summaryrefslogtreecommitdiff
path: root/Dragon/src/NXTLSN.f
blob: cd91aa7951c041e58d609fc2e1e6b1712a91f700 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
*DECK NXTLSN
      SUBROUTINE NXTLSN(NDIM  ,ORDRE ,NQUAD ,NBANGL,DQUAD ,DANGLT,
     >                  DDENWT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* To define level-symmetric (type 2) quadrature angles.
* 
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*Author(s): 
*  A. Hebert and R. Le Tellier
*
*Parameters: input
* NDIM    number of dimensions for geometry.
* ORDRE   quadrature order.
* NQUAD   number of quadrant (in 3-D) and quarter (in 2-D).
* NBANGL  number of angles.
* DQUAD   relative density of each quadrant.
*
*Parameters: output
* DANGLT  director cosines of angles.
* DDENWT  angular density for each angle.
*
*----------
*
      IMPLICIT   NONE
*----
*  Subroutine arguments
*----
      INTEGER          NDIM,ORDRE,NQUAD,NBANGL
      DOUBLE PRECISION DQUAD(NQUAD),DANGLT(NDIM,NQUAD,NBANGL),
     >                 DDENWT(NQUAD,NBANGL)
*----
*  Local parameters
*----
      INTEGER          IOUT
      CHARACTER        NAMSBR*6
      PARAMETER       (IOUT=6,NAMSBR='NXTLSN')
      DOUBLE PRECISION DZERO,DONE,DTWO
      PARAMETER       (DZERO=0.0D0,DONE=1.0D0,DTWO=2.0D0)
      INTEGER          MAXORD,MAXNBA,MAXEQ,MAXW
      PARAMETER       (MAXORD=20,MAXNBA=55,MAXEQ=64,MAXW=12)
*----
*  Functions
*----
      DOUBLE PRECISION XDRCST,PI
*----
*  Local variables
*----
      INTEGER          I,IP,IQ,IS,IW,IANG,JOP(MAXORD/2),M2,NPQ,NW,IPR,
     >                 IPL,IPK,INMAX,IPQ,NW0,II,KK,LL,NEQ
      REAL             U(MAXORD/2),TPQ(MAXNBA),UPQ(MAXNBA),
     >                 VPQ(MAXNBA),WPQ(MAXNBA)
      DOUBLE PRECISION FAC,ZMU,ZETA,ZMU1,ZMU2,DDA,X,Y,Z,REF
      INTEGER          INWEI(MAXNBA)
      DOUBLE PRECISION WEI(MAXW),ZMAT(MAXEQ,MAXW+1),UD(MAXW)
*----
*  Set the unique quadrature values
*----
      IF(ORDRE.GT.MAXORD) CALL XABORT(NAMSBR//': MAXORD OVERFLOW.')
      M2=ORDRE/2
      NPQ=M2*(M2+1)/2
      ZMU1=1.0D0/(3.0D0*DBLE(ORDRE-1))
      NW=1+(ORDRE*(ORDRE+8)-1)/48
      IF(NW.GT.MAXW) CALL XABORT('NXTLSN: MAXW OVERFLOW.')
      IF(ORDRE.EQ.2) THEN
         ZMU1=0.33333333
      ELSE IF(ORDRE.EQ.4) THEN
         ZMU1=0.12251480
      ELSE IF(ORDRE.EQ.6) THEN
         ZMU1=0.07109447
      ELSE IF(ORDRE.EQ.8) THEN
         ZMU1=0.04761903
      ELSE IF(ORDRE.EQ.10) THEN
         ZMU1=0.03584310
      ELSE IF(ORDRE.EQ.12) THEN
         ZMU1=0.02796615
      ELSE IF(ORDRE.EQ.14) THEN
         ZMU1=0.02310250
      ELSE IF(ORDRE.EQ.16) THEN
         ZMU1=0.01931398
      ELSE IF(ORDRE.EQ.18) THEN
         ZMU1=0.01692067
      ELSE IF(ORDRE.EQ.20) THEN
         ZMU1=0.01455253
      ELSE
         CALL XABORT(NAMSBR//': ORDER NOT AVAILABLE.')
      ENDIF
      U(1)=REAL(SQRT(ZMU1))
      DO I=2,M2
         ZMU2=ZMU1+2.0D0*DBLE(I-1)*(1.0D0-3.0D0*ZMU1)/DBLE(ORDRE-2)
         U(I)=REAL(SQRT(ZMU2))
      ENDDO
*----
*  Compute the position of weights
*----
      IPR=0
      INMAX=0
      DO IP=1,M2
         JOP(IP)=M2-IP+1
         DO IQ=1,JOP(IP)
            IPR=IPR+1
            IF(IPR.GT.MAXNBA) CALL XABORT('NXTLSN: MAXNBA OVERFLOW.')
            TPQ(IPR)=U(IP)
            UPQ(IPR)=U(M2+2-IP-IQ)
            VPQ(IPR)=U(IQ)
            IS=MIN(IP,IQ,M2+2-IP-IQ)
            NW0=0
            DO II=1,IS-1
               NW0=NW0+(M2-3*(II-1)+1)/2
            ENDDO
            KK=IP-IS+1
            LL=IQ-IS+1
            IF(KK.EQ.1)THEN
               INWEI(IPR)=NW0+MIN(LL,M2-3*(IS-1)+1-LL)
            ELSEIF(LL.EQ.1)THEN
               INWEI(IPR)=NW0+MIN(KK,M2-3*(IS-1)+1-KK)
            ELSE
               INWEI(IPR)=NW0+MIN(KK,LL)
            ENDIF
            INMAX=MAX(INMAX,INWEI(IPR))
         ENDDO
      ENDDO
      IF(INMAX.NE.NW) CALL XABORT(NAMSBR//': INVALID VALUE OD NW.')
      IF(IPR.NE.NPQ) CALL XABORT(NAMSBR//': BAD VALUE ON NPQ.')
*----
*  Set the rectangular system and solve it using the QR method
*----
      NEQ=0
      DO IPL=0,ORDRE,2
        DO IPK=IPL,ORDRE-IPL,2
          IF(MOD(IPL+IPK,2).EQ.1) CYCLE
          NEQ=NEQ+1
          IF(NEQ.GT.MAXEQ) CALL XABORT(NAMSBR//': MAXEQ OVERFLOW.')
          DO IW=1,NW
             ZMAT(NEQ,IW)=0.0D0
          ENDDO
          DO IPQ=1,NPQ
             ZMU=TPQ(IPQ)
             ZETA=UPQ(IPQ)
             IW=INWEI(IPQ)
             ZMAT(NEQ,IW)=ZMAT(NEQ,IW)+(ZMU**IPK)*(ZETA**IPL)
          ENDDO
          REF=1.0D0/DBLE(IPK+IPL+1)
          DO I=1,IPL-1,2
             REF=REF*DBLE(I)/DBLE(IPK+I)
          ENDDO
          ZMAT(NEQ,NW+1)=REF
        ENDDO
      ENDDO
      CALL ALST2F(MAXEQ,NEQ,NW,ZMAT,UD)
      CALL ALST2S(MAXEQ,NEQ,NW,ZMAT,UD,ZMAT(1,NW+1),WEI)
*----
*  Set the level-symmetric quadratures
*----
      PI=XDRCST('Pi',' ')
      IPQ=0
      DO IP=1,M2
         DO IQ=1,JOP(IP)
            IPQ=IPQ+1
            WPQ(IPQ)=REAL(WEI(INWEI(IPQ))*PI)/2.0
         ENDDO
      ENDDO
*----
*  Fill-in DANGLT and DDENWT array
*----
      FAC=4.0*PI
      DO IANG=1,NBANGL
        X  = DBLE(TPQ(IANG))
        Y  = DBLE(UPQ(IANG))
        Z  = DBLE(VPQ(IANG))
        DDA=DBLE(FAC/WPQ(IANG))
        DANGLT(1,1,IANG)=X
        DANGLT(2,1,IANG)=Y
        DANGLT(3,1,IANG)=Z
        DDENWT(1,IANG)=DQUAD(1)*DDA             
        DANGLT(1,2,IANG)=-X
        DANGLT(2,2,IANG)=Y
        DANGLT(3,2,IANG)=Z
        DDENWT(2,IANG)=DQUAD(2)*DDA 
        DANGLT(1,3,IANG)=X
        DANGLT(2,3,IANG)=-Y
        DANGLT(3,3,IANG)=Z
        DDENWT(3,IANG)=DQUAD(3)*DDA 
        DANGLT(1,4,IANG)=-X
        DANGLT(2,4,IANG)=-Y
        DANGLT(3,4,IANG)=Z
        DDENWT(4,IANG)=DQUAD(4)*DDA 
      ENDDO            
*
      RETURN
      END