summaryrefslogtreecommitdiff
path: root/Dragon/src/MCGSCR.f
blob: 2287848d50ba7ce045fcf0ce9806af4801624460 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
*DECK MCGSCR
      SUBROUTINE MCGSCR(IPTRK,KPSYS,IPMACR,IPRINT,N1,NG,NGEFF,KPN,K,
     1                  NREG,NANI,NFUNL,M,LPS,KEYFLX,KEYCUR,NZON,NGIND,
     2                  NCONV,MXSCR,EPSSCR,REBAL,PHIOUT,PHIIN,V,NPJJM,
     3                  KEYANI,IDIR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Acceleration of inner iteration (SCR method).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* IPTRK   pointer to the tracking LCM object.
* KPSYS   pointer array for each group properties.
* IPMACR  pointer to the macrolib LCM object.
* IPRINT  print parameter (equal to zero for no print).
* N1      number of unknowns per group of the corrective system.
* NG      number of groups.
* NGEFF   number of groups to process.
* KPN     total number of unknowns in vectors SUNKNO and FUNKNO.
* K       total number of volumes for which specific values
*         of the neutron flux and reactions rates are required.
* NREG    number of volumes.
* NANI    scattering anisotropy (=1 for isotropic scattering).
* NFUNL   number of moments of the flux (in 2D NFUNL=NANI*(NANI+1)/2).
* M       number of material mixtures.
* LPS     dimension of PSJ.
* KEYFLX  position of flux elements in FI vector.
* KEYCUR  position of current elements in FI vector.
* NZON    index-number of the mixture type assigned to each volume.
* NGIND   index of the groups to process.
* NCONV   logical array of convergence status for each group (.TRUE.
*         not converged).
* MXSCR   maximum number of iterations for rebalancing system.
* EPSSCR  convergence criterion for rebalancing system.
* REBAL   type of acceleration (.TRUE. rebalancing ; .FALSE. inner
*         iterations acceleration).
* PHIIN   initial guess (for this iteration) of zonal scalar flux.
* V       volumes.
* NPJJM   second dimension of PJJ.
* KEYANI  'mode to l' index l=KEYANI(nu).
* IDIR    direction of fundamental current for TIBERE with MoC 
*         =0,1,2,3. 
*
*Parameters: input/output
* PHIOUT  zonal scalar flux.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,KPSYS(NGEFF),IPMACR
      INTEGER N1,NGEFF,NG,IPRINT,KPN,K,NREG,NANI,NFUNL,M,LPS,
     1 KEYFLX(NREG,NFUNL),KEYCUR(*),NZON(K),NGIND(NGEFF),MXSCR,NPJJM,
     2 KEYANI(NFUNL),IDIR
      REAL EPSSCR,PHIIN(KPN,NGEFF),V(N1)
      DOUBLE PRECISION PHIOUT(KPN,NGEFF)
      LOGICAL NCONV(NGEFF),REBAL
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) JPMACR,KPMACR,JPSYS
      DOUBLE PRECISION TEMP
      CHARACTER*12 NGTYP
      CHARACTER*12 NAMPJJ,NAMPSJ
      INTEGER, TARGET, SAVE, DIMENSION(1) :: IDUMMY
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NGINDV,NJJ,IJJ,IPOS
      REAL, ALLOCATABLE, DIMENSION(:) ::   XSCAT,MATR
      REAL, ALLOCATABLE, DIMENSION(:) :: PJJ,PSJ
      REAL, ALLOCATABLE, DIMENSION(:,:) :: SC
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: AR,PSI
*
      TYPE(C_PTR) PJJIND_PTR,IS_PTR,JS_PTR
      INTEGER, POINTER, DIMENSION(:) :: IS,JS
      INTEGER, POINTER, DIMENSION(:,:) :: PJJIND
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(NGINDV(NG),SC(0:M,NANI),AR(KPN,NGEFF,2),PSI(KPN,NGEFF,2),
     1 PJJ(NREG*NPJJM),PSJ(LPS))
      PSI(:KPN,:NGEFF,:2)=0.0D0
      AR(:KPN,:NGEFF,:2)=0.0D0
      CALL LCMGPD(IPTRK,'PJJIND$MCCG',PJJIND_PTR)
      CALL C_F_POINTER(PJJIND_PTR,PJJIND,(/ NPJJM,2 /))
      IF(N1.GT.NREG) THEN
*     recover (IS,JS) arrays
*     IS:  arrays for surfaces neighbors
*     JS:  JS(IS(ISOUT)+1:IS(ISOUT+1)) give the neighboring regions to
*          surface ISOUT.
         CALL LCMGPD(IPTRK,'IS$MCCG',IS_PTR)
         CALL LCMGPD(IPTRK,'JS$MCCG',JS_PTR)
         CALL C_F_POINTER(IS_PTR,IS,(/ N1-NREG+1 /))
         CALL C_F_POINTER(JS_PTR,JS,(/ LPS /))
      ELSE
         IS=>IDUMMY
         JS=>IDUMMY
      ENDIF
      IF(REBAL) THEN
         JPMACR=LCMGID(IPMACR,'GROUP')
         ALLOCATE(NJJ(0:M),IJJ(0:M),IPOS(0:M),XSCAT(0:M*NG))
      ENDIF
      IF(IDIR .EQ.0) THEN
        NAMPJJ='PJJ$MCCG'
        NAMPSJ='PSJ$MCCG'
      ELSEIF(IDIR .EQ. 1) THEN
        NAMPJJ='PJJX$MCCG'
        NAMPSJ='PSJX$MCCG'
      ELSEIF(IDIR .EQ. 2) THEN
        NAMPJJ='PJJY$MCCG'
        NAMPSJ='PSJY$MCCG'
      ELSE
        NAMPJJ='PJJZ$MCCG'
        NAMPSJ='PSJZ$MCCG'
      ENDIF
*----
*  CONSTRUCT NGINDV (index to pass from "NGEFF format" to "NG format").
*----
      NGINDV(:NG)=0
      DO II=1,NGEFF
         IF(NCONV(II)) THEN
            IG=NGIND(II)
            NGINDV(IG)=II
         ENDIF
      ENDDO
*---
*  COMPUTE RESIDUAL OF THE PREVIOUS FREE ITERATION FOR RHS
*---
      DO II=1,NGEFF
         IF(NCONV(II)) THEN
            IG=NGIND(II)
            JPSYS=KPSYS(II)
            CALL LCMGET(JPSYS,'DRAGON-S0XSC',SC(0,1))
            IF(REBAL) THEN
               KPMACR=LCMGIL(JPMACR,IG)
               CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
               CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
               CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
               CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
            ENDIF
            CALL MCGFCR(IPRINT,IG,II,NG,NGEFF,KPN,N1,NREG,NANI,NFUNL,
     1           M,.FALSE.,KEYFLX,KEYCUR,NZON,NGINDV,REBAL,PHIOUT,
     2           PHIIN,SC,KEYANI,NJJ,IJJ,IPOS,XSCAT,AR(1,II,1))
         ENDIF
      ENDDO
*---
*  GAUSS SEIDEL ITERATIVE APPROACH TO SOLVE THE REBALANCING SYSTEM
*---
      IF(REBAL) THEN
         NGTYP='GAUSS-SEIDEL' 
         NFIRST=NGEFF+1
         DO II=1,NGEFF
            IF(NCONV(II)) THEN
               IG=NGIND(II)
               KPMACR=LCMGIL(JPMACR,IG)
               CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
               DO IBM=1,M
                  IF(IJJ(IBM).GT.IG) THEN
                     NFIRST=II ! first thermal group index in NGEFF format
                     GOTO 5
                  ENDIF
               ENDDO
            ENDIF
         ENDDO
      ELSE
         NGTYP='   ONE-GROUP'
         NFIRST=1
      ENDIF
 5    CONTINUE
*
      IF(NANI.GT.1) ALLOCATE(MATR(NFUNL*(NFUNL+1)*NREG))
      DO ITSCR=1,MXSCR
         DO 20 II=1,NGEFF
         IF(NCONV(II)) THEN
            IF((II.LT.NFIRST).AND.(ITSCR.GT.1)) GOTO 20
            IG=NGIND(II)
            JPSYS=KPSYS(II)
            CALL LCMGET(JPSYS,'DRAGON-S0XSC',SC(0,1))
            CALL LCMGET(JPSYS,NAMPJJ,PJJ)
            IF(REBAL) THEN
               KPMACR=LCMGIL(JPMACR,IG)
               CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
               CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
               CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
               CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
            ENDIF
            DO I=1,NREG
               IBM=NZON(I)
               DO INU=1,NFUNL
                  IND=KEYFLX(I,INU)
                  AR(IND,II,2)=AR(IND,II,1)
               ENDDO
               IF(REBAL) THEN
*              rebalancing option on : contribution from others groups.
                  IF(IBM.GT.0) THEN
                     IND=KEYFLX(I,1)
                     JG=IJJ(IBM)
                     DO 10 JND=1,NJJ(IBM)
                        IF(JG.NE.IG) THEN
                        JJ=NGINDV(JG)
                        IF(JJ.GT.0) THEN
                           AR(IND,II,2)=AR(IND,II,2)+
     1                              XSCAT(IPOS(IBM)+JND-1)*PSI(I,JJ,1)
                        ENDIF
                        ENDIF
                        JG=JG-1
 10                  CONTINUE
                  ENDIF
               ENDIF
            ENDDO
            IF(NANI.EQ.1) THEN
              DO I=1,NREG
                IBM=NZON(I)
                IND=KEYFLX(I,1)
                PSI(IND,II,1)=AR(IND,II,2)
     1                       *PJJ(I)/(1.0-SC(IBM,1)*PJJ(I))
              ENDDO
            ELSE
              CALL MCGSCS(KPN,K,NREG,M,NANI,NFUNL,NPJJM,KEYFLX,KEYANI,
     1             PJJIND,NZON,SC(0,1),PJJ,AR(1,II,2),PSI(1,II,1),MATR)
            ENDIF
         ENDIF
 20      CONTINUE
         IF(REBAL) THEN
            ERRSCR=0.0
            DO II=NFIRST,NGEFF
            IF(NCONV(II)) THEN
               ERR1=0.0
               ERR2=0.0
               DO I=1,NREG
                  DO INU=1,NFUNL
                     IND=KEYFLX(I,INU)
                     TEMP1=REAL(ABS(PSI(IND,II,1)-PSI(IND,II,2)))
                     TEMP2=REAL(ABS(PSI(IND,II,1)))
                     ERR1=MAX(ERR1,TEMP1)
                     ERR2=MAX(ERR2,TEMP2)
                     PSI(IND,II,2)=PSI(IND,II,1)
                  ENDDO
               ENDDO
               IF(ERR2.GT.0.0) ERRSCR=MAX(ERRSCR,ERR1/ERR2)
            ENDIF
            ENDDO
            IF(ERRSCR.LT.EPSSCR) GO TO 30
         ENDIF
      ENDDO
 30   CONTINUE
      IF(NANI.GT.1) DEALLOCATE(MATR)
*
      IF((REBAL).AND.(IPRINT.GT.0)) THEN
         IF(NFIRST.GT.1) WRITE(6,100) NGIND(1),NGIND(NFIRST-1),NGTYP
         IF((MXSCR.GT.1).AND.(NFIRST.LE.NGEFF)) THEN 
            WRITE(6,200) NGTYP,ERRSCR,(ITSCR-1)
         ENDIF
      ELSE
         IF(IPRINT.GT.1) WRITE(6,100) NGIND(1),NGIND(NGEFF),NGTYP
      ENDIF
*----
* PERFORM THE CORRECTION
*----
*     Flux Correction
      DO II=1,NGEFF
      IF(NCONV(II)) THEN
         DO I=1,NREG
            DO INU=1,NFUNL
               IND=KEYFLX(I,INU)
               PHIOUT(IND,II)=PHIOUT(IND,II)+PSI(IND,II,1)
            ENDDO
         ENDDO
      ENDIF
      ENDDO
*     Current Correction
      IF(N1.GT.NREG) THEN
      DO II=1,NGEFF
      IF(NCONV(II)) THEN
         IG=NGIND(II)
         JPSYS=KPSYS(II)
         CALL LCMGET(JPSYS,NAMPSJ,PSJ)
         CALL LCMGET(JPSYS,'DRAGON-S0XSC',SC(0,1))
         IF(REBAL) THEN
            KPMACR=LCMGIL(JPMACR,IG)
            CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
            CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
            CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
            CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
         ENDIF
         DO I=NREG+1,N1
         IIS=I-NREG
         INDC=KEYCUR(IIS)
         DO J=IS(IIS)+1,IS(IIS+1)
            MCUI=JS(J)
            IND=KEYFLX(MCUI,1)
            IBM=NZON(MCUI)
            IF(IBM.GT.0) THEN
               TEMP=SC(IBM,1)*(PHIOUT(IND,II)-PHIIN(IND,II))
               IF(REBAL) THEN
                  JG=IJJ(IBM)
                  DO 40 JND=1,NJJ(IBM)
                     IF(JG.NE.IG) THEN
                     JJ=NGINDV(JG)
                     IF(JJ.GT.0) THEN
                        TEMP=TEMP+XSCAT(IPOS(IBM)+JND-1)
     1                       *(PHIOUT(IND,JJ)-PHIIN(IND,JJ))
                     ENDIF
                     ENDIF
                     JG=JG-1
 40               CONTINUE
               ENDIF
               PHIOUT(INDC,II)=PHIOUT(INDC,II)+PSJ(J)*TEMP/V(I)
            ENDIF
         ENDDO
         ENDDO
      ENDIF
      ENDDO
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      IF(REBAL) DEALLOCATE(XSCAT,IPOS,IJJ,NJJ)
      DEALLOCATE(PSJ,PJJ,PSI,AR,SC,NGINDV)
      RETURN
*
 100  FORMAT(10X,11HSCR: GROUPS,I4,3H TO,I4,2H: ,A12,7H SCHEME)
 200  FORMAT(10X,24HSCR: UP-SCATTE. GROUPS: ,A12,17H ITERATIONS: PRC:,
     1       E9.2,2H (,I4,12H ITERATIONS))
      END