1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
*DECK MCTCCC
SUBROUTINE MCTCCC(NDIM,ITRN,CELLPO,ODIR,POS,ODIRC,POSC)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Change global coordinates to turned cell coordinates
* (adapted from NXTRTL.f).
*
*Copyright:
* Copyright (C) 2008 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* NDIM dimensions of problem.
* ITRN geometry original turn number.
* CELLPO cell global coordinates.
* ODIR search (octant) direction in global geometry.
* POS global coordinates.
*
*Parameters: output
* POSC final coordinates.
* ODIRC search (octant) direction in cell.
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NDIM,ITRN,ODIR(3),ODIRC(3)
DOUBLE PRECISION CELLPO(3,2),POS(3),POSC(3)
*----
* LOCAL VARIABLES
*----
INTEGER IDIR,IKT
DOUBLE PRECISION POSO(3)
*----
* CHANGE COORDINATES TO LOCAL CELL COORDINATES (ORIGIN=CELL CENTER)
*----
DO IDIR=1,NDIM
POSO(IDIR)=POS(IDIR)
1 -0.5D0*(CELLPO(IDIR,1)+CELLPO(IDIR,2))
ENDDO
*----
* CHANGE COORDINATES ACCORDING TO TURN
*----
* Z AXIS REFLECTION FOR 3-D GEOMETRY
IKT=ITRN
IF(NDIM .EQ. 3) THEN
IF(ITRN .GT. 12 ) THEN
IKT=IKT-12
POSC(NDIM)=-POSO(NDIM)
ODIRC(NDIM)=-ODIR(NDIM)
ELSE
POSC(NDIM)=POSO(NDIM)
ODIRC(NDIM)=ODIR(NDIM)
ENDIF
ENDIF
IF(IKT .EQ. 1) THEN
* NO TURN IN X-Y PLANE
DO IDIR=1,2
POSC(IDIR)=POSO(IDIR)
ODIRC(IDIR)=ODIR(IDIR)
ENDDO
ELSE IF(IKT .EQ. 2) THEN
* ROTATION OF -PI/2 OF GEOMETRY IMPLIES A ROTATION
* OF PI/2 OF LINE.
POSC(1)=-POSO(2)
POSC(2)= POSO(1)
ODIRC(1)=-ODIR(2)
ODIRC(2)= ODIR(1)
ELSE IF(IKT .EQ. 3) THEN
* ROTATION OF PI OF GEOMETRY IMPLIES A ROTATION
* OF -PI OF LINE.
POSC(1)=-POSO(1)
POSC(2)=-POSO(2)
ODIRC(1)=-ODIR(1)
ODIRC(2)=-ODIR(2)
ELSE IF(IKT .EQ. 4) THEN
* ROTATION OF -3*PI/2 OF GEOMETRY IMPLIES A ROTATION
* OF 3PI/2 OF LINE.
POSC(1)= POSO(2)
POSC(2)=-POSO(1)
ODIRC(1)= ODIR(2)
ODIRC(2)=-ODIR(1)
ELSE IF(IKT .EQ. 5) THEN
* REFLECTION WITH RESPECT TO AXIS // TO Y
POSC(1)=-POSO(1)
POSC(2)= POSO(2)
ODIRC(1)=-ODIR(1)
ODIRC(2)= ODIR(2)
ELSE IF(IKT .EQ. 6) THEN
* ROTATION OF PI/2 FOLLOWED BY
* REFLECTION WITH RESPECT TO AXIS // TO Y
* IMPLIES REFLECTION WITH RESPECT TO AXIS // TO Y
* FOLLOWED BY A ROTATION OF -PI/2 OF LINE.
POSC(1)= POSO(2)
POSC(2)= POSO(1)
ODIRC(1)= ODIR(2)
ODIRC(2)= ODIR(1)
ELSE IF(IKT .EQ. 7) THEN
* REFLECTION WITH RESPECT TO AXIS // TO X
POSC(1)= POSO(1)
POSC(2)=-POSO(2)
ODIRC(1)= ODIR(1)
ODIRC(2)=-ODIR(2)
ELSE IF(IKT .EQ. 8) THEN
* ROTATION OF PI/2 FOLLOWED BY
* REFLECTION WITH RESPECT TO AXIS // TO X
* IMPLIES REFLECTION WITH RESPECT TO AXIS // TO X
* FOLLOWED BY A ROTATION OF -PI/2 OF LINE.
POSC(1)=-POSO(2)
POSC(2)=-POSO(1)
ODIRC(1)=-ODIR(2)
ODIRC(2)=-ODIR(1)
ENDIF
*
RETURN
END
|