1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
*DECK PIJXL3
SUBROUTINE PIJXL3(IPTRK,IPRT,NGRP,NANI,NBMIX,NPSYS,NRENOR,LEAKSW,
> XSSIGT,XSSIGW,NELPIJ,PIJ)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the collision probabilities in EXCELL without producing
* a tracking file. Based on subroutine XL3TRK in DRAGON 3.4.
*
*Copyright:
* Copyright (C) 2005 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Roy and A. Hebert
*
*Parameters: input
* IPTRK pointer to the tracking (L_TRACK signature).
* IPRT print flag (equal to zero for no print).
* NGRP number of energy groups.
* NANI number of Legendre orders (usually equal to one).
* NBMIX number of mixtures.
* NPSYS index set to zero if a group is not to be processed. Usually,
* NPSYS(I)=I.
* NRENOR normalization scheme for PIJ matrices.
* LEAKSW leakage flag (=.true. if neutron leakage through external
* boundary is present).
* XSSIGT total macroscopic cross sections ordered by mixture.
* XSSIGW P0 within-group scattering macroscopic cross sections
* ordered by mixture.
* NELPIJ number of elements in symmetrized pij matrix.
*
*Parameters: output
* PIJ reduced and symmetrized collision probabilities.
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
LOGICAL LEAKSW
TYPE(C_PTR) IPTRK
INTEGER IPRT,NGRP,NANI,NBMIX,NPSYS(NGRP),NRENOR,NELPIJ
REAL XSSIGT(0:NBMIX,NGRP),XSSIGW(0:NBMIX,NANI,NGRP),
> PIJ(NELPIJ,NGRP)
*----
* LOCAL VARIABLES
*----
INTEGER IOUT,NALB,NSTATE,ICPALL,ICPEND
PARAMETER (IOUT=6,NALB=6,NSTATE=40,ICPALL=4,ICPEND=3)
INTEGER NDIM ,ISPEC ,NANGLE,NANGL ,ISYMM, NORE
INTEGER NALBG ,NC ,NTR ,NTZ ,ICL ,NSOUT ,
> ITGEO ,NRMV ,NTY ,LTRK ,LINMAX,NUNK ,
> MAXR ,NEXTGE,NTX ,NCOR ,NSUR ,NTOTCL,
> NVOL ,NV ,NS ,IGRP ,ISOUT ,ILONG ,
> ITYPE ,INDPIJ,IIN ,IBM ,I ,J ,
> NPIJ ,NREG ,NUNKMR
INTEGER ISTATE(NSTATE),LCLSYM(3)
INTEGER MXANGL,ICODE(NALB)
LOGICAL SWVOID,SWNZBC,LSKIP
REAL ALBOLD(NALB),EXTKOP(NSTATE),DENUSR, RCUTOF,
> CUTOFX, FACT
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: MINDIM,MAXDIM,ICORD,INDEL,
> KEYMRG,MATALB,MATMRG,ICUR,INCR,NUMERO,MATRT
REAL, ALLOCATABLE, DIMENSION(:) :: REMESH,VOLSUR,VOLMRG,CONV,
> TRKBEG,TRKDIR,FFACT,ANGLES,DENSTY
REAL, ALLOCATABLE, DIMENSION(:,:) :: SIGVOL,SIGTAL
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: LENGHT,VOLTRK,
> PSST,PSVT
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: DBLPIJ,PCSCT
*----
* INTRINSIC FUNCTION FOR POSITION IN CONDENSE PIJ MATRIX
*----
INTEGER INDPOS
INDPOS(I,J)=MAX(I,J)*(MAX(I,J)-1)/2+MIN(I,J)
*----
* READ THE GEOMETRY INFORMATION STORED ON IPTRK
*----
ISTATE(:NSTATE)=0
CALL LCMGET(IPTRK,'STATE-VECTOR',ISTATE)
NORE=ISTATE(8)
LTRK=ISTATE(9)+1
NANGLE=ISTATE(11)
ISYMM=ISTATE(12)
CALL LCMGET(IPTRK,'EXCELTRACKOP',EXTKOP)
CUTOFX=EXTKOP(1)
DENUSR=EXTKOP(2)
RCUTOF=EXTKOP(3)
CALL LCMSIX(IPTRK,'EXCELL',1)
ISTATE(:NSTATE)=0
CALL LCMGET(IPTRK,'STATE-VECTOR',ISTATE)
NDIM =ISTATE(1)
NSUR =-ISTATE(2)
NVOL =ISTATE(3)
NTOTCL =ISTATE(4)
MAXR =ISTATE(5)
NUNK =ISTATE(6)
NEXTGE =ISTATE(7)
*----
* Intrinsic symmetries used in geometry
* Use these to simplify tracking unless
* NOSYMM tracking option activated
*----
LCLSYM(1) =ISTATE(8)
LCLSYM(2) =ISTATE(9)
LCLSYM(3) =ISTATE(10)
IF(ISYMM .NE. 0) THEN
ISYMM=0
IF(NDIM .EQ. 2) THEN
IF(LCLSYM(1) .NE. 0) THEN
*----
* X SYMMETRY
*----
ISYMM=2
ENDIF
IF(LCLSYM(2) .NE. 0) THEN
IF(ISYMM .EQ. 0) THEN
*----
* Y SYMMETRY
*----
ISYMM=4
ELSE
*----
* X AND Y SYMMETRY
*----
ISYMM=8
ENDIF
ENDIF
*----
* X-Y DIAGONAL SYMMETRY
*----
ELSE
IF(LCLSYM(1) .NE. 0) THEN
*----
* X SYMMETRY
*----
ISYMM=2
ENDIF
IF(LCLSYM(2) .NE. 0) THEN
IF(ISYMM .EQ. 0) THEN
*----
* Y SYMMETRY
*----
ISYMM=4
ELSE
*----
* X AND Y SYMMETRY
*----
ISYMM=8
ENDIF
ENDIF
IF(LCLSYM(3) .NE. 0) THEN
*----
* Z SYMMETRY
*----
ISYMM=ISYMM+16
ENDIF
ENDIF
IF(ISYMM .EQ. 0) ISYMM=1
ENDIF
ALLOCATE(MINDIM(NTOTCL),MAXDIM(NTOTCL),ICORD(NTOTCL),
> INDEL(4*NUNK),KEYMRG(NUNK),MATALB(NUNK))
ALLOCATE(REMESH(MAXR),VOLSUR(NUNK))
CALL LCMGET(IPTRK,'MINDIM ',MINDIM)
CALL LCMGET(IPTRK,'MAXDIM ',MAXDIM)
CALL LCMGET(IPTRK,'ICORD ',ICORD )
CALL LCMGET(IPTRK,'INDEX ',INDEL )
CALL LCMGET(IPTRK,'REMESH ',REMESH)
CALL LCMGET(IPTRK,'KEYMRG ',KEYMRG)
CALL LCMGET(IPTRK,'MATALB ',MATALB)
CALL LCMGET(IPTRK,'VOLSUR ',VOLSUR)
CALL LCMSIX(IPTRK,'EXCELL ',2)
CALL LCMGET(IPTRK,'ICODE ',ICODE )
CALL LCMGET(IPTRK,'ALBEDO ',ALBOLD)
*----
* VERIFY SYMMETRY AND STUDY TRACKING PARAMETERS. ARE THEY BASICALLY
* POSSIBLE ?
*----
MXANGL=0
IF(LTRK .EQ. 1)THEN
NCOR= 1
IF(NDIM .EQ. 2) THEN
MXANGL=NANGLE
IF(ISYMM .GE. 2) THEN
NANGL = (NANGLE+1)/2
ELSE
NANGL = NANGLE
ENDIF
IF( RCUTOF.GT.0.0 ) NCOR= 2
ELSE IF(NDIM .EQ. 3) THEN
IF(MOD(NANGLE,2) .EQ. 1)THEN
NANGLE=NANGLE+1
WRITE(IOUT,'(/31H MESS = ONLY EVEN # EQN ANGLES )')
ENDIF
IF(NANGLE .GT. 16)THEN
NANGLE=16
WRITE(IOUT,'(/31H MESS = 16 IS MAX # EQN ANGLES )')
ENDIF
MXANGL=(NANGLE * (NANGLE+2)) / 2
IF(NEXTGE .EQ. 1) THEN
NANGL = (NANGLE * (NANGLE+2)) / 8
ELSE
IF(ISYMM .EQ. 8 .OR. ISYMM .EQ. 24) THEN
NANGL = (NANGLE * (NANGLE+2)) / 8
ELSE IF(ISYMM .EQ. 2 .OR. ISYMM .EQ. 4 .OR.
> ISYMM .EQ. 18 .OR. ISYMM .EQ. 20 ) THEN
NANGL = (NANGLE * (NANGLE+2)) / 4
ELSE
NANGL = (NANGLE * (NANGLE+2)) / 2
ENDIF
ENDIF
IF(RCUTOF .GT. 0.0) NCOR= 4
ENDIF
ELSEIF( LTRK.EQ.2 )THEN
NCOR = 1
MXANGL=NANGLE
IF( NDIM.EQ.2 )THEN
NANGL = NANGLE
ELSEIF( NDIM.EQ.3 )THEN
CALL XABORT('PIJXL3: *TSPC* NOT AVAILABLE FOR 3-D GEOMETRY')
ENDIF
CUTOFX= RCUTOF
ENDIF
IF( IPRT.GE.1 ) THEN
WRITE(IOUT,6002) NANGL,ISYMM,CUTOFX,DENUSR,RCUTOF
ENDIF
IF( IPRT.GT.1 .AND. NEXTGE.EQ.0 )THEN
*
* IF PRINT REQUIRED AND OVERALL CARTESIAN GEOMETRY
* PRINT CARTESIAN REGION MAP
NTX= MAXDIM(1)-MINDIM(1)
NTY= MAXDIM(2)-MINDIM(2)
NTZ= MAXDIM(3)-MINDIM(3)
NTR=0
DO 103 ICL=4,NTOTCL
NTR= MAX(NTR,MAXDIM(ICL)-MINDIM(ICL)+1)
103 CONTINUE
CALL XELGPR(NDIM,NTX,NTY,NTZ,NTR,ISYMM,
> NSUR,NVOL,NTOTCL,MINDIM,MAXDIM,
> KEYMRG,INDEL,MATALB)
ENDIF
ALLOCATE(VOLTRK((NANGL+1)*NUNK))
*
NV= NVOL
NS= -NSUR
ALLOCATE(VOLMRG(NUNK),MATMRG(NUNK))
ITGEO=3
CALL XELCMP( NS, NV, VOLSUR, MATALB, KEYMRG,
> NSOUT, NREG, VOLMRG, MATMRG, ITGEO,ICODE)
NUNKMR= NREG+NSOUT+1
NPIJ= (NUNKMR*(NUNKMR+1))/2
IF( IPRT .GT. 1 ) WRITE(IOUT,6000) (NGRP*NPIJ/128)
ALLOCATE(DBLPIJ(NPIJ,NGRP))
IF( IPRT .GT. 1 ) WRITE(IOUT,6001)
*
* ALLOCATE AND CHARGE TOTAL XS PER REGION
ALLOCATE(SIGTAL(NUNKMR,NGRP),SIGVOL(NREG,NGRP))
*
* 3) DO THE TRACKING OF THE EXACT GEOMETRY FOR *NEWT* OPTION.
IF( LTRK.NE.0 )THEN
NC= NTOTCL - 3
IF( IPRT.GE.1 )THEN
WRITE(IOUT,'(1H )')
IF( NC.EQ.0 )THEN
WRITE(IOUT,'(/38H NOW, TRACKING GEOMETRY WITH NO CYLIND,
> 2HER/)')
ELSEIF( NC.EQ.1 )THEN
WRITE(IOUT,'(/38H NOW, TRACKING GEOMETRY WITH ONE CYLIN,
> 3HDER/)')
ELSE
WRITE(IOUT,'(/28H NOW, TRACKING GEOMETRY WITH,I4,
> 10H CYLINDERS/)') NC
ENDIF
ENDIF
ALLOCATE(ICUR(NTOTCL),INCR(NTOTCL))
ALLOCATE(CONV(NTOTCL),TRKBEG(NTOTCL),TRKDIR(NTOTCL))
*
* 3.0) WRITE FIRST RECORDS OF THE UNNORMALIZED TRACKING FILE
IF( LTRK.EQ.1 )THEN
LINMAX= 2*NVOL + 10
ELSE
LINMAX= 8*NANGL*(2*NVOL + 8)
ENDIF
ISPEC = LTRK-1
NALBG = 6
ALLOCATE(NUMERO(LINMAX))
ALLOCATE(LENGHT(LINMAX),ANGLES(3*MXANGL),DENSTY(MXANGL))
*
NRMV=1
CALL XL3TI3( IPRT, NANGLE, DENUSR, ISYMM, ANGLES, DENSTY,
> NTOTCL, NEXTGE, MAXR, REMESH, LINMAX, RCUTOF,
> NSUR, NVOL, INDEL, MINDIM, MAXDIM, ICORD,
> INCR, ICUR, TRKBEG, CONV, TRKDIR, LENGHT,
> NUMERO, NPIJ, NGRP, SIGTAL, SWVOID, NORE,
> NRMV, VOLTRK, KEYMRG,-NSOUT, NREG, NPSYS,
> DBLPIJ )
*
CALL XL3NTR( IPRT, NDIM, ISPEC, NS, NV, NORE, VOLSUR, KEYMRG,
> MATALB, NANGL, VOLTRK, DENSTY )
*
CALL XL3SIG( NGRP, NBMIX, XSSIGT, ALBOLD, NPSYS, NGRP, -NSOUT,
> NREG, MATMRG, VOLMRG(NSOUT+2), SIGTAL, SIGVOL,
> SWVOID, SWNZBC)
*
NRMV=0
CALL XL3TI3( IPRT, NANGLE, DENUSR, ISYMM, ANGLES, DENSTY,
> NTOTCL, NEXTGE, MAXR, REMESH, LINMAX, RCUTOF,
> NSUR, NVOL, INDEL, MINDIM, MAXDIM, ICORD ,
> INCR, ICUR, TRKBEG, CONV, TRKDIR, LENGHT,
> NUMERO, NPIJ, NGRP, SIGTAL, SWVOID, NORE,
> NRMV, VOLTRK, KEYMRG, -NSOUT, NREG , NPSYS,
> DBLPIJ )
*
CALL QIJCMP(NREG,-NSOUT,NPIJ,NGRP,NCOR,VOLMRG,SIGTAL,DBLPIJ,
> NPSYS)
*----
* RENORMALIZE ALL ISOTROPIC PROBS WITH VARIOUS OPTIONS
*----
DO 2060 IGRP=1,NGRP
IF(NPSYS(IGRP).EQ.0) GO TO 2060
IF( NRENOR.EQ.1 )THEN
*
* NORMALIZATION USING GELBARD SCHEME
CALL PIJRGL(IPRT,NREG,NSOUT,SIGTAL(1,IGRP),DBLPIJ(1,IGRP))
ELSEIF( NRENOR.EQ.2 )THEN
*
* NORMALIZATION WORKING ON DIAGONAL COEFFICIENTS
CALL PIJRDG(NREG,NSOUT,SIGTAL(1,IGRP),DBLPIJ(1,IGRP) )
ELSEIF( NRENOR.EQ.3 )THEN
*
* NORMALIZATION WORKING ON WEIGHT FACTORS TO KEEP DIAG = 0.0
CALL PIJRNL(IPRT,NREG,NSOUT,SIGTAL(1,IGRP),DBLPIJ(1,IGRP))
ELSEIF( NRENOR .EQ. 4 )THEN ! ATTENTION
*
* NORMALIZATION WORKING ON WEIGHT FACTORS ADDITIVE (HELIOS)
CALL PIJRHL(IPRT,NREG,NSOUT,SIGTAL(1,IGRP),DBLPIJ(1,IGRP))
ENDIF
IF( IPRT.GE.ICPALL )THEN
WRITE(IOUT,'(1H )')
WRITE(IOUT,'(35H COLLISION PROBABILITIES OUTPUT: ,
> 35H *BEFORE* ALBEDO REDUCTION )')
CALL PIJWPR(0,NREG,NSOUT,SIGTAL(1,IGRP),DBLPIJ(1,IGRP),
> SIGVOL(1,IGRP),1)
ENDIF
2060 CONTINUE
*----
* ELIMINATION OF SURFACES FOR PIJ
*----
IF( SWNZBC )THEN
ALLOCATE(PSST(NSOUT*NSOUT),PSVT(NSOUT*NREG))
ALLOCATE(MATRT(NSOUT))
CALL LCMLEN(IPTRK,'BC-REFL+TRAN',ILONG,ITYPE)
IF(ILONG.EQ.NSOUT) THEN
CALL LCMGET(IPTRK,'BC-REFL+TRAN',MATRT)
ELSE
DO 130 ISOUT=1,NSOUT
MATRT(ISOUT)=ISOUT
130 CONTINUE
ENDIF
DO 2080 IGRP=1,NGRP
IF(NPSYS(IGRP).EQ.0) GO TO 2080
CALL PIJABC(NREG,NSOUT,NPIJ,SIGTAL(1,IGRP),MATRT,
> DBLPIJ(1,IGRP),PSST,PSVT)
2080 CONTINUE
*
DEALLOCATE(MATRT)
DEALLOCATE(PSVT,PSST)
ENDIF
*
ALLOCATE(FFACT(NREG))
DO 2090 IGRP=1,NGRP
IF(NPSYS(IGRP).EQ.0) GO TO 2090
IF( IPRT.GE.ICPEND )THEN
WRITE(IOUT,'(1H )')
WRITE(IOUT,'(35H COLLISION PROBABILITIES OUTPUT: ,
> 35H *AFTER* ALBEDO REDUCTION )')
CALL PIJWPR(1,NREG,NSOUT,SIGTAL(1,IGRP),DBLPIJ(1,IGRP),
> SIGVOL(1,IGRP),1)
ENDIF
*----
* CHARGE PIJ MATRIX IN THE DRAGON SYMMETRIZED FORMAT
*----
DO 160 IIN=1,NREG
IF(SIGTAL(NSOUT+IIN+1,IGRP).EQ.0.0) THEN
FFACT(IIN)=1.0
ELSE
FFACT(IIN)=1.0/SIGTAL(NSOUT+IIN+1,IGRP)
ENDIF
160 CONTINUE
CALL PIJD2R(NREG,NSOUT,DBLPIJ(1,IGRP),FFACT,.FALSE.,NELPIJ,
> NPIJ,PIJ(1,IGRP))
2090 CONTINUE
DEALLOCATE(FFACT)
*
DEALLOCATE(DENSTY,ANGLES,LENGHT,NUMERO,TRKDIR,TRKBEG,CONV,
> INCR,ICUR)
ENDIF
DEALLOCATE(INDEL,ICORD,MAXDIM,MINDIM,REMESH,DBLPIJ,SIGTAL,SIGVOL,
> VOLSUR,VOLTRK,KEYMRG,MATALB)
*----
* CHECK IF SCATTERING REDUCTION IS REQUIRED
*----
ALLOCATE(PCSCT(NREG,2*NREG))
DO 3000 IGRP=1,NGRP
IF(NPSYS(IGRP).EQ.0) GO TO 3000
LSKIP=.TRUE.
DO 200 IBM=1,NBMIX
LSKIP=LSKIP.AND.(XSSIGW(IBM,1,IGRP).EQ.0.0)
200 CONTINUE
*----
* COMPUTE THE SCATTERING-REDUCED CP MATRICES
*----
IF(.NOT.LSKIP) THEN
CALL PIJSMD(IPRT,NBMIX,NREG,MATMRG(NSOUT+2),VOLMRG(NSOUT+2),
> XSSIGW(0,1,IGRP),XSSIGT(0,IGRP),LEAKSW,PIJ(1,IGRP),
> PCSCT,1)
DO 220 I=1,NREG
FACT=VOLMRG(NSOUT+I+1)
DO 210 J=1,NREG
INDPIJ=INDPOS(I,J)
PIJ(INDPIJ,IGRP)=REAL(PCSCT(I,J))*FACT
210 CONTINUE
220 CONTINUE
ENDIF
3000 CONTINUE
DEALLOCATE(PCSCT,VOLMRG,MATMRG)
RETURN
*----
* FORMAT
*----
6000 FORMAT(' *** SPACE REQUIRED FOR CP MATRICES = ',I10,' K ***')
6001 FORMAT(' *** CP MATRICES ALLOCATED ',10X,' ***')
6002 FORMAT(
> ' -----------------'/' RECOMPUTED PARAMETERS '/
> ' NANGL =',I10 ,' (NUMBER OF TRACKING ANGLES)'/
> ' ISYMM =',I10 ,' (TRACKING SYMMETRY FACTOR)'/
> ' CUTOFX =',F10.5,' (CUTOFF FOR TRACK LENGTH)'/
> ' DENS =',F10.5,' (TRACK DENSITY)'/
> ' PCORN =',F10.5,' (CORNER DUPLICATION DISTANCE)'/
> ' -----------------'/)
END
|