1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
*DECK MCGSCS
SUBROUTINE MCGSCS(KPN,K,NREG,M,NANI,NFUNL,NPJJM,KEYFLX,KEYANI,
1 PJJIND,NZON,XSW,PJJ,AR,PSI,MATRIX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solve the SCR anisotropic system.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* KPN total number of unknowns in vectors SUNKNO and FUNKNO.
* K total number of volumes for which specific values
* of the neutron flux and reactions rates are required.
* NREG number of volumes.
* M number of material mixtures.
* NANI scattering anisotropy (=1 for isotropic scattering).
* NFUNL number of moments of the flux (in 2D : NFUNL=NANI*(NANI+1)/2).
* NPJJM second dimension of PJJ.
* KEYFLX position of flux elements in FI vector.
* KEYANI 'mode to l' index l=KEYANI(nu).
* PJJIND index for pjj(nu <- nu') modes.
* NZON index-number of the mixture type assigned to each volume.
* XSW macroscopic scattering cross section.
* PJJ used in scr acceleration.
* AR residuals of the current iteration.
*
*Parameters: output
* PSI corrective flux.
*
*Parameters: scratch
* MATRIX undefined.
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER KPN,K,NREG,M,NANI,NFUNL,NPJJM,KEYFLX(NREG,NPJJM),
1 KEYANI(NFUNL),PJJIND(NPJJM,2),NZON(K)
REAL XSW(0:M,NANI),PJJ(NREG,NPJJM),MATRIX(NFUNL,NFUNL+1,NREG)
DOUBLE PRECISION AR(KPN),PSI(KPN)
*---
* LOCAL VARIABLES
*---
INTEGER IRHS,I,INU,IMOD,INUP,L,LP,L1,LP1,NZI,IND,INDP,IER
REAL DL,DLP,XSWI,XSWIP,TEMP
*---
* CONSTRUCT LINEAR SYSTEM BY REGION TO SOLVE
*---
IRHS=NFUNL+1
MATRIX(:NFUNL,:NFUNL+1,:NREG)=0.0
DO 10 IMOD=1,NPJJM
INU=PJJIND(IMOD,1)
INUP=PJJIND(IMOD,2)
IF((INU.GT.NFUNL).OR.(INUP.GT.NFUNL)) GOTO 10
L=KEYANI(INU)
L1=L+1
LP=KEYANI(INUP)
LP1=LP+1
DL=REAL(2*L+1)
DLP=REAL(2*LP+1)
DO I=1,NREG
NZI=NZON(I)
IND=KEYFLX(I,INU)
INDP=KEYFLX(I,INUP)
XSWI=XSW(NZI,L1)
XSWIP=XSW(NZI,LP1)
TEMP=PJJ(I,IMOD)
MATRIX(INU,IRHS,I)=MATRIX(INU,IRHS,I)+TEMP*REAL(AR(INDP))
MATRIX(INU,INUP,I)=-DLP*XSWIP*TEMP
IF(INU.EQ.INUP) THEN
MATRIX(INU,INUP,I)=MATRIX(INU,INUP,I)+1.0
ELSE
MATRIX(INUP,IRHS,I)=MATRIX(INUP,IRHS,I)+TEMP*REAL(AR(IND))
MATRIX(INUP,INU,I)=-DL*XSWI*TEMP
ENDIF
ENDDO
10 CONTINUE
*---
* SOLVE LINEAR SYSTEM BY REGION
*---
DO I=1,NREG
CALL ALSB(NFUNL,1,MATRIX(1,1,I),IER,NFUNL)
IF(IER.NE.0) CALL XABORT('MCGSCS: SINGULAR MATRIX.')
DO INU=1,NFUNL
IND=KEYFLX(I,INU)
PSI(IND)=MATRIX(INU,IRHS,I)
ENDDO
ENDDO
*
RETURN
END
|