1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
*DECK NXTIRA
FUNCTION NXTIRA(XYCAR ,POSPIN,VOLINT)
*
*----------
*
*Purpose:
* Compute the volume of intersection between
* a rectangular region and an annular pin.
*
*Copyright:
* Copyright (C) 2005 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*Author(s): G. Marleau.
*
*Parameters: input
* XYCAR spatial description of the Cartesian region with:
* XYCAR(1) for left face; XYCAR(2) for right face;
* XYCAR(3) for bottom face; XYCAR(4) for top face
* positions.
* POSPIN spatial description of the annular pin region with
* POSPIN(0) the radius; POSPIN(1) the $X$ position
* of center; POSPIN(2) the $Y$ position
* of center.
*
*Parameters: output
* NXTIRA type of intersection between Cartesian region and
* annular pin or annular region and Cartesian pin, where:
* = 0 means that there is no intersection
* between the two regions;
* = 1 means that the Cartesian region
* is all located inside the annular pin;
* = 2 means that the annular pin
* is all located inside the Cartesian region;
* =-1 means that the intersection between
* the annular pin and the Cartesian region is partial.
* VOLINT 2-D volume of intersection (area) between Cartesian region
* and annular pin.
*
*Reference:
* G. Marleau,
* New Geometries Processing in DRAGON: The NXT: Module,
* Report IGE-260, Polytechnique Montreal,
* Montreal, 2005.
*
*----
*
IMPLICIT NONE
*----
* Subroutine arguments
*----
INTEGER NXTIRA
DOUBLE PRECISION XYCAR(4),POSPIN(0:2)
DOUBLE PRECISION VOLINT
*----
* Local parameters
*----
INTEGER IOUT
CHARACTER NAMSBR*6
PARAMETER (IOUT=6,NAMSBR='NXTIRA')
INTEGER IPRINT
PARAMETER (IPRINT=100)
DOUBLE PRECISION DCUTOF
PARAMETER (DCUTOF=1.0D-8)
DOUBLE PRECISION DZERO,DONE
PARAMETER (DZERO=0.0D0,DONE=1.0D0)
*----
* Functions
*----
DOUBLE PRECISION XDRCST,PI
*----
* Local variables
*----
INTEGER IFACE,ILOC(4),IDX,IDY
DOUBLE PRECISION XYFACE(4),RP2,VOLCAR,VOLPIN,FACDIR,VSUB(4),
> TRIANG,ALPHA,FACTX,FACTY,
> DIST,QUARTA,CARTV
DOUBLE PRECISION DT1,DT2,DT3
*----
* Initialize NXTIRA and VOLINT and PI
*----
IF(IPRINT .GE. 200) THEN
WRITE(IOUT,6000) NAMSBR
WRITE(IOUT,6010) (XYCAR(IFACE),IFACE=1,4)
WRITE(IOUT,6011) (POSPIN(IFACE),IFACE=0,2)
ENDIF
NXTIRA=0
VOLINT=DZERO
PI=XDRCST('Pi',' ')
*----
* Locate pin center at origin
*----
XYFACE(1)=XYCAR(1)-POSPIN(1)
XYFACE(2)=XYCAR(2)-POSPIN(1)
XYFACE(3)=XYCAR(3)-POSPIN(2)
XYFACE(4)=XYCAR(4)-POSPIN(2)
*----
* Find location of each face with respect to annular region
*----
DO 100 IFACE=1,4
IF(XYFACE(IFACE) .LE. -POSPIN(0)) THEN
*----
* Plane to the left or under
*----
ILOC(IFACE)=(-1)**IFACE
ELSE IF(XYFACE(IFACE) .GE. POSPIN(0)) THEN
*----
* Plane to the right or above
*----
ILOC(IFACE)=(-1)**(IFACE+1)
ELSE
*----
* Plane croses annular region
*----
ILOC(IFACE)=0
ENDIF
100 CONTINUE
IF(ILOC(1) .NE. 1 .AND. ILOC(2) .NE. 1 .AND.
> ILOC(3) .NE. 1 .AND. ILOC(4) .NE. 1 ) THEN
RP2=POSPIN(0)*POSPIN(0)
VOLPIN=PI*RP2
VOLCAR=(XYFACE(2)-XYFACE(1))*(XYFACE(4)-XYFACE(3))
VOLINT=VOLPIN
*----
* Find annular surface
* 1- to the left of X-
* 2- to the right of X+
* 3- below Y-
* 4- above Y+
*----
FACDIR=-DONE
DO 110 IFACE=1,4
IF(ILOC(IFACE) .EQ. -1) THEN
VSUB(IFACE)=DZERO
ELSE
TRIANG=SQRT(RP2-XYFACE(IFACE)*XYFACE(IFACE))
> *FACDIR*XYFACE(IFACE)
ALPHA=ACOS(FACDIR*XYFACE(IFACE)/POSPIN(0))
VSUB(IFACE)=RP2*ALPHA-TRIANG
VOLINT=VOLINT-VSUB(IFACE)
ENDIF
FACDIR=-FACDIR
110 CONTINUE
*----
* For the case where two faces intersect inside annular region
* compute intersections between the two surfaces VSUB
* associated with each of these faces.
*----
FACTX=DONE
DO 120 IDX=1,2
FACTY=DONE
DO 130 IDY=3,4
IF(ILOC(IDX) .EQ. 0 .AND. ILOC(IDY) .EQ. 0) THEN
DIST=XYFACE(IDX)*XYFACE(IDX)+XYFACE(IDY)*XYFACE(IDY)
IF(DIST .LT. RP2) THEN
QUARTA=0.25D0*PI*RP2
CARTV=FACTX*XYFACE(IDY)*FACTY*XYFACE(IDX)
CARTV=CARTV+0.5D0*(VSUB(IDX)+VSUB(IDY))-QUARTA
ELSE
IF(FACTX*XYFACE(IDX) .LT. DZERO) THEN
IF(FACTY*XYFACE(IDY) .LT. DZERO) THEN
CARTV=0.0
ELSE
CARTV=VSUB(IDX)
ENDIF
ELSE
IF(FACTY*XYFACE(IDY) .LT. DZERO) THEN
CARTV=VSUB(IDY)
ELSE
CARTV=-(VOLPIN-VSUB(IDX)-VSUB(IDY))
ENDIF
ENDIF
ENDIF
VOLINT=VOLINT+CARTV
ENDIF
FACTY=-FACTY
130 CONTINUE
FACTX=-FACTX
120 CONTINUE
DT1=ABS(VOLINT-VOLPIN)
DT2=ABS(VOLINT-VOLCAR)
DT3=ABS(VOLINT)
IF(DT1 .LT. DCUTOF) THEN
VOLINT=VOLPIN
NXTIRA=2
ELSE IF(DT2 .LT. DCUTOF) THEN
VOLINT=VOLCAR
NXTIRA=1
ELSE IF(DT3 .LT. DCUTOF) THEN
VOLINT=DZERO
NXTIRA=0
ELSE
NXTIRA=-1
ENDIF
ENDIF
*----
IF(IPRINT .GE. 200) THEN
WRITE(IOUT,6012) NAMSBR,NXTIRA,VOLINT
WRITE(IOUT,6001) NAMSBR
ENDIF
RETURN
*----
* Output formats
*----
6000 FORMAT('(* Output from --',A6,'-- follows ')
6001 FORMAT(' Output from --',A6,'-- completed *)')
6010 FORMAT('XYCAR ={',3(F20.10,','),F20.10,'};')
6011 FORMAT('POSPIN={',2(F20.10,','),F20.10,'};')
6012 FORMAT(A6,'={',I5,',',F20.10,'};')
END
|