1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
*DECK MCGSCES
SUBROUTINE MCGSCES(N,K,M,NOM,NZON,H,XST,B)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculate coefficients of a track for the characteristics integration.
* Step-Characteristics scheme with exact exponential calls with
* 'source term isolation' option turned off.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* N number of elements in the current track.
* K total number of volumes for which specific values
* of the neutron flux and reactions rates are required.
* M number of material mixtures.
* NOM vector containing the region number of the different segments
* of this track.
* NZON index-number of the mixture type assigned to each volume.
* H vector containing the lenght of the different segments of this
* track.
* XST macroscopic total cross section.
*
*Parameters: output
* B undefined.
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER N,K,M,NOM(N),NZON(K)
REAL XST(0:M)
DOUBLE PRECISION H(N),B(2,N)
*---
* LOCAL VARIABLES
*---
INTEGER I,NOMI,NZI
DOUBLE PRECISION TAUDMIN,TAUD,HID,HID2,TAUD3,TAUD4,TAUD5
* tabulated exponential common block
REAL E0, E1, PAS1, DX1, XLIM1
INTEGER MEX1, LAU
PARAMETER ( MEX1=7936, TAUDMIN=2.D-2 )
COMMON /EXP1/ E0(0:MEX1),E1(0:MEX1),PAS1,DX1,XLIM1
*
DO I=2,N-1
NOMI=NOM(I)
NZI=NZON(NOMI)
HID=H(I)
TAUD=HID*XST(NZI)
IF(TAUD.LE.TAUDMIN) THEN
* Linear interpolation in table of (1-exp(-x))/x
LAU=INT(TAUD*PAS1)
B(1,I)=HID*(E0(LAU)+E1(LAU)*TAUD)
* and expansion in Taylor serie in O(TAUD^3)
TAUD3=TAUD/3.D0
TAUD4=0.125D0*TAUD
TAUD5=0.2D0*TAUD
HID2=HID*HID
B(2,I)=HID2*(0.5D0-TAUD3*(0.5D0-TAUD4*(1.D0-TAUD5)))
ELSE
* Exact exponential
B(1,I)=(1.D0-DEXP(-TAUD))/XST(NZI)
B(2,I)=(HID-B(1,I))/XST(NZI)
ENDIF
ENDDO
*
RETURN
END
|