1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
!
!-----------------------------------------------------------------------
!
!Purpose:
! Compute the neutron flux and interface currents using the current
! iteration method for the multicell surfacic approximation.
!
!Copyright:
! Copyright (C) 2025 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! IPAS total number of regions.
! NMCEL total number of cells in the domain.
! NMERGE total number of merged cells for which specific values
! of the neutron flux and reactions rates are required.
! Many cells with different position in the domain can
! be merged before the neutron flux calculation if they
! own the same generating cell (NMERGE.le.NMCEL).
! NGEN total number of generating cells. A generating cell is
! defined by its material and dimensions, irrespective of
! its position in the domain (NGEN.le.NMERGE).
! IJAT total number of distinct out-currents.
! NPIJ size of cellwise scattering-reduced collision probability matrices.
! NPIS size of cellwise scattering-reduced escape probability matrices.
! NPSS size of cellwise scattering-reduced transmission probability matrices.
! EPSJ stopping criterion for flux-current iterations.
! NUNKNO total number of unknowns in vectors SUNKNO and FUNKNO.
! NMIX nmber of out-currents (dimension of arrays MIX and DVX).
! NIFR nmber of in-currents (dimension of arrays IFR and ALB).
! SUNKNO input source vector.
! IMPX print flag (equal to 0 for no print).
! NMC_NODE offset of the first volume in each generating cell.
! NMC_SURF offset of the first boundary surface in each generating cell.
! IFR index-number of in-currents.
! ALB transmission/albedo associated with each in-current.
! INUM index-number of the merged cell associated to each cell.
! MIX index-number of out-currents.
! DVX weight associated with each out-current.
! Note: IFR, ALB, MIX and DVX contains information to rebuild
! the geometrical 'A' matrix.
! IGEN index-number of the generating cell associated with each
! merged cell.
! IMAC global merge index assigned to each node in the surfacic
! geometry.
! PIJW cellwise scattering-reduced collision probability matrices.
! PISW cellwise scattering-reduced escape probability matrices.
! PSJW cellwise scattering-reduced collision probability matrices
! for incoming neutrons.
! PSSW cellwise scattering-reduced transmission probability matrices.
!
!Parameters: input/output
! FUNKNO unknown vector.
!
!-----------------------------------------------------------------------
!
SUBROUTINE MUSJJ2(IPAS,NMCEL,NMERGE,NGEN,IJAT,NPIJ,NPIS,NPSS,EPSJ,NUNKNO, &
& NMIX,NIFR,FUNKNO,SUNKNO,IMPX,NMC_NODE,NMC_SURF,IFR,ALB,INUM,MIX,DVX, &
& IGEN,IMAC,PIJW,PISW,PSJW,PSSW)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
!----
! SUBROUTINE ARGUMENTS
!----
INTEGER IPAS,NMCEL,NMERGE,NGEN,IJAT,NPIJ,NPIS,NUNKNO,NMIX,NIFR,IMPX, &
& NMC_NODE(NGEN+1),NMC_SURF(NGEN+1),IFR(NIFR),INUM(NMCEL),MIX(NMIX), &
& IGEN(NMERGE),IMAC(IPAS)
REAL EPSJ,FUNKNO(NUNKNO),SUNKNO(NUNKNO),ALB(NIFR),DVX(NMIX),PIJW(NPIJ), &
& PISW(NPIS),PSJW(NPIS),PSSW(NPSS)
!----
! LOCAL VARIABLES
!----
REAL PIJ,PIS
LOGICAL LOGTES
PARAMETER (MAXIT=400,LACCFC=2,ICL1=3,ICL2=3)
!----
! ALLOCATABLE ARRAYS
!----
INTEGER, DIMENSION(:), POINTER :: INDNMC
DOUBLE PRECISION, DIMENSION(:), POINTER :: CIT0
DOUBLE PRECISION, DIMENSION(:,:), POINTER :: CITR,AITR
DOUBLE PRECISION, DIMENSION(:), POINTER :: WCURR
!----
! SCRATCH STORAGE ALLOCATION
!----
ALLOCATE(INDNMC(NMERGE))
ALLOCATE(CITR(3,IJAT),CIT0(IJAT),AITR(2,IJAT))
ALLOCATE(WCURR(IJAT))
!
KNMC=0
DO JKK=1,NMERGE
JKG=IGEN(JKK)
J2=NMC_NODE(JKG+1)-NMC_NODE(JKG)
INDNMC(JKK)=KNMC
KNMC=KNMC+J2
ENDDO
!
DO I=1,IJAT
WCURR(I)=1.0D0
CIT0(I)=0.0D0
CITR(1,I)=FUNKNO(IPAS+I)
ENDDO
!----
! COMPUTE PSJW * Q(*) CONTRIBUTION
!----
DO IKK=1,NMERGE
IKG=IGEN(IKK)
I2=NMC_NODE(IKG+1)-NMC_NODE(IKG)
I3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
IT=0
DO IK=1,IKK-1
IT=IT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
ENDDO
IPSJ=0
DO IK=1,IKG-1
IPSJ=IPSJ+(NMC_NODE(IK+1)-NMC_NODE(IK))*(NMC_SURF(IK+1)-NMC_SURF(IK))
ENDDO
KNMC=INDNMC(IKK)
DO I=1,I2
DO IC=1,I3
JCC=MIX(IT+IC)
PBJ=PSJW(IPSJ+(I-1)*I3+IC)
CIT0(JCC)=CIT0(JCC)+PBJ*DVX(IT+IC)*SUNKNO(IMAC(KNMC+I))
ENDDO
ENDDO
ENDDO
!----
! COMPUTE NORMALIZATION VECTOR WCURR
!----
DO ICEL=1,NMCEL
IKK=INUM(ICEL)
IKG=IGEN(IKK)
J3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
IT=0
DO IK=1,IKK-1
IT=IT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
ENDDO
IS=0
DO IK=1,ICEL-1
IS=IS+(NMC_SURF(IGEN(INUM(IK))+1)-NMC_SURF(IGEN(INUM(IK))))
ENDDO
IPSS=0
DO IK=1,IKG-1
IPSS=IPSS+(NMC_SURF(IK+1)-NMC_SURF(IK))**2
ENDDO
DO JC=1,J3
J1=IFR(IS+JC)
DO IC=1,J3
PSS=PSSW(IPSS+(JC-1)*J3+IC)
WCURR(J1)=WCURR(J1)-PSS*ALB(IS+JC)*DVX(IT+IC)
ENDDO
ENDDO
ENDDO
!
ISTART=1
TEST=0.0D0
ITER=0
10 ITER=ITER+1
IF(ITER.GT.MAXIT) THEN
WRITE(6,'(/47H MUSJJ2: *** WARNING *** MAXIMUM NUMBER OF ITER, &
& 15HATIONS REACHED.)')
GO TO 190
ENDIF
IT3=MOD(ITER,3)+1
IT2=MOD(ITER-1,3)+1
IT1=MOD(ITER-2,3)+1
CITR(IT3,:IJAT)=CIT0(:IJAT)
!----
! COMPUTE PSSW * J(-) CONTRIBUTION
!----
DO ICEL=1,NMCEL
IKK=INUM(ICEL)
IKG=IGEN(IKK)
J3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
IT=0
DO IK=1,IKK-1
IT=IT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
ENDDO
IS=0
DO IK=1,ICEL-1
IS=IS+(NMC_SURF(IGEN(INUM(IK))+1)-NMC_SURF(IGEN(INUM(IK))))
ENDDO
IPSS=0
DO IK=1,IKG-1
IPSS=IPSS+(NMC_SURF(IK+1)-NMC_SURF(IK))**2
ENDDO
DO JC=1,J3
J1=IFR(IS+JC)
DO IC=1,J3
J2=MIX(IT+IC)
PSS=PSSW(IPSS+(JC-1)*J3+IC)
CITR(IT3,J2)=CITR(IT3,J2)+PSS*ALB(IS+JC)*DVX(IT+IC)*CITR(IT2,J1)
ENDDO
ENDDO
ENDDO
!----
! NORMALIZATION
!----
S1=0.0D0
S2=0.0D0
DO I=1,IJAT
S1=S1+WCURR(I)*CITR(IT3,I)
S2=S2+CIT0(I)
ENDDO
ZNORM=S2/S1
IF(ZNORM.LT.0.0D0) ZNORM=1.0D0
CITR(IT3,:IJAT)=CITR(IT3,:IJAT)*ZNORM
!----
! ONE/TWO PARAMETER ACCELERATION
!----
ALP=1.0D0
BET=0.0D0
LOGTES=(1+MOD(ITER-ISTART,ICL1+ICL2).GT.ICL1)
IF(LOGTES) THEN
AITR(1,:IJAT)=CITR(IT3,:IJAT)-CITR(IT2,:IJAT)
AITR(2,:IJAT)=CITR(IT2,:IJAT)-CITR(IT1,:IJAT)
DO ICEL=1,NMCEL
IKK=INUM(ICEL)
IKG=IGEN(IKK)
J3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
IT=0
DO IK=1,IKK-1
IT=IT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
ENDDO
IS=0
DO IK=1,ICEL-1
IS=IS+(NMC_SURF(IGEN(INUM(IK))+1)-NMC_SURF(IGEN(INUM(IK))))
ENDDO
IPSS=0
DO IK=1,IKG-1
IPSS=IPSS+(NMC_SURF(IK+1)-NMC_SURF(IK))**2
ENDDO
DO JC=1,J3
J1=IFR(IS+JC)
DO IC=1,J3
J2=MIX(IT+IC)
PSS=PSSW(IPSS+(JC-1)*J3+IC)*ALB(IS+JC)*DVX(IT+IC)
AITR(1,J2)=AITR(1,J2)-PSS*(CITR(IT3,J1)-CITR(IT2,J1))
AITR(2,J2)=AITR(2,J2)-PSS*(CITR(IT2,J1)-CITR(IT1,J1))
ENDDO
ENDDO
ENDDO
IF((LACCFC.EQ.1).OR.(MOD(ITER-ISTART,ICL1+ICL2).EQ.ICL1)) THEN
S1=0.0D0
S2=0.0D0
DO I=1,IJAT
S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
S2=S2+AITR(1,I)*AITR(1,I)
ENDDO
IF(S2.EQ.0.0D0) THEN
ISTART=ITER+1
ELSE
ALP=S1/S2
IF(ALP.LE.0.0D0) THEN
ISTART=ITER+1
ALP=1.0D0
ENDIF
ENDIF
DO I=1,IJAT
CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))
ENDDO
ELSE IF(LACCFC.EQ.2) THEN
S1=0.0D0
S2=0.0D0
S3=0.0D0
S4=0.0D0
S5=0.0D0
DO I=1,IJAT
S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
S2=S2+AITR(1,I)*AITR(1,I)
S3=S3+(CITR(IT3,I)-CITR(IT2,I))*AITR(2,I)
S4=S4+AITR(1,I)*AITR(2,I)
S5=S5+AITR(2,I)*AITR(2,I)
ENDDO
DET=S2*S5-S4*S4
IF(DET.EQ.0.0D0) THEN
ISTART=ITER+1
ELSE
ALP=(S5*S1-S4*S3)/DET
BET=(S2*S3-S4*S1)/DET
IF(ALP.LE.0.0D0) THEN
ISTART=ITER+1
ALP=1.0D0
BET=0.0D0
ENDIF
ENDIF
DO I=1,IJAT
CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))+ &
& BET*(CITR(IT2,I)-CITR(IT1,I))
ENDDO
ENDIF
ENDIF
!----
! CHECK THE CONVERGENCE ERROR
!----
ERR1=0.0D0
ERR2=0.0D0
DO I=1,IJAT
ERR1=MAX(ERR1,ABS(CITR(IT3,I)-CITR(IT2,I)))
ERR2=MAX(ERR2,ABS(CITR(IT3,I)))
ENDDO
IF(IMPX.GT.3) WRITE(6,'(30H MUSJJ2: CURRENT ITERATION NB.,I4, &
& 7H ERROR=,1P,E10.3,5H OVER,E10.3,15H NORMALIZATION=,E10.3, &
& 14H ACCELERATION=,2E11.3,1H.)') ITER,ERR1,ERR2,ZNORM,ALP,BET/ALP
IF(ITER.EQ.1) TEST=ERR1/ERR2
IF((ITER.GT.20).AND.(ERR1/ERR2.GT.TEST)) THEN
WRITE(6,'(/50H MUSJJ2: *** WARNING *** CONVERGENCE DIFFICULTIES.)')
GO TO 190
ENDIF
IF(LOGTES.OR.(ERR1.GT.EPSJ*ERR2)) GO TO 10
IF(IMPX.GT.2) WRITE(6,'(40H MUSJJ2: CURRENT CONVERGENCE AT ITERATIO, &
& 5HN NB.,I4,7H ERROR=,1P,E10.3,5H OVER,E10.3,1H.)') ITER,ERR1,ERR2
!
190 FUNKNO(:IPAS)=0.0
DO I=1,IJAT
FUNKNO(IPAS+I)=REAL(CITR(IT3,I))
ENDDO
!----
! COMPUTE PISW * J(-) CONTRIBUTION
!----
DO ICEL=1,NMCEL
IKK=INUM(ICEL)
IKG=IGEN(IKK)
I2=NMC_NODE(IKG+1)-NMC_NODE(IKG)
I3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
IS=0
DO IK=1,ICEL-1
IS=IS+(NMC_SURF(IGEN(INUM(IK))+1)-NMC_SURF(IGEN(INUM(IK))))
ENDDO
IPIS=0
DO IK=1,IKG-1
IPIS=IPIS+(NMC_NODE(IK+1)-NMC_NODE(IK))*(NMC_SURF(IK+1)-NMC_SURF(IK))
ENDDO
KNMC=INDNMC(IKK)
DO J=1,I2
DO JC=1,I3
J1=IFR(IS+JC)
PIS=PISW(IPIS+(JC-1)*I2+J)
FUNKNO(IMAC(KNMC+J))=FUNKNO(IMAC(KNMC+J))+PIS*ALB(IS+JC)*FUNKNO(IPAS+J1)
ENDDO
ENDDO
ENDDO
!----
! COMPUTE PIJW * Q(*) CONTRIBUTION
!----
DO IKK=1,NMERGE
IKG=IGEN(IKK)
I2=NMC_NODE(IKG+1)-NMC_NODE(IKG)
IPIJ=0
DO IK=1,IKG-1
IPIJ=IPIJ+(NMC_NODE(IK+1)-NMC_NODE(IK))**2
ENDDO
KNMC=INDNMC(IKK)
DO I=1,I2
DO J=1,I2
PIJ=PIJW(IPIJ+(I-1)*I2+J)
FUNKNO(IMAC(KNMC+J))=FUNKNO(IMAC(KNMC+J))+PIJ*SUNKNO(IMAC(KNMC+I))
ENDDO
ENDDO
ENDDO
!----
! SCRATCH STORAGE DEALLOCATION
!----
DEALLOCATE(WCURR)
DEALLOCATE(AITR,CIT0,CITR)
DEALLOCATE(INDNMC)
RETURN
END
|