1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
*DECK MCTFLX
SUBROUTINE MCTFLX(IPTRK,IPOUT,IPRINT,NMIX,NGRP,NL,NFM,NDEL,NED,
< NAMEAD,XSTOT,XSS,XSSNN,XSNUSI,XSCHI,XSN2N,
< XSN3N,XSEDI,NSRCK,IKZ,KCT,ISEED,XYZL,NBSCO,
< NMERGE,NGCOND,KEFF,REKEFF)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Power iteration with the Monte Carlo method in 1D/2D/3D Cartesian
* geometry.
*
*Copyright:
* Copyright (C) 2008 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): B. Arsenault
*
*Parameters: input
* IPTRK pointer to the TRACKING data structure.
* IPOUT pointer to the MC data structure.
* IPRINT print flag.
* NMIX number of mixtures in the geometry.
* NGRP number of energy groups.
* NL number of Legendre orders required in the estimations
* (NL=1 or higher).
* NFM number of fissile isotopes.
* NDEL number of delayed precursor groups.
* NED number of extra edit vectors.
* NAMEAD names of these extra edits.
* XSTOT total macroscopic cross sections for each mixture and energy
* group.
* XSS total scattering cross sections for each mixture and energy
* group.
* XSSNN in-group and out-of-group macroscopic transfert cross sections
* for each mixture.
* XSNUSI the values of Nu time the fission cross sections for each
* isotope per mixture and energy group.
* XSCHI the values of fission spectrum per isotope per mixture for
* each energy group.
* XSN2N N2N macroscopic cross sections for each mixture and energy
* group.
* XSN3N N3N macroscopic cross sections for each mixture and energy
* group.
* XSEDI extra edit cross sections for each mixture and energy group.
* NSRCK number of neutrons generated per cycle.
* IKZ number of inactive cycles.
* KCT number of active cycles.
* ISEED the seed for the generation of random numbers.
* XYZL Cartesian boundary coordinates.
* NBSCO number of macrolib-related scores.
* NMERGE number of homogenized regions.
* NGCOND number of condensed energy groups.
*
*Parameters: output
* KEFF effective multiplication factor.
* REKEFF standard deviation on the effective multiplication factor.
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPOUT
INTEGER IPRINT,NMIX,NGRP,NL,NFM,NDEL,NED,NAMEAD(2,NED),NSRCK,IKZ,
< KCT,ISEED,NBSCO,NMERGE,NGCOND
REAL XSTOT(NMIX,NGRP),XSS(NMIX,NGRP,NL),XSN2N(NMIX,NGRP),
< XSN3N(NMIX,NGRP),XSSNN(NGRP,NGRP,NMIX,NL),
< XSCHI(NMIX,NFM,NGRP,1+NDEL),XSNUSI(NMIX,NFM,NGRP,1+NDEL),
< XSEDI(NMIX,NGRP,NED)
DOUBLE PRECISION XYZL(2,3),KEFF,REKEFF
CHARACTER NAMREC*12
*----
* LOCAL VARIABLES
*----
INTEGER NSTATE
PARAMETER(NSTATE=40)
INTEGER ICYCLE,ILOOP,NLOOP,IDIR,IFIRST,MIX,ISONBR,NFREG,NFSUR,
< ANGBC,NTRK,JJ,ITYPBC,ITRK,IDIRG,NBOCEL,NBUCEL,IDIAG,
< ISAXIS(3),NOCELL(3),NUCELL(3),ICODE(6),MXMSH,MAXREG,
< NBTCLS,MAXPIN,MAXMSP,MAXRSP,MXGSUR,MXGREG,NUNK,MAXMSH,
< NDIM,ESTATE(NSTATE),GSTATE(NSTATE),ITALLY,IND,IOF,IGR,
< ILON1,ILON2,ITYLCM,IBANK1,IBANK2
REAL ALBEDO(6),RAND,NUCALL,NULIMIT,SCORE1(3),FACT1,FACT2
LOGICAL LKEEP
DOUBLE PRECISION ABSC(3,2),POS(3),KCYCLE,WEIGHT,NU,SUM1,SUM2,
< ASCORE1(3),BSCORE1(3),DIT
CHARACTER HSMG*131
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: INMIX,IBCRT,IUNFLD,INDEX,
1 IDREG,ITPIN,INDGRP,IMERGE,IGCR
REAL, ALLOCATABLE, DIMENSION(:) :: NUCYCLE
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: SCORE2
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: DGMESH,DCMESH,
1 DRAPIN
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: ASCORE2,BSCORE2
INTEGER, POINTER, DIMENSION(:,:) :: INGEN1,INGEN2,INGAR
DOUBLE PRECISION, POINTER, DIMENSION(:,:) :: DNGEN1,DNGEN2,DNGAR
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(SCORE2(NBSCO,NMERGE,NGCOND))
ALLOCATE(ASCORE2(NBSCO,NMERGE,NGCOND),
< BSCORE2(NBSCO,NMERGE,NGCOND))
*----
* SET THE RANDOM NUMBER GENERATOR
*----
IFIRST=1
IF(ISEED.EQ.0) THEN
CALL CLETIM(DIT)
ISEED=INT(DIT)
DO JJ=0,MOD(ISEED,10)
CALL RANDF(ISEED,IFIRST,RAND)
ENDDO
ENDIF
*----
* RECOVER SOME BASIC NXT GEOMETRY ANALYSIS INFO AND ALLOCATE RELATED
* MEMORY
*----
GSTATE(:NSTATE)=0
CALL LCMGET(IPTRK,'STATE-VECTOR',GSTATE)
NFREG =GSTATE( 1)
NMIX =GSTATE( 4)
NFSUR =GSTATE( 5)
IF(GSTATE(7).NE.4)
1 CALL XABORT('MCTFLX: ONLY NXT: GEOMETRY ANALYSIS IS PERMITTED')
ANGBC =ABS(GSTATE(10))
*----
* READ THE MATERIAL NUMBER ASSOCIATED TO EACH REGION NUMBER
*----
ALLOCATE(INMIX(NFREG),IBCRT(NFSUR))
CALL LCMGET(IPTRK,'MATCOD',INMIX)
CALL LCMGET(IPTRK,'BC-REFL+TRAN',IBCRT)
CALL LCMGET(IPTRK,'ALBEDO',ALBEDO)
CALL LCMGET(IPTRK,'ICODE',ICODE)
CALL LCMSIX(IPTRK,'NXTRecords',1)
ESTATE(:NSTATE)=0
CALL LCMGET(IPTRK,'G00000001DIM',ESTATE)
NDIM =ESTATE( 1)
ITYPBC =ESTATE( 2)
IDIRG =ESTATE( 3)
NBOCEL =ESTATE( 4)
NBUCEL =ESTATE( 5)
IDIAG =ESTATE( 6)
ISAXIS(1)=ESTATE( 7)
ISAXIS(2)=ESTATE( 8)
ISAXIS(3)=ESTATE( 9)
NOCELL(1)=ESTATE(10)
NOCELL(2)=ESTATE(11)
NOCELL(3)=ESTATE(12)
NUCELL(1)=ESTATE(13)
NUCELL(2)=ESTATE(14)
NUCELL(3)=ESTATE(15)
MXMSH =ESTATE(16)
MAXREG =ESTATE(17)
NBTCLS =ESTATE(18)
MAXPIN =ESTATE(19)
MAXMSP =ESTATE(20)
MAXRSP =ESTATE(21)
IF(NFSUR.NE.ESTATE(22))
1 CALL XABORT('MCTFLX: INCONSISTENT NUMBER OF OUTER SURFACES')
IF(NFREG.NE.ESTATE(23))
1 CALL XABORT('MCTFLX: INCONSISTENT NUMBER OF REGIONS')
MXGSUR =ESTATE(24)
MXGREG =ESTATE(25)
NUNK=NFSUR+NFREG+1
MAXMSH=MAX(MXMSH,MAXMSP,MAXREG)
* cell index and orientation for the cells filling the geometry
ALLOCATE(IUNFLD(2*NBUCEL))
NAMREC='G00000001CUF'
CALL LCMGET(IPTRK,NAMREC,IUNFLD)
* global mesh for geometry
ALLOCATE(DGMESH((MAXMSH+2)*4))
DGMESH(:(MAXMSH+2)*4)=0.0D0
*
* An offset of 2 has been used to be compatible with the definition
* of the pin geometries where the first two values give the offset
* of the pin. With a Cartesian geometry the array doesn't contain
* the offests.
CALL NXTXYZ(IPTRK,IPRINT,NDIM,ITYPBC,MAXMSH,NUCELL,ABSC,DGMESH)
DO IDIR=1,NDIM
XYZL(1,IDIR)=ABSC(IDIR,2)-ABSC(IDIR,1)
XYZL(2,IDIR)=ABSC(IDIR,2)
ENDDO
ALLOCATE(INDEX(2*5*(MXGSUR+MXGREG+1)),IDREG(2*MXGREG),
1 ITPIN(3*(MAXPIN+1)))
ALLOCATE(DCMESH(2*4*(MAXMSH+2)),DRAPIN(6*(MAXPIN+1)))
*----
* TALLY INITIALIZATION
*----
CALL LCMGET(IPOUT,'STATE-VECTOR',GSTATE)
ITALLY=GSTATE(6)
IF(ITALLY.EQ.2) THEN
ALLOCATE(INDGRP(NGRP))
INDGRP(:NGRP)=0
CALL LCMLEN(IPOUT,'REF:IMERGE',ILON1,ITYLCM)
CALL LCMLEN(IPOUT,'REF:IGCOND',ILON2,ITYLCM)
ALLOCATE(IMERGE(ILON1),IGCR(ILON2))
CALL LCMGET(IPOUT,'REF:IMERGE',IMERGE)
CALL LCMGET(IPOUT,'REF:IGCOND',IGCR)
IOF=1
JJ=IGCR(1)
DO IND=1,NGRP
IF(IND.GT.JJ) THEN
IOF=IOF+1
IF(IOF.GT.NGCOND) CALL XABORT('MCTFLX: NGCOND OVERFLOW.')
JJ=IGCR(IOF)
ENDIF
INDGRP(IND)=IOF
ENDDO
ENDIF
*----
* MEMORY ALLOCATION FOR THE POWER ITERATION
*----
ALLOCATE(INGEN1(2,2*NSRCK),DNGEN1(4,2*NSRCK))
ALLOCATE(INGEN2(2,2*NSRCK),DNGEN2(4,2*NSRCK))
ALLOCATE(NUCYCLE(2*NSRCK))
INGEN1(:2,:2*NSRCK)=0
DNGEN1(:4,:2*NSRCK)=0.0
INGEN2(:2,:2*NSRCK)=0
DNGEN2(:4,:2*NSRCK)=0.0
*----
* UNIFORM INITIAL ESTIMATE OF SOURCE NEUTRONS
*----
DO ILOOP=1,NSRCK
DO IDIR=1,NDIM
CALL RANDF(ISEED,IFIRST,RAND)
POS(IDIR)=RAND*(XYZL(2,IDIR)-XYZL(1,IDIR))+XYZL(1,IDIR)
ENDDO
INGEN1(1,ILOOP) = -1
INGEN1(2,ILOOP) = -1
DNGEN1(1,ILOOP) = 1.0D0
DNGEN1(2,ILOOP) = POS(1)
DNGEN1(3,ILOOP) = POS(2)
DNGEN1(4,ILOOP) = POS(3)
ENDDO
IBANK1=NSRCK
*----
* POWER ITERATION
*----
KCYCLE=1.D0
SUM1=0.0D0
SUM2=0.0D0
IF(ITALLY.GT.0) THEN
ASCORE1(:3)=0.0D0
BSCORE1(:3)=0.0D0
IF(ITALLY.EQ.2) THEN
ASCORE2(:NBSCO,:NMERGE,:NGCOND)=0.0D0
BSCORE2(:NBSCO,:NMERGE,:NGCOND)=0.0D0
ENDIF
ENDIF
DO ICYCLE=1,KCT
IBANK2=0
SCORE1(:3)=0.0
SCORE2(:NBSCO,:NMERGE,:NGCOND)=0.0
WEIGHT=KCYCLE
KCYCLE=0.D0
DO NTRK=1,IBANK1
NU = DNGEN1(1,NTRK)
NLOOP=MAX(1,INT(NU/WEIGHT))
DNGEN1(1,NTRK)=NU/(DBLE(NLOOP)*WEIGHT)
DO ILOOP=1,NLOOP
*----
* TRACK EACH NEUTRON INDIVIDUALLY
*----
MIX = INGEN1(1,NTRK)
ISONBR = INGEN1(2,NTRK)
NUCALL = REAL(DNGEN1(1,NTRK))
POS(1) = DNGEN1(2,NTRK)
POS(2) = DNGEN1(3,NTRK)
POS(3) = DNGEN1(4,NTRK)
CALL MCTRK(IPTRK,IPRINT,NFREG,NFSUR,NDIM,NMIX,ANGBC,ITYPBC,
1 MAXMSH,NUCELL,MXGSUR,MXGREG,MAXPIN,IBCRT,ICODE,ALBEDO,
2 IUNFLD,DGMESH,XYZL,INDEX,IDREG,DCMESH,ITPIN,DRAPIN,ISEED,
3 NGRP,NL,NFM,NDEL,NED,INMIX,XSTOT,XSS,XSN2N,XSN3N,XSSNN,
4 XSNUSI,XSCHI,XSEDI,MIX,ISONBR,NUCALL,POS,ITALLY,NBSCO,
5 NMERGE,NGCOND,IMERGE,INDGRP,SCORE1,SCORE2)
IF(ISONBR.GT.0) THEN
IBANK2=IBANK2+1
IF(IBANK2.GT.2*NSRCK) THEN
CALL XABORT('MCTFLX: TOO MANY NEUTRON TRACKS BEING'//
1 ' BANKED.')
ENDIF
INGEN2(1,IBANK2) = MIX
INGEN2(2,IBANK2) = ISONBR
DNGEN2(1,IBANK2) = NUCALL
DNGEN2(2,IBANK2) = POS(1)
DNGEN2(3,IBANK2) = POS(2)
DNGEN2(4,IBANK2) = POS(3)
NUCYCLE(IBANK2) = NUCALL
KCYCLE=KCYCLE+NUCALL
ENDIF
ENDDO
* END OF THE NTRK CYCLE
ENDDO
KCYCLE=KCYCLE/DBLE(NSRCK)
*----
* RUSSIAN ROULETTE
*----
IF(IBANK2.GT.NSRCK) THEN
CALL SORTRE(IBANK2,NUCYCLE)
NULIMIT=NUCYCLE(IBANK2-NSRCK+1)
IBANK1=0
DO ITRK=1,IBANK2
MIX = INGEN2(1,ITRK)
ISONBR = INGEN2(2,ITRK)
NUCALL = REAL(DNGEN2(1,ITRK))
POS(1) = DNGEN2(2,ITRK)
POS(2) = DNGEN2(3,ITRK)
POS(3) = DNGEN2(4,ITRK)
LKEEP=(NUCALL.GE.NULIMIT)
IF(.NOT.LKEEP) THEN
CALL RANDF(ISEED,IFIRST,RAND)
LKEEP=RAND.LE.(NUCALL/NULIMIT)
NUCALL=NULIMIT
ENDIF
IF(LKEEP) THEN
IBANK1=IBANK1+1
INGEN1(1,IBANK1) = MIX
INGEN1(2,IBANK1) = ISONBR
DNGEN1(1,IBANK1) = NUCALL
DNGEN1(2,IBANK1) = POS(1)
DNGEN1(3,IBANK1) = POS(2)
DNGEN1(4,IBANK1) = POS(3)
ENDIF
ENDDO
ELSE
IBANK1 = IBANK2
INGAR => INGEN2
INGEN2 => INGEN1
INGEN1 => INGAR
DNGAR => DNGEN2
DNGEN2 => DNGEN1
DNGEN1 => DNGAR
ENDIF
*----
* K-EFFECTIVE OF THE PROBLEM WITH THE RELATIVE ERROR
*----
IF(ICYCLE.GT.IKZ) THEN
SUM1=SUM1+KCYCLE
SUM2=SUM2+KCYCLE**2
IF(ITALLY.GT.0) THEN
DO IND=1,3
ASCORE1(IND)=ASCORE1(IND)+SCORE1(IND)
BSCORE1(IND)=BSCORE1(IND)+SCORE1(IND)**2
ENDDO
IF(ITALLY.EQ.2) THEN
DO IND=1,NBSCO
DO MIX=1,NMERGE
DO IGR=1,NGCOND
ASCORE2(IND,MIX,IGR)=ASCORE2(IND,MIX,IGR)+
1 SCORE2(IND,MIX,IGR)
BSCORE2(IND,MIX,IGR)=BSCORE2(IND,MIX,IGR)+
1 SCORE2(IND,MIX,IGR)**2
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
ENDIF
IF(IPRINT.GT.0) WRITE(6,1000) ICYCLE,KCYCLE
ENDDO
FACT1=REAL(KCT-IKZ)
FACT2=REAL(KCT-IKZ-1)
KEFF=SUM1/FACT1
REKEFF=SQRT((SUM2-FACT1*KEFF**2)/FACT1/FACT2)
WRITE(6,2000) KCT,KCYCLE,KEFF,REKEFF
IF(ITALLY.GT.0) THEN
DO IND=1,3
ASCORE1(IND)=ASCORE1(IND)/FACT1
BSCORE1(IND)=SQRT((BSCORE1(IND)-FACT1*ASCORE1(IND)**2)/FACT1/
1 FACT2)
ENDDO
KEFF=ASCORE1(2)/ASCORE1(3)
REKEFF=KEFF*(BSCORE1(2)/ASCORE1(2)-BSCORE1(3)/ASCORE1(3))
WRITE(6,3000) KEFF,REKEFF
ENDIF
IF(ITALLY.EQ.2) THEN
DO IND=1,NBSCO
DO MIX=1,NMERGE
DO IGR=1,NGCOND
*----
* CHECK FIRST FOR 0-TALLIES IN TOTAL CROSS-SECTIONS PER MIXTURE
*----
IF(ASCORE2(1,MIX,IGR).EQ.0.0D0) THEN
WRITE(HSMG,'(28HMCPTFLX: ZERO TALLY FOR MIX ,I5,
1 10H IN GROUP ,I5,28H. INCREASE KCODE PARAMETERS.)')
2 MIX,IGR
CALL XABORT(HSMG)
ENDIF
ASCORE2(IND,MIX,IGR)=ASCORE2(IND,MIX,IGR)/FACT1
BSCORE2(IND,MIX,IGR)=SQRT((BSCORE2(IND,MIX,IGR)-FACT1*
1 ASCORE2(IND,MIX,IGR)**2)/FACT1/FACT2)
ENDDO
ENDDO
ENDDO
ENDIF
*----
* RECONSTRUCT THE TALLY-GENERATED MACROLIB
*----
IF(ITALLY.EQ.2) THEN
CALL MCTOUT(IPOUT,NL,NFM,NDEL,NED,NAMEAD,NBSCO,NMERGE,NGCOND,
1 ASCORE1,ASCORE2)
DEALLOCATE(IGCR,IMERGE)
ENDIF
*----
* DEALLOCATE MEMORY
*----
* POWER ITERATION RELATED
DEALLOCATE(NUCYCLE,DNGEN2,INGEN2,DNGEN1,INGEN1)
IF(ITALLY.EQ.2) DEALLOCATE(INDGRP)
*
* TRACKING RELATED
CALL LCMSIX(IPTRK,' ',2)
DEALLOCATE(DRAPIN,ITPIN,DCMESH,IDREG,INDEX,DGMESH,IUNFLD,IBCRT,
1 INMIX)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(BSCORE2,ASCORE2)
DEALLOCATE(SCORE2)
RETURN
*
1000 FORMAT(' CYCLE NUMBER: ',I5,' K-EFFECTIVE CYCLE: ',F8.6)
2000 FORMAT(/' CYCLE NUMBER: ',I5,' K-EFFECTIVE CYCLE: ',F8.6,
< ' K-EFFECTIVE AVERAGE: ',F8.6,
< ' SIGMA: ',F8.6)
3000 FORMAT(/' VIRTUAL COLLISION ESTIMATION: K-EFFECTIVE AVERAGE: ',
< F8.6,' SIGMA: ',F8.6)
END
|