Hebert
!
!Parameters: input
! FGEO unit file number of the surfacic file in read only mode.
! IPTRK pointer to the TRACKING data structure in creation mode.
! IFTRK pointer to the TRACKING file in creation mode.
! RCUTOF minimum distance between two surfacic elements.
! IPRINT print level.
! NBSLIN maximum number of segments in a single tracking line.
! computed by default in SALTCG but limited to 100000
! elements. This default value can be bypassed using
! keyword NBSLIN.
!
!Parameters: output
! GG geometry basic information.
!
!-----------------------------------------------------------------------
!
SUBROUTINE SALMUS(FGEO ,IPTRK, IFTRK, RCUTOF, IPRINT, NBSLIN, GG)
USE GANLIB
USE PRECISION_AND_KINDS, ONLY : PDB
USE SAL_GEOMETRY_TYPES, ONLY : T_G_BASIC,LMERGM,TYPGEO,NBFOLD,F_GEO
USE SAL_TRACKING_TYPES, ONLY : PRTIND,EPS1
USE SAL_GEOMETRY_MOD, ONLY : SAL100
IMPLICIT NONE
!----
! Subroutine arguments
!----
TYPE(C_PTR) IPTRK
INTEGER FGEO,IFTRK,IPRINT,NBSLIN
REAL(PDB) RCUTOF
TYPE(T_G_BASIC) :: GG
!----
! Local parameters
!----
INTEGER IOUT
PARAMETER (IOUT=6)
INTEGER NSTATE
PARAMETER (NSTATE=40)
!----
! Local variables
!----
TYPE(C_PTR) JPTRK,KPTRK
INTEGER ISTATT(NSTATE),I,J,I1,I2,J1,J2,IMACRO,J3,NMIX,IMIX,NREG,OK, &
& NINST,ILONG,ITYLCM
REAL RSTATT(NSTATE)
LOGICAL LGINF
CHARACTER(LEN=131) HSMG
!----
! Allocatable arrays
!----
INTEGER, ALLOCATABLE, DIMENSION(:) :: NSURF_MACRO,NBNODE_MACRO,ITAB, &
& NMC_NODE,NMC_SURF,IFR,MIX,ICNT,MERGE_MACRO,SURF_MACRO,PERIM,IDMA,IMAC
REAL, ALLOCATABLE, DIMENSION(:) :: VOLUME,ALB,DVX,SUR,GALBED
REAL(PDB), ALLOCATABLE, DIMENSION(:) :: SURF2
!----
! Read the surfacic file and fill GG object
!----
PRTIND=IPRINT
F_GEO=FGEO
EPS1=1.E-5_PDB
IF(RCUTOF>0._PDB) THEN
EPS1=RCUTOF
IF(PRTIND>0) WRITE(*,*) "SALMUS: set eps1 to ",EPS1
ENDIF
CALL SAL100(GG)
!------------
IF(IPRINT > 0) WRITE(IOUT,'(/" SALMUS: TYPGEO=",I5," NBFOLD=",I5," NMACRO=",I5)') &
& TYPGEO,NBFOLD,GG%NB_MACRO
!----
! Perform optional MERGE MIX
!----
IF(LMERGM) THEN
GG%NUM_MERGE(:)=GG%MED(:)
DO I=1,MAXVAL(GG%NUM_MERGE(:))
1000 IF(I.GT.MAXVAL(GG%NUM_MERGE(:))) EXIT
DO J=1,GG%NB_NODE
IF(GG%NUM_MERGE(J).EQ.I) GO TO 2000
ENDDO
DO J=1,GG%NB_NODE
IF(GG%NUM_MERGE(J).GE.I) GG%NUM_MERGE(J)=GG%NUM_MERGE(J)-1
ENDDO
GO TO 1000
2000 CONTINUE
ENDDO
ENDIF
!----
! store the STATE VECTOR for the global geometry
!----
CALL LCMGET(IPTRK,'STATE-VECTOR',ISTATT)
CALL LCMGET(IPTRK,'EXCELTRACKOP',RSTATT)
NREG=MAXVAL(GG%NUM_MERGE)
ISTATT(1) = NREG ! number of regions
ISTATT(2) = NREG ! number of flux unknowns
ISTATT(7) = 5 ! set the multicell surfacic approximation
LGINF = .TRUE.
DO I=1,GG%NBBCDA
LGINF = LGINF .AND. (GG%BCDATAREAD(I)%BCDATA(6) == 1._PDB)
ENDDO
ISTATT(3)=1
IF(.NOT.LGINF) ISTATT(3)=0 ! reset the leakage flag
ISTATT(4) = MAXVAL(GG%MED(1:GG%NB_NODE)) ! maximum number of mixture
CALL LCMPUT(IPTRK,'STATE-VECTOR',NSTATE,1,ISTATT)
!
! fill-in medium number per region
ALLOCATE(ITAB(NREG),VOLUME(NREG), STAT =OK)
IF(OK /= 0) CALL XABORT('SALMUS: failure to allocate integer ITAB')
! fill in MATCOD
DO J=1,GG%NB_NODE
ITAB(GG%NUM_MERGE(J)) = GG%MED(J)
ENDDO
CALL LCMPUT(IPTRK,'MATCOD',NREG,1,ITAB(1:NREG) )
! fill-in KEYFLX per region
ITAB(:NREG) = (/ (I,I=1,NREG) /)
CALL LCMPUT(IPTRK,'MERGE',NREG,1,ITAB)
CALL LCMPUT(IPTRK,'KEYFLX',NREG,1,ITAB)
! fill-in volumes per region
VOLUME(:NREG) =0.
DO I=1,GG%NB_NODE
VOLUME(GG%NUM_MERGE(I)) = VOLUME(GG%NUM_MERGE(I)) + REAL(GG%VOL_NODE(I))
ENDDO
CALL LCMPUT(IPTRK,'VOLUME',NREG,2,VOLUME)
IF(IPRINT .GT. 5) THEN
I1=1
DO I=1,(NREG-1)/8+1
I2=I1+7
IF(I2.GT.NREG) I2=NREG
WRITE (IOUT,20) (J,J=I1,I2)
DO J=1,GG%NB_NODE
ITAB(GG%NUM_MERGE(J)) = GG%MED(J)
ENDDO
WRITE (IOUT,30) (ITAB(J),J=I1,I2)
WRITE (IOUT,40) (VOLUME(J),J=I1,I2)
I1=I1+8
ENDDO
ENDIF
DEALLOCATE(VOLUME,ITAB)
!----
! Extract the surfacic elements belonging to each macro geometry and
! perform tracking
!----
ALLOCATE(NSURF_MACRO(GG%NB_MACRO),NBNODE_MACRO(GG%NB_MACRO))
ALLOCATE(NMC_NODE(GG%NB_MACRO+1),NMC_SURF(GG%NB_MACRO+1))
NSURF_MACRO(:GG%NB_MACRO) = 0
NBNODE_MACRO(:GG%NB_MACRO) = 0
JPTRK=LCMLID(IPTRK,'MACRO-TRACK',GG%NB_MACRO)
NMC_NODE(1)=0
NMC_SURF(1)=0
DO IMACRO=1,GG%NB_MACRO
KPTRK=LCMDIL(JPTRK,IMACRO)
CALL LCMPUT(KPTRK,'STATE-VECTOR',NSTATE,1,ISTATT)
CALL LCMPUT(KPTRK,'EXCELTRACKOP',NSTATE,2,RSTATT)
CALL MUSACG(KPTRK,IFTRK,IPRINT,IMACRO,NBSLIN,RCUTOF,GG,LGINF, &
& NBNODE_MACRO(IMACRO),NSURF_MACRO(IMACRO))
NMC_NODE(IMACRO+1)=NMC_NODE(IMACRO)+NBNODE_MACRO(IMACRO)
NMC_SURF(IMACRO+1)=NMC_SURF(IMACRO)+NSURF_MACRO(IMACRO)
ENDDO
CALL LCMPUT(IPTRK,'NMC_NODE',GG%NB_MACRO+1,1,NMC_NODE)
CALL LCMPUT(IPTRK,'NMC_SURF',GG%NB_MACRO+1,1,NMC_SURF)
!----
! Create connectivity data
!----
NMIX=NMC_SURF(GG%NB_MACRO+1)
ALLOCATE(IFR(NMIX),ALB(NMIX),MIX(NMIX),DVX(NMIX),SUR(NMIX),ICNT(NMIX),IDMA(NMIX))
ALLOCATE(IMAC(NREG))
J1=0
NMIX=0
IMIX=0
DO IMACRO=1,GG%NB_MACRO
KPTRK=LCMDIL(JPTRK,IMACRO)
J2=NBNODE_MACRO(IMACRO)
J3=NSURF_MACRO(IMACRO)
ALLOCATE(MERGE_MACRO(J2),SURF_MACRO(J3),SURF2(J3))
CALL LCMSIX(KPTRK,'SURFACIC_TMP',1)
CALL LCMGET(KPTRK,'MERGE_MACRO',MERGE_MACRO)
CALL LCMGET(KPTRK,'SURF_MACRO',SURF_MACRO)
CALL LCMSIX(KPTRK,' ',2)
CALL LCMSIX(KPTRK,'GEOMETRY',1)
CALL LCMLEN(KPTRK,'SURF2',ILONG,ITYLCM)
IF(ILONG.NE.J3) CALL XABORT('SALMUS: wrong number of surfaces')
CALL LCMGET(KPTRK,'SURF2',SURF2)
CALL LCMSIX(KPTRK,' ',2)
IF(J1+J2.GT.NREG) CALL XABORT('SALMUS: NREG overflow')
IMAC(J1+1:J1+J2)=MERGE_MACRO(:J2)
ICNT(NMIX+1:NMIX+J3)=SURF_MACRO(:J3)
DEALLOCATE(SURF_MACRO,MERGE_MACRO)
CALL LCMLEN(KPTRK,'ALBEDO',ILONG,ITYLCM)
ALLOCATE(GALBED(ILONG),PERIM(J3))
CALL LCMGET(KPTRK,'ALBEDO',GALBED)
CALL LCMGET(KPTRK,'PERIM_SURF',PERIM)
DO I=1,J3
IF(PERIM(I).GT.ILONG) THEN
WRITE(HSMG,'(51H SALMUS: inconsistent albedo info in macro geometry,I5)') IMACRO
CALL XABORT(HSMG)
ENDIF
ALB(NMIX+I)=GALBED(PERIM(I))
SUR(NMIX+I)=REAL(SURF2(I))
ENDDO
DEALLOCATE(PERIM,GALBED,SURF2)
OUT1: DO I=NMIX+1,NMIX+J3
DO J=NMIX+1,I-1
IF(ICNT(I).EQ.ICNT(J)) THEN
MIX(I)=MIX(J)
CYCLE OUT1
ENDIF
ENDDO
IMIX=IMIX+1
MIX(I)=IMIX
ENDDO OUT1
DO I=NMIX+1,NMIX+J3
NINST=COUNT(MIX(NMIX+1:NMIX+J3) == MIX(I))
DVX(I)=1.0/REAL(NINST)
IDMA(I)=IMACRO
ENDDO
J1=J1+J2
NMIX=NMIX+J3
ENDDO
CALL LCMPUT(IPTRK,'MERGE_MACRO',NREG,1,IMAC)
DEALLOCATE(IMAC)
OUT2: DO I=1,NMIX
DO J=1,NMIX
IF(IDMA(J).EQ.IDMA(I)) CYCLE
IF(ICNT(J).EQ.ICNT(I)) THEN
IFR(I)=MIX(J)
CYCLE OUT2
ENDIF
ENDDO
IFR(I)=MIX(I)
ENDDO OUT2
DEALLOCATE(IDMA)
ISTATT(24)=GG%NB_MACRO
ISTATT(28)=MAXVAL(IFR) ! number of current unknowns
ISTATT(29)=NMIX ! number of perimeter elements
CALL LCMPUT(IPTRK,'STATE-VECTOR',NSTATE,1,ISTATT)
CALL LCMPUT(IPTRK,'IFR',NMIX,1,IFR)
CALL LCMPUT(IPTRK,'ALB',NMIX,2,ALB)
CALL LCMPUT(IPTRK,'MIX',NMIX,1,MIX)
CALL LCMPUT(IPTRK,'DVX',NMIX,2,DVX)
CALL LCMPUT(IPTRK,'SUR',NMIX,2,SUR)
IF(IPRINT .GT. 1) THEN
NMIX=0
DO IMACRO=1,GG%NB_MACRO
J3=NSURF_MACRO(IMACRO)
WRITE (IOUT,50) IMACRO,(ICNT(I),I=NMIX+1,NMIX+J3)
WRITE (IOUT,60) (MIX(I),IFR(I),I=NMIX+1,NMIX+J3)
WRITE (IOUT,70) (ALB(I),I=NMIX+1,NMIX+J3)
WRITE (IOUT,80) (DVX(I),I=NMIX+1,NMIX+J3)
WRITE (IOUT,90) (SUR(I),I=NMIX+1,NMIX+J3)
WRITE (IOUT,100) ('----------------',I=1,MIN(8,J3))
NMIX=NMIX+J3
ENDDO
ENDIF
DEALLOCATE(ICNT,SUR,DVX,MIX,ALB,IFR)
DEALLOCATE(NMC_SURF,NMC_NODE)
DEALLOCATE(NBNODE_MACRO,NSURF_MACRO)
!----
! Formats
!----
20 FORMAT (/9H REGION:,8(I8,6X,1HI))
30 FORMAT (9H MIXTURE:,8(I8,6X,1HI))
40 FORMAT (9H VOLUME:,1P,8(E13.6,2H I))
50 FORMAT (6H MACRO,I6.6/9H ELEMENT:,8(3H S,I6.6,6X,1HI,:)/(9X,8(3H S,I6.6,6X,1HI,:)))
60 FORMAT (9H IN/OUT:,8(I6,2H /,I5,3H I,:)/(9X,8(I6,2H /,I5,3H I,:)))
70 FORMAT (9H ALBEDO:,1P,8(E13.5,3H I,:)/(9X,8(E13.5,3H I,:)))
80 FORMAT (9H DVX:,1P,8(E13.5,3H I,:)/(9X,8(E13.5,3H I,:)))
90 FORMAT (9H SUR:,1P,8(E13.5,3H I,:)/(9X,8(E13.5,3H I,:)))
100 FORMAT (9H --------,8(A16))
END SUBROUTINE SALMUS
|