summaryrefslogtreecommitdiff
path: root/Dragon/src/MUSJJ2.f90
blob: 7570bf11f3eff8db92294633404385ddc497e3c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
!
!-----------------------------------------------------------------------
!
!Purpose:
! Compute the neutron flux and interface currents using the current
! iteration method for the multicell surfacic approximation.
!
!Copyright:
! Copyright (C) 2025 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! IPAS     total number of regions.
! NMCEL    total number of cells in the domain.
! NMERGE   total number of merged cells for which specific values
!          of the neutron flux and reactions rates are required.
!          Many cells with different position in the domain can
!          be merged before the neutron flux calculation if they
!          own the same generating cell (NMERGE.le.NMCEL).
! NGEN     total number of generating cells. A generating cell is
!          defined by its material and dimensions, irrespective of
!          its position in the domain (NGEN.le.NMERGE).
! IJAT     total number of distinct out-currents.
! NPIJ     size of cellwise scattering-reduced collision probability matrices.
! NPIS     size of cellwise scattering-reduced escape probability matrices.
! NPSS     size of cellwise scattering-reduced transmission probability matrices.
! EPSJ     stopping criterion for flux-current iterations.
! NUNKNO   total number of unknowns in vectors SUNKNO and FUNKNO.
! NMIX     nmber of out-currents (dimension of arrays MIX and DVX).
! NIFR     nmber of in-currents (dimension of arrays IFR and ALB).
! SUNKNO   input source vector.
! IMPX     print flag (equal to 0 for no print).
! NMC_NODE offset of the first volume in each generating cell.
! NMC_SURF offset of the first boundary surface in each generating cell.
! IFR      index-number of in-currents.
! ALB      transmission/albedo associated with each in-current.
! INUM     index-number of the merged cell associated to each cell.
! MIX      index-number of out-currents.
! DVX      weight associated with each out-current.
!          Note: IFR, ALB, MIX and DVX contains information to rebuild
!          the geometrical 'A' matrix.
! IGEN     index-number of the generating cell associated with each
!          merged cell.
! IMAC     global merge index assigned to each node in the surfacic
!          geometry.
! PIJW     cellwise scattering-reduced collision probability matrices.
! PISW     cellwise scattering-reduced escape probability matrices.
! PSJW     cellwise scattering-reduced collision probability matrices
!          for incoming neutrons.
! PSSW     cellwise scattering-reduced transmission probability matrices.
! 
!Parameters: input/output
! FUNKNO   unknown vector.
!
!-----------------------------------------------------------------------
!
SUBROUTINE MUSJJ2(IPAS,NMCEL,NMERGE,NGEN,IJAT,NPIJ,NPIS,NPSS,EPSJ,NUNKNO, &
  & NMIX,NIFR,FUNKNO,SUNKNO,IMPX,NMC_NODE,NMC_SURF,IFR,ALB,INUM,MIX,DVX, &
  & IGEN,IMAC,PIJW,PISW,PSJW,PSSW)
  IMPLICIT DOUBLE PRECISION (A-H,O-Z)
  !----
  !  SUBROUTINE ARGUMENTS
  !----
  INTEGER IPAS,NMCEL,NMERGE,NGEN,IJAT,NPIJ,NPIS,NUNKNO,NMIX,NIFR,IMPX, &
  & NMC_NODE(NGEN+1),NMC_SURF(NGEN+1),IFR(NIFR),INUM(NMCEL),MIX(NMIX), &
  & IGEN(NMERGE),IMAC(IPAS)
  REAL EPSJ,FUNKNO(NUNKNO),SUNKNO(NUNKNO),ALB(NIFR),DVX(NMIX),PIJW(NPIJ), &
  & PISW(NPIS),PSJW(NPIS),PSSW(NPSS)
  !----
  !  LOCAL VARIABLES
  !----
  REAL PIJ,PIS
  LOGICAL LOGTES
  PARAMETER (MAXIT=400,LACCFC=2,ICL1=3,ICL2=3)
  !----
  !  ALLOCATABLE ARRAYS
  !----
  INTEGER, DIMENSION(:), POINTER :: INDNMC
  DOUBLE PRECISION, DIMENSION(:), POINTER :: CIT0
  DOUBLE PRECISION, DIMENSION(:,:), POINTER :: CITR,AITR
  DOUBLE PRECISION, DIMENSION(:), POINTER :: WCURR
  !----
  !  SCRATCH STORAGE ALLOCATION
  !----
  ALLOCATE(INDNMC(NMERGE))
  ALLOCATE(CITR(3,IJAT),CIT0(IJAT),AITR(2,IJAT))
  ALLOCATE(WCURR(IJAT))
  !
  KNMC=0
  DO JKK=1,NMERGE
    JKG=IGEN(JKK)
    J2=NMC_NODE(JKG+1)-NMC_NODE(JKG)
    INDNMC(JKK)=KNMC
    KNMC=KNMC+J2
  ENDDO
  !
  DO I=1,IJAT
    WCURR(I)=1.0D0
    CIT0(I)=0.0D0
    CITR(1,I)=FUNKNO(IPAS+I)
  ENDDO
  !----
  !  COMPUTE PSJW * Q(*) CONTRIBUTION
  !----
  DO IKK=1,NMERGE
    IKG=IGEN(IKK)
    I2=NMC_NODE(IKG+1)-NMC_NODE(IKG)
    I3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
    IT=0
    DO IK=1,IKK-1
      IT=IT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
    ENDDO
    IPSJ=0
    DO IK=1,IKG-1
      IPSJ=IPSJ+(NMC_NODE(IK+1)-NMC_NODE(IK))*(NMC_SURF(IK+1)-NMC_SURF(IK))
    ENDDO
    KNMC=INDNMC(IKK)
    DO I=1,I2
      DO IC=1,I3
        JCC=MIX(IT+IC)
        PBJ=PSJW(IPSJ+(I-1)*I3+IC)
        CIT0(JCC)=CIT0(JCC)+PBJ*DVX(IT+IC)*SUNKNO(IMAC(KNMC+I))
      ENDDO
    ENDDO
  ENDDO
  !----
  !  COMPUTE NORMALIZATION VECTOR WCURR
  !----
  DO ICEL=1,NMCEL
    IKK=INUM(ICEL)
    IKG=IGEN(IKK)
    J3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
    IT=0
    DO IK=1,IKK-1
      IT=IT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
    ENDDO
    IS=0
    DO IK=1,ICEL-1
      IS=IS+(NMC_SURF(IGEN(INUM(IK))+1)-NMC_SURF(IGEN(INUM(IK))))
    ENDDO
    IPSS=0
    DO IK=1,IKG-1
      IPSS=IPSS+(NMC_SURF(IK+1)-NMC_SURF(IK))**2
    ENDDO
    DO JC=1,J3
      J1=IFR(IS+JC)
      DO IC=1,J3
        PSS=PSSW(IPSS+(JC-1)*J3+IC)
        WCURR(J1)=WCURR(J1)-PSS*ALB(IS+JC)*DVX(IT+IC)
      ENDDO
    ENDDO
  ENDDO
  !
  ISTART=1
  TEST=0.0D0
  ITER=0
  10 ITER=ITER+1
  IF(ITER.GT.MAXIT) THEN
     WRITE(6,'(/47H MUSJJ2: *** WARNING *** MAXIMUM NUMBER OF ITER, &
     & 15HATIONS REACHED.)')
     GO TO 190
  ENDIF
  IT3=MOD(ITER,3)+1
  IT2=MOD(ITER-1,3)+1
  IT1=MOD(ITER-2,3)+1
  CITR(IT3,:IJAT)=CIT0(:IJAT)
  !----
  !  COMPUTE PSSW * J(-) CONTRIBUTION
  !----
  DO ICEL=1,NMCEL
    IKK=INUM(ICEL)
    IKG=IGEN(IKK)
    J3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
    IT=0
    DO IK=1,IKK-1
      IT=IT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
    ENDDO
    IS=0
    DO IK=1,ICEL-1
      IS=IS+(NMC_SURF(IGEN(INUM(IK))+1)-NMC_SURF(IGEN(INUM(IK))))
    ENDDO
    IPSS=0
    DO IK=1,IKG-1
      IPSS=IPSS+(NMC_SURF(IK+1)-NMC_SURF(IK))**2
    ENDDO
    DO JC=1,J3
      J1=IFR(IS+JC)
      DO IC=1,J3
        J2=MIX(IT+IC)
        PSS=PSSW(IPSS+(JC-1)*J3+IC)
        CITR(IT3,J2)=CITR(IT3,J2)+PSS*ALB(IS+JC)*DVX(IT+IC)*CITR(IT2,J1)
      ENDDO
    ENDDO
  ENDDO
  !----
  !  NORMALIZATION
  !----
  S1=0.0D0
  S2=0.0D0
  DO I=1,IJAT
    S1=S1+WCURR(I)*CITR(IT3,I)
    S2=S2+CIT0(I)
  ENDDO
  ZNORM=S2/S1
  IF(ZNORM.LT.0.0D0) ZNORM=1.0D0
  CITR(IT3,:IJAT)=CITR(IT3,:IJAT)*ZNORM
  !----
  !  ONE/TWO PARAMETER ACCELERATION
  !----
  ALP=1.0D0
  BET=0.0D0
  LOGTES=(1+MOD(ITER-ISTART,ICL1+ICL2).GT.ICL1)
  IF(LOGTES) THEN
    AITR(1,:IJAT)=CITR(IT3,:IJAT)-CITR(IT2,:IJAT)
    AITR(2,:IJAT)=CITR(IT2,:IJAT)-CITR(IT1,:IJAT)
    DO ICEL=1,NMCEL
      IKK=INUM(ICEL)
      IKG=IGEN(IKK)
      J3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
      IT=0
      DO IK=1,IKK-1
        IT=IT+(NMC_SURF(IGEN(IK)+1)-NMC_SURF(IGEN(IK)))
      ENDDO
      IS=0
      DO IK=1,ICEL-1
        IS=IS+(NMC_SURF(IGEN(INUM(IK))+1)-NMC_SURF(IGEN(INUM(IK))))
      ENDDO
      IPSS=0
      DO IK=1,IKG-1
        IPSS=IPSS+(NMC_SURF(IK+1)-NMC_SURF(IK))**2
      ENDDO
      DO JC=1,J3
        J1=IFR(IS+JC)
        DO IC=1,J3
          J2=MIX(IT+IC)
          PSS=PSSW(IPSS+(JC-1)*J3+IC)*ALB(IS+JC)*DVX(IT+IC)
          AITR(1,J2)=AITR(1,J2)-PSS*(CITR(IT3,J1)-CITR(IT2,J1))
          AITR(2,J2)=AITR(2,J2)-PSS*(CITR(IT2,J1)-CITR(IT1,J1))
        ENDDO
      ENDDO
    ENDDO
    IF((LACCFC.EQ.1).OR.(MOD(ITER-ISTART,ICL1+ICL2).EQ.ICL1)) THEN
      S1=0.0D0
      S2=0.0D0
      DO I=1,IJAT
        S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
        S2=S2+AITR(1,I)*AITR(1,I)
      ENDDO
      IF(S2.EQ.0.0D0) THEN
        ISTART=ITER+1
      ELSE
        ALP=S1/S2
        IF(ALP.LE.0.0D0) THEN
          ISTART=ITER+1
          ALP=1.0D0
        ENDIF
      ENDIF
      DO I=1,IJAT
        CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))
      ENDDO
    ELSE IF(LACCFC.EQ.2) THEN
      S1=0.0D0
      S2=0.0D0
      S3=0.0D0
      S4=0.0D0
      S5=0.0D0
      DO I=1,IJAT
        S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
        S2=S2+AITR(1,I)*AITR(1,I)
        S3=S3+(CITR(IT3,I)-CITR(IT2,I))*AITR(2,I)
        S4=S4+AITR(1,I)*AITR(2,I)
        S5=S5+AITR(2,I)*AITR(2,I)
      ENDDO
      DET=S2*S5-S4*S4
      IF(DET.EQ.0.0D0) THEN
        ISTART=ITER+1
      ELSE
        ALP=(S5*S1-S4*S3)/DET
        BET=(S2*S3-S4*S1)/DET
        IF(ALP.LE.0.0D0) THEN
          ISTART=ITER+1
          ALP=1.0D0
          BET=0.0D0
        ENDIF
      ENDIF
      DO I=1,IJAT
        CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))+ &
        & BET*(CITR(IT2,I)-CITR(IT1,I))
      ENDDO
    ENDIF
  ENDIF
  !----
  !  CHECK THE CONVERGENCE ERROR
  !----
  ERR1=0.0D0
  ERR2=0.0D0
  DO I=1,IJAT
    ERR1=MAX(ERR1,ABS(CITR(IT3,I)-CITR(IT2,I)))
    ERR2=MAX(ERR2,ABS(CITR(IT3,I)))
  ENDDO
  IF(IMPX.GT.3) WRITE(6,'(30H MUSJJ2: CURRENT ITERATION NB.,I4, &
  & 7H ERROR=,1P,E10.3,5H OVER,E10.3,15H NORMALIZATION=,E10.3, &
  & 14H ACCELERATION=,2E11.3,1H.)') ITER,ERR1,ERR2,ZNORM,ALP,BET/ALP
  IF(ITER.EQ.1) TEST=ERR1/ERR2
  IF((ITER.GT.20).AND.(ERR1/ERR2.GT.TEST)) THEN
    WRITE(6,'(/50H MUSJJ2: *** WARNING *** CONVERGENCE DIFFICULTIES.)')
    GO TO 190
  ENDIF
  IF(LOGTES.OR.(ERR1.GT.EPSJ*ERR2)) GO TO 10
  IF(IMPX.GT.2) WRITE(6,'(40H MUSJJ2: CURRENT CONVERGENCE AT ITERATIO, &
  & 5HN NB.,I4,7H ERROR=,1P,E10.3,5H OVER,E10.3,1H.)') ITER,ERR1,ERR2
  !
  190 FUNKNO(:IPAS)=0.0
  DO I=1,IJAT
    FUNKNO(IPAS+I)=REAL(CITR(IT3,I))
  ENDDO
  !----
  !  COMPUTE PISW * J(-) CONTRIBUTION
  !----
  DO ICEL=1,NMCEL
    IKK=INUM(ICEL)
    IKG=IGEN(IKK)
    I2=NMC_NODE(IKG+1)-NMC_NODE(IKG)
    I3=NMC_SURF(IKG+1)-NMC_SURF(IKG)
    IS=0
    DO IK=1,ICEL-1
      IS=IS+(NMC_SURF(IGEN(INUM(IK))+1)-NMC_SURF(IGEN(INUM(IK))))
    ENDDO
    IPIS=0
    DO IK=1,IKG-1
      IPIS=IPIS+(NMC_NODE(IK+1)-NMC_NODE(IK))*(NMC_SURF(IK+1)-NMC_SURF(IK))
    ENDDO
    KNMC=INDNMC(IKK)
    DO J=1,I2
      DO JC=1,I3
        J1=IFR(IS+JC)
        PIS=PISW(IPIS+(JC-1)*I2+J)
        FUNKNO(IMAC(KNMC+J))=FUNKNO(IMAC(KNMC+J))+PIS*ALB(IS+JC)*FUNKNO(IPAS+J1)
      ENDDO
    ENDDO
  ENDDO
  !----
  !  COMPUTE PIJW * Q(*) CONTRIBUTION
  !----
  DO IKK=1,NMERGE
    IKG=IGEN(IKK)
    I2=NMC_NODE(IKG+1)-NMC_NODE(IKG)
    IPIJ=0
    DO IK=1,IKG-1
      IPIJ=IPIJ+(NMC_NODE(IK+1)-NMC_NODE(IK))**2
    ENDDO
    KNMC=INDNMC(IKK)
    DO I=1,I2
      DO J=1,I2
        PIJ=PIJW(IPIJ+(I-1)*I2+J)
        FUNKNO(IMAC(KNMC+J))=FUNKNO(IMAC(KNMC+J))+PIJ*SUNKNO(IMAC(KNMC+I))
      ENDDO
    ENDDO
  ENDDO
!----
!  SCRATCH STORAGE DEALLOCATION
!----
  DEALLOCATE(WCURR)
  DEALLOCATE(AITR,CIT0,CITR)
  DEALLOCATE(INDNMC)
  RETURN
  END