1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
*DECK MCGSCR
SUBROUTINE MCGSCR(IPTRK,KPSYS,IPMACR,IPRINT,N1,NG,NGEFF,KPN,K,
1 NREG,NANI,NFUNL,M,LPS,KEYFLX,KEYCUR,NZON,NGIND,
2 NCONV,MXSCR,EPSSCR,REBAL,PHIOUT,PHIIN,V,NPJJM,
3 KEYANI,IDIR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Acceleration of inner iteration (SCR method).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* IPTRK pointer to the tracking LCM object.
* KPSYS pointer array for each group properties.
* IPMACR pointer to the macrolib LCM object.
* IPRINT print parameter (equal to zero for no print).
* N1 number of unknowns per group of the corrective system.
* NG number of groups.
* NGEFF number of groups to process.
* KPN total number of unknowns in vectors SUNKNO and FUNKNO.
* K total number of volumes for which specific values
* of the neutron flux and reactions rates are required.
* NREG number of volumes.
* NANI scattering anisotropy (=1 for isotropic scattering).
* NFUNL number of moments of the flux (in 2D NFUNL=NANI*(NANI+1)/2).
* M number of material mixtures.
* LPS dimension of PSJ.
* KEYFLX position of flux elements in FI vector.
* KEYCUR position of current elements in FI vector.
* NZON index-number of the mixture type assigned to each volume.
* NGIND index of the groups to process.
* NCONV logical array of convergence status for each group (.TRUE.
* not converged).
* MXSCR maximum number of iterations for rebalancing system.
* EPSSCR convergence criterion for rebalancing system.
* REBAL type of acceleration (.TRUE. rebalancing ; .FALSE. inner
* iterations acceleration).
* PHIIN initial guess (for this iteration) of zonal scalar flux.
* V volumes.
* NPJJM second dimension of PJJ.
* KEYANI 'mode to l' index l=KEYANI(nu).
* IDIR direction of fundamental current for TIBERE with MoC
* =0,1,2,3.
*
*Parameters: input/output
* PHIOUT zonal scalar flux.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,KPSYS(NGEFF),IPMACR
INTEGER N1,NGEFF,NG,IPRINT,KPN,K,NREG,NANI,NFUNL,M,LPS,
1 KEYFLX(NREG,NFUNL),KEYCUR(*),NZON(K),NGIND(NGEFF),MXSCR,NPJJM,
2 KEYANI(NFUNL),IDIR
REAL EPSSCR,PHIIN(KPN,NGEFF),V(N1)
DOUBLE PRECISION PHIOUT(KPN,NGEFF)
LOGICAL NCONV(NGEFF),REBAL
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPMACR,KPMACR,JPSYS
DOUBLE PRECISION TEMP
CHARACTER*12 NGTYP
CHARACTER*12 NAMPJJ,NAMPSJ
INTEGER, TARGET, SAVE, DIMENSION(1) :: IDUMMY
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: NGINDV,NJJ,IJJ,IPOS
REAL, ALLOCATABLE, DIMENSION(:) :: XSCAT,MATR
REAL, ALLOCATABLE, DIMENSION(:) :: PJJ,PSJ
REAL, ALLOCATABLE, DIMENSION(:,:) :: SC
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: AR,PSI
*
TYPE(C_PTR) PJJIND_PTR,IS_PTR,JS_PTR
INTEGER, POINTER, DIMENSION(:) :: IS,JS
INTEGER, POINTER, DIMENSION(:,:) :: PJJIND
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(NGINDV(NG),SC(0:M,NANI),AR(KPN,NGEFF,2),PSI(KPN,NGEFF,2),
1 PJJ(NREG*NPJJM),PSJ(LPS))
PSI(:KPN,:NGEFF,:2)=0.0D0
AR(:KPN,:NGEFF,:2)=0.0D0
CALL LCMGPD(IPTRK,'PJJIND$MCCG',PJJIND_PTR)
CALL C_F_POINTER(PJJIND_PTR,PJJIND,(/ NPJJM,2 /))
IF(N1.GT.NREG) THEN
* recover (IS,JS) arrays
* IS: arrays for surfaces neighbors
* JS: JS(IS(ISOUT)+1:IS(ISOUT+1)) give the neighboring regions to
* surface ISOUT.
CALL LCMGPD(IPTRK,'IS$MCCG',IS_PTR)
CALL LCMGPD(IPTRK,'JS$MCCG',JS_PTR)
CALL C_F_POINTER(IS_PTR,IS,(/ N1-NREG+1 /))
CALL C_F_POINTER(JS_PTR,JS,(/ LPS /))
ELSE
IS=>IDUMMY
JS=>IDUMMY
ENDIF
IF(REBAL) THEN
JPMACR=LCMGID(IPMACR,'GROUP')
ALLOCATE(NJJ(0:M),IJJ(0:M),IPOS(0:M),XSCAT(0:M*NG))
ENDIF
IF(IDIR .EQ.0) THEN
NAMPJJ='PJJ$MCCG'
NAMPSJ='PSJ$MCCG'
ELSEIF(IDIR .EQ. 1) THEN
NAMPJJ='PJJX$MCCG'
NAMPSJ='PSJX$MCCG'
ELSEIF(IDIR .EQ. 2) THEN
NAMPJJ='PJJY$MCCG'
NAMPSJ='PSJY$MCCG'
ELSE
NAMPJJ='PJJZ$MCCG'
NAMPSJ='PSJZ$MCCG'
ENDIF
*----
* CONSTRUCT NGINDV (index to pass from "NGEFF format" to "NG format").
*----
NGINDV(:NG)=0
DO II=1,NGEFF
IF(NCONV(II)) THEN
IG=NGIND(II)
NGINDV(IG)=II
ENDIF
ENDDO
*---
* COMPUTE RESIDUAL OF THE PREVIOUS FREE ITERATION FOR RHS
*---
DO II=1,NGEFF
IF(NCONV(II)) THEN
IG=NGIND(II)
JPSYS=KPSYS(II)
CALL LCMGET(JPSYS,'DRAGON-S0XSC',SC(0,1))
IF(REBAL) THEN
KPMACR=LCMGIL(JPMACR,IG)
CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
ENDIF
CALL MCGFCR(IPRINT,IG,II,NG,NGEFF,KPN,N1,NREG,NANI,NFUNL,
1 M,.FALSE.,KEYFLX,KEYCUR,NZON,NGINDV,REBAL,PHIOUT,
2 PHIIN,SC,KEYANI,NJJ,IJJ,IPOS,XSCAT,AR(1,II,1))
ENDIF
ENDDO
*---
* GAUSS SEIDEL ITERATIVE APPROACH TO SOLVE THE REBALANCING SYSTEM
*---
IF(REBAL) THEN
NGTYP='GAUSS-SEIDEL'
NFIRST=NGEFF+1
DO II=1,NGEFF
IF(NCONV(II)) THEN
IG=NGIND(II)
KPMACR=LCMGIL(JPMACR,IG)
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
DO IBM=1,M
IF(IJJ(IBM).GT.IG) THEN
NFIRST=II ! first thermal group index in NGEFF format
GOTO 5
ENDIF
ENDDO
ENDIF
ENDDO
ELSE
NGTYP=' ONE-GROUP'
NFIRST=1
ENDIF
5 CONTINUE
*
IF(NANI.GT.1) ALLOCATE(MATR(NFUNL*(NFUNL+1)*NREG))
DO ITSCR=1,MXSCR
DO 20 II=1,NGEFF
IF(NCONV(II)) THEN
IF((II.LT.NFIRST).AND.(ITSCR.GT.1)) GOTO 20
IG=NGIND(II)
JPSYS=KPSYS(II)
CALL LCMGET(JPSYS,'DRAGON-S0XSC',SC(0,1))
CALL LCMGET(JPSYS,NAMPJJ,PJJ)
IF(REBAL) THEN
KPMACR=LCMGIL(JPMACR,IG)
CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
ENDIF
DO I=1,NREG
IBM=NZON(I)
DO INU=1,NFUNL
IND=KEYFLX(I,INU)
AR(IND,II,2)=AR(IND,II,1)
ENDDO
IF(REBAL) THEN
* rebalancing option on : contribution from others groups.
IF(IBM.GT.0) THEN
IND=KEYFLX(I,1)
JG=IJJ(IBM)
DO 10 JND=1,NJJ(IBM)
IF(JG.NE.IG) THEN
JJ=NGINDV(JG)
IF(JJ.GT.0) THEN
AR(IND,II,2)=AR(IND,II,2)+
1 XSCAT(IPOS(IBM)+JND-1)*PSI(I,JJ,1)
ENDIF
ENDIF
JG=JG-1
10 CONTINUE
ENDIF
ENDIF
ENDDO
IF(NANI.EQ.1) THEN
DO I=1,NREG
IBM=NZON(I)
IND=KEYFLX(I,1)
PSI(IND,II,1)=AR(IND,II,2)
1 *PJJ(I)/(1.0-SC(IBM,1)*PJJ(I))
ENDDO
ELSE
CALL MCGSCS(KPN,K,NREG,M,NANI,NFUNL,NPJJM,KEYFLX,KEYANI,
1 PJJIND,NZON,SC(0,1),PJJ,AR(1,II,2),PSI(1,II,1),MATR)
ENDIF
ENDIF
20 CONTINUE
IF(REBAL) THEN
ERRSCR=0.0
DO II=NFIRST,NGEFF
IF(NCONV(II)) THEN
ERR1=0.0
ERR2=0.0
DO I=1,NREG
DO INU=1,NFUNL
IND=KEYFLX(I,INU)
TEMP1=REAL(ABS(PSI(IND,II,1)-PSI(IND,II,2)))
TEMP2=REAL(ABS(PSI(IND,II,1)))
ERR1=MAX(ERR1,TEMP1)
ERR2=MAX(ERR2,TEMP2)
PSI(IND,II,2)=PSI(IND,II,1)
ENDDO
ENDDO
IF(ERR2.GT.0.0) ERRSCR=MAX(ERRSCR,ERR1/ERR2)
ENDIF
ENDDO
IF(ERRSCR.LT.EPSSCR) GO TO 30
ENDIF
ENDDO
30 CONTINUE
IF(NANI.GT.1) DEALLOCATE(MATR)
*
IF((REBAL).AND.(IPRINT.GT.0)) THEN
IF(NFIRST.GT.1) WRITE(6,100) NGIND(1),NGIND(NFIRST-1),NGTYP
IF((MXSCR.GT.1).AND.(NFIRST.LE.NGEFF)) THEN
WRITE(6,200) NGTYP,ERRSCR,(ITSCR-1)
ENDIF
ELSE
IF(IPRINT.GT.1) WRITE(6,100) NGIND(1),NGIND(NGEFF),NGTYP
ENDIF
*----
* PERFORM THE CORRECTION
*----
* Flux Correction
DO II=1,NGEFF
IF(NCONV(II)) THEN
DO I=1,NREG
DO INU=1,NFUNL
IND=KEYFLX(I,INU)
PHIOUT(IND,II)=PHIOUT(IND,II)+PSI(IND,II,1)
ENDDO
ENDDO
ENDIF
ENDDO
* Current Correction
IF(N1.GT.NREG) THEN
DO II=1,NGEFF
IF(NCONV(II)) THEN
IG=NGIND(II)
JPSYS=KPSYS(II)
CALL LCMGET(JPSYS,NAMPSJ,PSJ)
CALL LCMGET(JPSYS,'DRAGON-S0XSC',SC(0,1))
IF(REBAL) THEN
KPMACR=LCMGIL(JPMACR,IG)
CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
ENDIF
DO I=NREG+1,N1
IIS=I-NREG
INDC=KEYCUR(IIS)
DO J=IS(IIS)+1,IS(IIS+1)
MCUI=JS(J)
IND=KEYFLX(MCUI,1)
IBM=NZON(MCUI)
IF(IBM.GT.0) THEN
TEMP=SC(IBM,1)*(PHIOUT(IND,II)-PHIIN(IND,II))
IF(REBAL) THEN
JG=IJJ(IBM)
DO 40 JND=1,NJJ(IBM)
IF(JG.NE.IG) THEN
JJ=NGINDV(JG)
IF(JJ.GT.0) THEN
TEMP=TEMP+XSCAT(IPOS(IBM)+JND-1)
1 *(PHIOUT(IND,JJ)-PHIIN(IND,JJ))
ENDIF
ENDIF
JG=JG-1
40 CONTINUE
ENDIF
PHIOUT(INDC,II)=PHIOUT(INDC,II)+PSJ(J)*TEMP/V(I)
ENDIF
ENDDO
ENDDO
ENDIF
ENDDO
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
IF(REBAL) DEALLOCATE(XSCAT,IPOS,IJJ,NJJ)
DEALLOCATE(PSJ,PJJ,PSI,AR,SC,NGINDV)
RETURN
*
100 FORMAT(10X,11HSCR: GROUPS,I4,3H TO,I4,2H: ,A12,7H SCHEME)
200 FORMAT(10X,24HSCR: UP-SCATTE. GROUPS: ,A12,17H ITERATIONS: PRC:,
1 E9.2,2H (,I4,12H ITERATIONS))
END
|