1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
*DECK PSOISO
SUBROUTINE PSOISO(IPTRK,IPGEOM,NREG,LX,LY,LZ,NG,NUNS,NDIM,
1 NSOUR,ISOUR,XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX,XXX,YYY,ZZZ,MESHL,
2 SUNKNO,NORM)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute moments of fixed isotropic sources.
*
*Copyright:
* Copyright (C) 2022 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): C. Bienvenue
*
*Parameters: input
* IPTRK pointer to the tracking LCM object.
* IPGEOM pointer to the geometry LCM object.
* NREG number of regions.
* LX number of meshes along X axis.
* LY number of meshes along Y axis.
* LZ number of meshes along Z axis.
* NG number of energy groups.
* NUNS number of unknowns in vector SUNKNO.
* NDIM geometry dimension.
* NSOUR number of sources defined.
* ISOUR intensity of the sources.
* XMIN lower boundaries of the sources along X axis.
* XMAX upper boundaries of the sources along X axis.
* YMIN lower boundaries of the sources along Y axis.
* YMAX upper boundaries of the sources along Y axis.
* ZMIN lower boundaries of the sources along Z axis.
* ZMAX upper boundaries of the sources along Z axis.
* XXX regions boundaries along X axis.
* YYY regions boundaries along Y axis.
* ZZZ regions boundaries along Z axis.
* MESHL number of regions along X-, Y- and Z-axis
*
*Parameters: output
* SUNKNO source vector.
* NORM normalization factor.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPGEOM
INTEGER NREG,LX,LY,LZ,NG,NUNS,NDIM,NSOUR,MESHL(3)
REAL XMIN(NSOUR),XMAX(NSOUR),YMIN(NSOUR),YMAX(NSOUR),ZMIN(NSOUR),
1 ZMAX(NSOUR),ISOUR(NG),SUNKNO(NUNS,NG),XXX(MESHL(1)),
2 YYY(MESHL(2)),ZZZ(MESHL(3)),NORM
*----
* LOCAL VARIABLES
*----
PARAMETER(NSTATE=40)
INTEGER ISTATE(NSTATE),SPLIT_LEN(3),XP(NREG),YP(NREG),ZP(NREG),
1 EELEM
REAL X(LX),Y(LY),Z(LZ)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER,ALLOCATABLE,DIMENSION(:) :: SPLITX,SPLITY,SPLITZ
*----
* RECOVER TRACKING INFORMATION
*----
CALL LCMGET(IPTRK,'STATE-VECTOR',ISTATE)
ITYPE=ISTATE(6)
NSCT=ISTATE(7)
IELEM=ISTATE(8)
ISCAT=ISTATE(16)
EELEM=ISTATE(35)
*----
* RECOVER GEOMETRY INFORMATION
*----
IF(NDIM.EQ.1) THEN
CALL LCMLEN(IPGEOM,'SPLITX',SPLIT_LEN(1),ITYLCM)
ALLOCATE(SPLITX(SPLIT_LEN(1)))
CALL LCMGET(IPGEOM,'SPLITX',SPLITX)
ELSE IF(NDIM.EQ.2) THEN
CALL LCMLEN(IPGEOM,'SPLITX',SPLIT_LEN(1),ITYLCM)
CALL LCMLEN(IPGEOM,'SPLITY',SPLIT_LEN(2),ITYLCM)
ALLOCATE(SPLITX(SPLIT_LEN(1)),SPLITY(SPLIT_LEN(2)))
CALL LCMGET(IPGEOM,'SPLITX',SPLITX)
CALL LCMGET(IPGEOM,'SPLITY',SPLITY)
ELSE IF(NDIM.EQ.3) THEN
CALL LCMLEN(IPGEOM,'SPLITX',SPLIT_LEN(1),ITYLCM)
CALL LCMLEN(IPGEOM,'SPLITY',SPLIT_LEN(2),ITYLCM)
CALL LCMLEN(IPGEOM,'SPLITZ',SPLIT_LEN(3),ITYLCM)
ALLOCATE(SPLITX(SPLIT_LEN(1)),SPLITY(SPLIT_LEN(2)),
1 SPLITZ(SPLIT_LEN(3)))
CALL LCMGET(IPGEOM,'SPLITX',SPLITX)
CALL LCMGET(IPGEOM,'SPLITY',SPLITY)
CALL LCMGET(IPGEOM,'SPLITZ',SPLITZ)
ENDIF
*----
* 1D CARTESIAN CASE
*----
IF(NDIM.EQ.1) THEN
! CALCULATE X-COORDINATES OF EACH VOXELS
K=1
DO I=1,SPLIT_LEN(1)
DO J=1,SPLITX(I)
XP(K)=I
K=K+1
ENDDO
ENDDO
DO 10 IX=1,LX
STEPX=(XXX(XP(IX)+1)-XXX(XP(IX)))/SPLITX(XP(IX))
IF(XP(IX).EQ.1) THEN
X(IX)=XXX(XP(IX))+0.5*STEPX+STEPX*(IX-1)
ELSE
X(IX)=XXX(XP(IX))+0.5*STEPX+STEPX*(IX-SUM(SPLITX(1:XP(IX)-1))-1)
ENDIF
10 CONTINUE
! CALCULATE THE SOURCE DENSITY
NORM=0.0
DO 40 IX=1,LX
IR=IX
DO 30 N=1,NSOUR
IF(XMIN(N).LE.X(IX).AND.XMAX(N).GE.X(IX)) THEN
IND=(IR-1)*NSCT*IELEM*EELEM+1
DO 20 IG=1,NG
SUNKNO(IND,IG)=SUNKNO(IND,IG)+ISOUR(IG)
IF(N.EQ.NSOUR) THEN
NORM=NORM+(XXX(XP(IX)+1)-XXX(XP(IX)))/SPLITX(XP(IX))*
1 SUNKNO(IND,IG)
ENDIF
20 CONTINUE
ENDIF
30 CONTINUE
40 CONTINUE
*----
* 2D CARTESIAN CASE
*----
ELSE IF(NDIM.EQ.2) THEN
! CALCULATE XY-COORDINATES OF EACH VOXELS
K=1
DO I=1,SPLIT_LEN(1)
DO J=1,SPLITX(I)
XP(K)=I
K=K+1
ENDDO
ENDDO
K=1
DO I=1,SPLIT_LEN(2)
DO J=1,SPLITY(I)
YP(K)=I
K=K+1
ENDDO
ENDDO
DO 100 IX=1,LX
STEPX=(XXX(XP(IX)+1)-XXX(XP(IX)))/SPLITX(XP(IX))
IF(XP(IX).EQ.1) THEN
X(IX)=XXX(XP(IX))+0.5*STEPX+STEPX*(IX-1)
ELSE
X(IX)=XXX(XP(IX))+0.5*STEPX+STEPX*(IX-SUM(SPLITX(1:XP(IX)-1))-1)
ENDIF
100 CONTINUE
DO 110 IY=1,LY
STEPY=(YYY(YP(IY)+1)-YYY(YP(IY)))/SPLITY(YP(IY))
IF(YP(IY).EQ.1) THEN
Y(IY)=YYY(YP(IY))+0.5*STEPY+STEPY*(IY-1)
ELSE
Y(IY)=YYY(YP(IY))+0.5*STEPY+STEPY*(IY-SUM(SPLITY(1:YP(IY)-1))-1)
ENDIF
110 CONTINUE
! CALCULATE THE SOURCE DENSITY
NORM=0.0
DO 150 IY=1,LY
DO 140 IX=1,LX
IR=IX+(IY-1)*LX
DO 130 N=1,NSOUR
IF(XMIN(N).LE.X(IX).AND.XMAX(N).GE.X(IX).AND.
1 YMIN(N).LE.Y(IY).AND.YMAX(N).GE.Y(IY)) THEN
IND=(IR-1)*NSCT*IELEM*IELEM*EELEM+1
DO 120 IG=1,NG
SUNKNO(IND,IG)=SUNKNO(IND,IG)+ISOUR(IG)
IF(N.EQ.NSOUR) THEN
NORM=NORM+( (XXX(XP(IX)+1)-XXX(XP(IX)))/SPLITX(XP(IX))*
1 (YYY(YP(IY)+1)-YYY(YP(IY)))/SPLITY(YP(IY)))*SUNKNO(IND,IG)
ENDIF
120 CONTINUE
ENDIF
130 CONTINUE
140 CONTINUE
150 CONTINUE
*----
* 3D CARTESIAN CASE
*----
ELSE IF(NDIM.EQ.3) THEN
! CALCULATE XYZ-COORDINATES OF EACH VOXELS
K=1
DO I=1,SPLIT_LEN(1)
DO J=1,SPLITX(I)
XP(K)=I
K=K+1
ENDDO
ENDDO
K=1
DO I=1,SPLIT_LEN(2)
DO J=1,SPLITY(I)
YP(K)=I
K=K+1
ENDDO
ENDDO
K=1
DO I=1,SPLIT_LEN(3)
DO J=1,SPLITZ(I)
ZP(K)=I
K=K+1
ENDDO
ENDDO
DO 200 IX=1,LX
STEPX=(XXX(XP(IX)+1)-XXX(XP(IX)))/SPLITX(XP(IX))
IF(XP(IX).EQ.1) THEN
X(IX)=XXX(XP(IX))+0.5*STEPX+STEPX*(IX-1)
ELSE
X(IX)=XXX(XP(IX))+0.5*STEPX+STEPX*(IX-SUM(SPLITX(1:XP(IX)-1))-1)
ENDIF
200 CONTINUE
DO 210 IY=1,LY
STEPY=(YYY(YP(IY)+1)-YYY(YP(IY)))/SPLITY(YP(IY))
IF(YP(IY).EQ.1) THEN
Y(IY)=YYY(YP(IY))+0.5*STEPY+STEPY*(IY-1)
ELSE
Y(IY)=YYY(YP(IY))+0.5*STEPY+STEPY*(IY-SUM(SPLITY(1:YP(IY)-1))-1)
ENDIF
210 CONTINUE
DO 220 IZ=1,LZ
STEPZ=(ZZZ(ZP(IZ)+1)-ZZZ(ZP(IZ)))/SPLITZ(ZP(IZ))
IF(ZP(IZ).EQ.1) THEN
Z(IZ)=ZZZ(ZP(IZ))+0.5*STEPZ+STEPZ*(IZ-1)
ELSE
Z(IZ)=ZZZ(ZP(IZ))+0.5*STEPZ+STEPZ*(IZ-SUM(SPLITZ(1:ZP(IZ)-1))-1)
ENDIF
220 CONTINUE
! CALCULATE THE SOURCE DENSITY
NORM=0.0
DO 270 IZ=1,LZ
DO 260 IY=1,LY
DO 250 IX=1,LX
IR=IX+(IY-1)*LX+(IZ-1)*LX*LY
DO 240 N=1,NSOUR
IF(XMIN(N).LE.X(IX).AND.XMAX(N).GE.X(IX).AND.
1 YMIN(N).LE.Y(IY).AND.YMAX(N).GE.Y(IY).AND.
2 ZMIN(N).LE.Z(IZ).AND.ZMAX(N).GE.Z(IZ)) THEN
IND=(IR-1)*NSCT*IELEM*IELEM*IELEM*EELEM+1
DO 230 IG=1,NG
SUNKNO(IND,IG)=SUNKNO(IND,IG)+ISOUR(IG)
IF(N.EQ.NSOUR) THEN
NORM=NORM+((XXX(XP(IX)+1)-XXX(XP(IX)))/SPLITX(XP(IX))*
1 (YYY(YP(IY)+1)-YYY(YP(IY)))/SPLITY(YP(IY))*
2 (ZZZ(ZP(IZ)+1)-ZZZ(ZP(IZ)))/SPLITZ(ZP(IZ)))*SUNKNO(IND,IG)
ENDIF
230 CONTINUE
ENDIF
240 CONTINUE
250 CONTINUE
260 CONTINUE
270 CONTINUE
ELSE
CALL XABORT('SOUR: INVALID GEOMETRY, ONLY 1D, 2D AND 3D CARTESIAN'
1 //' GEOMETRY ARE ACTUALLY IMPLEMENTED.')
ENDIF
IF(ALLOCATED(SPLITX)) DEALLOCATE(SPLITX)
IF(ALLOCATED(SPLITY)) DEALLOCATE(SPLITY)
IF(ALLOCATED(SPLITZ)) DEALLOCATE(SPLITZ)
RETURN
END
|