1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
!
!-----------------------------------------------------------------------
!
!Purpose:
! Calculation of the collision probabilities for the multicell
! surfacic approximation.
!
!Copyright:
! Copyright (C) 2025 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! IPTRK pointer to the tracking (L_TRACK signature).
! IFTRAK tracking file unit.
! IMPX print flag (equal to zero for no print).
! NREGIO total number of merged blocks for which specific values
! of the neutron flux and reactions rates are required.
! NBMIX number of mixtures (NBMIX=max(MAT(i))).
! MAT index-number of the mixture type assigned to each volume.
! VOL volumes.
! SIGT0 total macroscopic cross sections ordered by mixture.
! SIGW0 P0 within-group scattering macroscopic cross sections
! ordered by mixture.
! NELPIJ number of elements in pij matrix.
! ILK leakage flag (=.true. if neutron leakage through external
! boundary is present).
! NBATCH number of tracks dispached in eack OpenMP core.
! TITREC title.
! NALBP number of multigroup physical albedos.
! ALBP multigroup physical albedos.
!
!Parameters: output
! PIJ reduced and symmetrized collision probabilities.
!
!-----------------------------------------------------------------------
!
SUBROUTINE MUSP(IPTRK,IFTRAK,IMPX,NREGIO,NBMIX,MAT,VOL,SIGT0,SIGW0,NELPIJ, &
& ILK,NBATCH,TITREC,NALBP,ALBP,PIJ)
USE GANLIB
!----
! SUBROUTINE ARGUMENTS
!----
LOGICAL ILK
TYPE(C_PTR) IPTRK
INTEGER IFTRAK,IMPX,NREGIO,NBMIX,MAT(NREGIO),NELPIJ,NBATCH,NALBP
REAL VOL(NREGIO),SIGT0(0:NBMIX),SIGW0(0:NBMIX),PIJ(NELPIJ),ALBP(NALBP)
CHARACTER TITREC*72
!----
! LOCAL VARIABLES
!----
PARAMETER (EPS1=1.0E-4,NSTATE=40)
TYPE(C_PTR) JPTRK,KPTRK
INTEGER ISTATT(NSTATE),NNPSYS(1)
CHARACTER TITRE2*72
logical LSKIP
!----
! ALLOCATABLE ARRAYS
!----
INTEGER, ALLOCATABLE, DIMENSION(:) :: MATALB,NMC_NODE,NMC_SURF,MAT2,IGEN,INUM, &
& IFR,MIX,IMAC
REAL, ALLOCATABLE, DIMENSION(:) :: SIGT2,SIGW2,PIJW,PISW,PSJW,PSSW,WORK,ALB,DVX
REAL, ALLOCATABLE, DIMENSION(:,:) :: VOLSUR,PP,PSSB
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: DPROB,DPROBX
!
IND(I,J) = MAX(I+J3+1,J+J3+1)*(MAX(I+J3+1,J+J3+1)-1)/2 &
& + MIN(I+J3+1,J+J3+1)
!
WPR(I,J)= REAL(DPROB( IND(I,J),1 ) / DPROB( IND(I,0),1 ))
!----
! BICKLEY FLAG
!----
SAVE IBICKL
DATA IBICKL/0/
!----
! RECOVER BICKLEY TABLES
!----
IF(IBICKL.EQ.0) THEN
CALL XDRTA2
IBICKL=1
ENDIF
!----
! RECOVER SALT SPECIFIC PARAMETERS
!----
REWIND IFTRAK
CALL LCMGET(IPTRK,'STATE-VECTOR',ISTATT)
IF(NREGIO.NE.ISTATT(1)) THEN
CALL XABORT('MUSP: STATE VECTOR HAS INVALID # OF ZONES.')
ENDIF
NMACRO=ISTATT(24) ! NGEN
NMCEL=NMACRO
NMERGE=NMACRO
NGEN=NMACRO
ALLOCATE(IGEN(NMERGE),INUM(NMCEL))
DO IK=1,NMERGE
IGEN(IK)=IK
ENDDO
DO IK=1,NMCEL
INUM(IK)=IK
ENDDO
IF(NMACRO.EQ.0) CALL XABORT('MUSP: MUST MODULE TRACKING IS MANDATORY.')
ALLOCATE(NMC_NODE(NMACRO+1),NMC_SURF(NMACRO+1))
JPTRK=LCMGID(IPTRK,'MACRO-TRACK')
CALL LCMGET(IPTRK,'NMC_NODE',NMC_NODE)
CALL LCMGET(IPTRK,'NMC_SURF',NMC_SURF)
NMIX=NMC_SURF(NMACRO+1)
NIFR=NMC_SURF(NMACRO+1)
!----
! LOOP OVER MACRO GEOMETRIES AND COMPUTE PIJ MATRICES USING EXCELP
!----
J1=0
NMIX=0
NPIJ=0
NPIS=0
NPSS=0
DO IMACRO=1,NMACRO
J2=NMC_NODE(IMACRO+1)-NMC_NODE(IMACRO)
J3=NMC_SURF(IMACRO+1)-NMC_SURF(IMACRO)
J1=J1+J2
NMIX=NMIX+J3
NPIJ=NPIJ+J2*J2
NPIS=NPIS+J2*J3
NPSS=NPSS+J3*J3
ENDDO
IF(J1.NE.NREGIO) CALL XABORT('MUSP: INVALID NREGIO.')
IF(NMIX.NE.NMC_SURF(NMACRO+1)) CALL XABORT('MUSP: INVALID NMIX.')
ALLOCATE(PIJW(NPIJ),PISW(NPIS),PSJW(NPIS),PSSW(NPSS))
J1=0
IPIJ=0
IPIS=0
IPSS=0
DO IMACRO=1,NMACRO
J2=NMC_NODE(IMACRO+1)-NMC_NODE(IMACRO)
J3=NMC_SURF(IMACRO+1)-NMC_SURF(IMACRO)
N2PRO=(J2+J3+1)**2
WRITE(TITRE2,'(A,9H -- MACRO,I5.5)') TRIM(TITREC),IMACRO
KPTRK=LCMGIL(JPTRK,IMACRO)
KNORM=4 ! use HELIOS-type normalization
NNPSYS(1)=1
ALLOCATE(MAT2(J2),SIGT2(J2),SIGW2(J2))
ALLOCATE(MATALB(-J3:J2),VOLSUR(-J3:J2,1),DPROB(N2PRO,1),DPROBX(N2PRO,1))
CALL LCMGET(KPTRK,'MATCOD',MAT2)
CALL EXCELP(KPTRK,IFTRAK,IMPX,J3,J2,NBMIX,MAT2,KNORM,SIGT0,1,N2PRO, &
& 1,NNPSYS(1),NBATCH,TITRE2,NALBP,ALBP,MATALB,VOLSUR,DPROB,DPROBX)
!----
! CHECK IF SCATTERING REDUCTION IS REQUIRED
!----
DO I=1,J2
SIGT2(I)=SIGT0(MAT2(I)) ! sigt by node
SIGW2(I)=SIGW0(MAT2(I)) ! sigw by node
ENDDO
LSKIP=.TRUE.
DO I=1,J2
LSKIP=LSKIP.AND.(SIGW2(I).EQ.0.0)
ENDDO
!----
! SCATTERING REDUCTION IF LSKIP=.FALSE.
!----
IF(LSKIP) THEN
! DO NOT PERFORM SCATTERING REDUCTION.
DO I=1,J2
DO J=1,J2
IF(SIGT2(J).EQ.0.0) THEN
PIJW(IPIJ+(J-1)*J2+I)=WPR(I,J)
ELSE
PIJW(IPIJ+(J-1)*J2+I)=WPR(I,J)/SIGT2(J)
ENDIF
ENDDO
ENDDO
DO I=1,J2
DO JC=1,J3
PISW(IPIS+(JC-1)*J2+I)=WPR(I,-JC)
IF(SIGT2(I).EQ.0.0) THEN
PSJW(IPIS+(I-1)*J3+JC)=WPR(-JC,I)
ELSE
PSJW(IPIS+(I-1)*J3+JC)=WPR(-JC,I)/SIGT2(I)
ENDIF
ENDDO
ENDDO
DO IC=1,J3
DO JC=1,J3
PSSW(IPSS+(JC-1)*J3+IC)=WPR(-IC,-JC)
ENDDO
ENDDO
ELSE
! COMPUTE THE SCATTERING-REDUCED COLLISION AND ESCAPE MATRICES.
DO I=1,J2
DO J=1,J2
IF(SIGT2(J).EQ.0.0) THEN
PIJW(IPIJ+(J-1)*J2+I)=0.0
ELSE
PIJW(IPIJ+(J-1)*J2+I)=-WPR(I,J)*SIGW2(J)/SIGT2(J)
ENDIF
ENDDO
PIJW(IPIJ+(I-1)*J2+I)=1.0+PIJW(IPIJ+(I-1)*J2+I)
ENDDO
CALL ALINV(J2,PIJW(IPIJ+1),J2,IER)
IF(IER.NE.0) CALL XABORT('MUSP: SINGULAR MATRIX.')
ALLOCATE(WORK(J2))
DO I=1,J2
DO K=1,J2
WORK(K)=PIJW(IPIJ+(K-1)*J2+I)
ENDDO
DO J=1,J2
WGAR=0.0
DO K=1,J2
IF(SIGT2(J).EQ.0.0) THEN
WGAR=WGAR+WORK(K)*WPR(K,J)
ELSE
WGAR=WGAR+WORK(K)*WPR(K,J)/SIGT2(J)
ENDIF
ENDDO
PIJW(IPIJ+(J-1)*J2+I)=WGAR
ENDDO
DO JC=1,J3
WGAR=0.0
DO K=1,J2
WGAR=WGAR+WORK(K)*WPR(K,-JC)
ENDDO
PISW(IPIS+(JC-1)*J2+I)=WGAR
ENDDO
ENDDO
DEALLOCATE(WORK)
!
! COMPUTE THE SCATTERING-REDUCED COLLISION PROBABILITY MATRIX
! FOR INCOMING NEUTRONS.
DO IC=1,J3
DO J=1,J2
IF(SIGT2(J).EQ.0.0) THEN
WGAR=WPR(-IC,J)
ELSE
WGAR=WPR(-IC,J)/SIGT2(J)
ENDIF
DO K=1,J2
IF(SIGT2(K).NE.0.0) THEN
WGAR=WGAR+WPR(-IC,K)*PIJW(IPIJ+(J-1)*J2+K)*SIGW2(K)/SIGT2(K)
ENDIF
ENDDO
PSJW(IPIS+(J-1)*J3+IC)=WGAR
ENDDO
ENDDO
!
! COMPUTE THE SCATTERING-REDUCED TRANSMISSION PROBABILITY MATRIX.
DO IC=1,J3
DO JC=1,J3
WGAR=WPR(-IC,-JC)
DO K=1,J2
IF(SIGT2(K).NE.0.0) THEN
WGAR=WGAR+WPR(-IC,K)*PISW(IPIS+(JC-1)*J2+K)*SIGW2(K)/SIGT2(K)
ENDIF
ENDDO
PSSW(IPSS+(JC-1)*J3+IC)=WGAR
ENDDO
ENDDO
ENDIF
DEALLOCATE(DPROBX,DPROB,VOLSUR,MATALB)
IF(IMPX.GE.8) THEN
IF(LSKIP) THEN
IN=1
ELSE
IN=2
ENDIF
CALL SYBPRX(IN,J3,J2,IMACRO,SIGT2,SIGW2,PIJW(IPIJ+1),PISW(IPIS+1), &
& PSJW(IPIS+1),PSSW(IPSS+1))
ENDIF
DEALLOCATE(SIGW2,SIGT2,MAT2)
J1=J1+J2
IPIJ=IPIJ+J2*J2
IPIS=IPIS+J2*J3
IPSS=IPSS+J3*J3
ENDDO
! end of SYB004 equivalent
!----
! COMPUTE THE GLOBAL SCATTERING-REDUCED COLLISION PROBABILITY MATRIX
!----
ALLOCATE(IMAC(NREGIO),PP(NREGIO,NREGIO))
CALL LCMGET(IPTRK,'MERGE_MACRO',IMAC)
PP(:NREGIO,:NREGIO)=0.0
IPIJ=0
DO JKG=1,NGEN
J2=NMC_NODE(JKG+1)-NMC_NODE(JKG)
I1=0
DO IKK=1,NMERGE
IKG=IGEN(IKK)
I2=NMC_NODE(IKG+1)-NMC_NODE(IKG)
IF(IKG.EQ.JKG) THEN
DO J=1,J2
DO I=1,J2
PP(IMAC(I1+I),IMAC(I1+J))=PIJW(IPIJ+(J-1)*J2+I)
ENDDO
ENDDO
ENDIF
I1=I1+I2
ENDDO
IPIJ=IPIJ+J2*J2
ENDDO
!----
! COMPUTE PSSB=A*(I-PSS*A)**-1
!----
ALLOCATE(IFR(NIFR),ALB(NIFR),MIX(NMIX),DVX(NMIX))
CALL LCMGET(IPTRK,'IFR',IFR)
CALL LCMGET(IPTRK,'ALB',ALB)
CALL LCMGET(IPTRK,'MIX',MIX)
CALL LCMGET(IPTRK,'DVX',DVX)
IJAT=MAXVAL(MIX)
ALLOCATE(PSSB(IJAT,2*IJAT))
PSSB(:IJAT,:2*IJAT)=0.0
DO I=1,IJAT
PSSB(I,I)=1.0
ENDDO
DO ICEL=1,NMCEL
IKK=INUM(ICEL)
IKG=IGEN(IKK)
J3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
IT=0
DO IK=1,IKK-1
IT=IT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
ENDDO
IS=0
DO IK=1,ICEL-1
IS=IS+(NMC_SURF(IGEN(INUM(IK))+1)-NMC_SURF(IGEN(INUM(IK))))
ENDDO
IPSS=0
DO IK=1,IKG-1
IPSS=IPSS+(NMC_SURF(IK+1)-NMC_SURF(IK))**2
ENDDO
DO JC=1,J3
J1=IFR(IS+JC)
J2=MIX(IT+JC)
ALBEDO=ALB(IS+JC)
PSSB(J1,IJAT+J2)=PSSB(J1,IJAT+J2)+ALBEDO*DVX(IT+JC)
DO IC=1,J3
J2=MIX(IT+IC)
PSSB(J1,J2)=PSSB(J1,J2)-PSSW(IPSS+(JC-1)*J3+IC)*ALBEDO*DVX(IT+IC)
ENDDO
ENDDO
ENDDO
CALL ALSB(IJAT,IJAT,PSSB,IER,IJAT)
IF(IER.NE.0) CALL XABORT('MUSP: SINGULAR MATRIX.')
!----
! COMPUTATION OF PISW*PSSB*PSJW
!----
I1=0
DO IKK=1,NMERGE
IKG=IGEN(IKK)
I2=NMC_NODE(IKG+1)-NMC_NODE(IKG)
I3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
IT=0
DO IK=1,IKK-1
IT=IT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
ENDDO
IPIS=0
DO IK=1,IKG-1
IPIS=IPIS+(NMC_NODE(IK+1)-NMC_NODE(IK))*(NMC_SURF(IK+1)-NMC_SURF(IK))
ENDDO
DO I=1,I2
DO IC=1,I3
ICC=MIX(IT+IC)
ZZZ=PISW(IPIS+(IC-1)*I2+I)*SIGN(1.0,DVX(IT+IC))
J1=0
DO JKK=1,NMERGE
JKG=IGEN(JKK)
J2=NMC_NODE(JKG+1)-NMC_NODE(JKG)
J3=NMC_SURF(JKG+1)-NMC_SURF(JKG)
JT=0
DO IK=1,JKK-1
JT=JT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
ENDDO
IPSJ=0
DO IK=1,JKG-1
IPSJ=IPSJ+(NMC_NODE(IK+1)-NMC_NODE(IK))*(NMC_SURF(IK+1)-NMC_SURF(IK))
ENDDO
DO J=1,J2
DO JC=1,J3
JCC=MIX(JT+JC)
PBJ=PSJW(IPSJ+(J-1)*J3+JC)
PP(IMAC(I1+I),IMAC(J1+J))=PP(IMAC(I1+I),IMAC(J1+J))+ZZZ*DVX(JT+JC)* &
& PSSB(JCC,IJAT+ICC)*PBJ
ENDDO
ENDDO
J1=J1+J2
ENDDO
ENDDO
ENDDO
I1=I1+I2
ENDDO
! end of SYBRX3 equivalent
DEALLOCATE(PSSB,DVX,MIX,ALB,IFR)
DEALLOCATE(PSSW,PSJW,PISW,PIJW)
DEALLOCATE(NMC_SURF,NMC_NODE)
DEALLOCATE(INUM,IGEN)
!
IF(IMPX.GE.7) THEN
WRITE (6,170) (J,J=1,NREGIO)
DO I=1,NREGIO
WRITE (6,180) I,(PP(I,J),J=1,NREGIO)
ENDDO
WRITE (6,'(//)')
ENDIF
IF((IMPX.GE.10).OR.(IMPX.LT.0)) THEN
! CHECK THE RECIPROCITY CONDITIONS.
VOLTOT=0.0
DO I=1,NREGIO
VOLTOT=VOLTOT+VOL(I)
ENDDO
VOLTOT=VOLTOT/REAL(NREGIO)
WRK=0.0
DO I=1,NREGIO
DO J=1,NREGIO
AAA=PP(I,J)*VOL(I)
BBB=PP(J,I)*VOL(J)
WRK=MAX(WRK,ABS(AAA-BBB)/VOLTOT)
ENDDO
ENDDO
IF(WRK.GE.EPS1) WRITE (6,150) WRK
IF(WRK.GE.EPS1) CALL XABORT('MUSP: non symmetric matrices.')
! CHECK THE CONSERVATION CONDITIONS.
IF(.NOT.ILK) THEN
WRK=0.0
DO I=1,NREGIO
F1=1.0
DO J=1,NREGIO
AAA=PP(I,J)
F1=F1-AAA*(SIGT0(MAT(J))-SIGW0(MAT(J)))
ENDDO
WRK=AMAX1(WRK,ABS(F1))
ENDDO
IF(WRK.GE.EPS1) WRITE (6,160) WRK
IF(WRK.GE.EPS1) CALL XABORT('MUSP: non conservative matrices.')
ENDIF
ENDIF
!
IC=0
DO IKK=1,NREGIO
IOF=(IKK-1)*NREGIO
DO JKK=1,IKK
IC=IC+1
PIJ(IC)=PP(JKK,IKK)*VOL(JKK)
ENDDO
ENDDO
DEALLOCATE(IMAC,PP)
RETURN
!
150 FORMAT (/56H MUSP: THE SCATTERING-REDUCED PIJ DO NOT MEET THE RECIPR, &
& 25HOCITY CONDITIONS. RECIP =,1P,E10.3/)
160 FORMAT (/56H MUSP: THE SCATTERING-REDUCED PIJ DO NOT MEET THE CONSER, &
& 25HVATION CONDITIONS. LEAK =,1P,E10.3/)
170 FORMAT (//47H MUSP: SCATTERING-REDUCED COLLISION PROBABILITY, &
& 9H MATRIX ://(11X,2HJ=,I4,:,5X,2HJ=,I4,:,5X,2HJ=,I4,:,5X,2HJ=, &
& I4,:,5X,2HJ=,I4,:,5X,2HJ=,I4,:,5X,2HJ=,I4,:,5X,2HJ=,I4,:,5X,2HJ=, &
& I4,:,5X,2HJ=,I4,:,5X,2HJ=,I4))
180 FORMAT (3H I=,I4,2H: ,1P,11E11.3/(9X,11E11.3))
END SUBROUTINE MUSP
|