1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
*DECK MCGFCA
SUBROUTINE MCGFCA(IPTRK,KPSYS,IPMACR,IPRINT,N1,NG,NGEFF,KPN,NREG,
1 NANI,NFUNL,M,LC,LFORW,PACA,KEYFLX,KEYCUR,NZON,
2 NGIND,NCONV,MXACA,EPSACA,MACFLG,REBFLG,PHIOUT,
3 PHIIN,COMBFLG,NPJJM,KEYANI,IDIR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Acceleration of iterations (ACA method).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* IPTRK pointer to the tracking LCM object.
* KPSYS pointer array for each group properties.
* IPMACR pointer to the macrolib LCM object.
* IPRINT print parameter (equal to zero for no print).
* N1 number of unknowns per group of the corrective system.
* NG number of groups.
* NGEFF number of groups to process.
* KPN total number of unknowns in vectors SUNKNO and FUNKNO.
* NREG number of volumes.
* NANI scattering anisotropy (=1 for isotropic scattering).
* NFUNL number of moments of the flux (in 2D: NFUNL=NANI*(NANI+1)/2).
* M number of material mixtures.
* LC dimension of profiled matrices MCU and CQ.
* LFORW flag set to .false. to transpose the coefficient matrix.
* PACA type of preconditioner to solve the ACA corrective system.
* KEYFLX position of flux elements in FI vector.
* KEYCUR position of current elements in FI vector.
* NZON index-number of the mixture type assigned to each volume.
* NGIND index of the groups to process.
* NCONV logical array of convergence status for each group (.TRUE.
* not converged).
* MXACA maximum number of iterations.
* EPSACA convergence criterion.
* MACFLG multigroup cross section flag.
* REBFLG rebalancing form flag for ACA.
* PHIIN initial guess (for this iteration) of zonal scalar flux.
* COMBFLG flag for three-step scheme in combination wih SCR.
* NPJJM second dimension of PJJ.
* KEYANI 'mode to l' index: l=KEYANI(nu).
* IDIR direction of fundamental current for TIBERE with MoC
* (=0,1,2,3).
*
*Parameters: input/output
* PHIOUT zonal scalar flux.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,KPSYS(NGEFF),IPMACR
INTEGER N1,N2,NGEFF,NG,IPRINT,KPN,NREG,NANI,NFUNL,M,LC,PACA,
1 KEYFLX(NREG,NFUNL),KEYCUR(*),NZON(N1),NGIND(NGEFF),MXACA,NPJJM,
2 KEYANI(NFUNL),IDIR
REAL EPSACA,PHIIN(KPN,NGEFF)
DOUBLE PRECISION PHIOUT(KPN,NGEFF)
LOGICAL LFORW,NCONV(NGEFF),MACFLG,REBFLG,COMBFLG
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPMACR,KPMACR,JPSYS
INTEGER LC0
REAL FLXN
CHARACTER*12 NGTYP
INTEGER, TARGET, SAVE, DIMENSION(1) :: IDUMMY
REAL, TARGET, SAVE, DIMENSION(1) :: DUMMY
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: NGINDV,NJJ,IJJ,IPOS
REAL, ALLOCATABLE, DIMENSION(:) :: XSCAT
REAL, ALLOCATABLE, DIMENSION(:,:) :: XSW,PJJ
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: AR,PSI,ARSCR
*
TYPE(C_PTR) PJJIND_PTR,IM_PTR,MCU_PTR,IPERM_PTR,JU_PTR,IM0_PTR,
1 MCU0_PTR
TYPE(C_PTR) DIAGQ_PTR,CQ_PTR,LUDF_PTR,LUCF_PTR,CF_PTR,DIAGF_PTR
INTEGER, POINTER, DIMENSION(:) :: IM,MCU,IPERM,JU,IM0,MCU0
INTEGER, POINTER, DIMENSION(:,:) :: PJJIND
REAL, POINTER, DIMENSION(:) :: DIAGQ,CQ,LUDF,LUCF,CF,DIAGF
*----
* INITIALIZE POINTERS
*----
JU=>IDUMMY
IM0=>IDUMMY
MCU0=>IDUMMY
LUDF=>DUMMY
LUCF=>DUMMY
CF=>DUMMY
DIAGF=>DUMMY
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(NGINDV(NG),AR(N1,NGEFF),PSI(N1,NGEFF),XSW(0:M,NANI),
1 ARSCR(KPN,NGEFF))
AR(:N1,:NGEFF)=0.0D0
XSW(0:M,:NANI)=0.0
ARSCR(:KPN,:NGEFF)=0.0D0
* recover connection matrices
CALL LCMGPD(IPTRK,'IM$MCCG',IM_PTR)
CALL LCMGPD(IPTRK,'MCU$MCCG',MCU_PTR)
CALL C_F_POINTER(IM_PTR,IM,(/ N1+1 /))
CALL C_F_POINTER(MCU_PTR,MCU,(/ LC /))
* recover permutation array
CALL LCMGPD(IPTRK,'PI$MCCG',IPERM_PTR)
CALL C_F_POINTER(IPERM_PTR,IPERM,(/ N1 /))
IF(PACA.GE.2) THEN
CALL LCMGPD(IPTRK,'JU$MCCG',JU_PTR)
CALL C_F_POINTER(JU_PTR,JU,(/ N1 /))
ENDIF
IF(PACA.EQ.3) THEN
CALL LCMLEN(IPTRK,'IM0$MCCG',LIM0,ITYLCM)
CALL LCMLEN(IPTRK,'MCU0$MCCG',LC0,ITYLCM)
CALL LCMGPD(IPTRK,'IM0$MCCG',IM0_PTR)
CALL LCMGPD(IPTRK,'MCU0$MCCG',MCU0_PTR)
CALL C_F_POINTER(IM0_PTR,IM0,(/ LIM0 /))
CALL C_F_POINTER(MCU0_PTR,MCU0,(/ LC0 /))
ELSE
LIM0=0
LC0=0
ENDIF
IF(MACFLG) THEN
JPMACR=LCMGID(IPMACR,'GROUP')
ALLOCATE(NJJ(0:M),IJJ(0:M),IPOS(0:M),XSCAT(0:M*NG))
ENDIF
IF(REBFLG) THEN
* N2: number of groups to treat at the same time.
* rebalancing
N2=NGEFF
ELSE
* inner iterations acceleration
N2=1
ENDIF
*----
* CONSTRUCT NGINDV (index to pass from "NGEFF format" to "NG format").
*----
NGINDV(:NG)=0
DO II=1,NGEFF
IF(NCONV(II)) THEN
IG=NGIND(II)
NGINDV(IG)=II
ENDIF
ENDDO
*----
* COMPUTE RESIDUAL OF THE PREVIOUS FREE ITERATION FOR RHS WITHOUT
* COMBFLG OPTION
*----
IF(IPRINT.GT.10) WRITE(6,*) 'Direction',IDIR
IF(.NOT.COMBFLG) THEN
DO II=1,NGEFF
IF(NCONV(II)) THEN
IG=NGIND(II)
JPSYS=KPSYS(II)
CALL LCMGET(JPSYS,'DRAGON-S0XSC',XSW)
IF(MACFLG) THEN
KPMACR=LCMGIL(JPMACR,IG)
CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
ENDIF
* residual for ACA system
CALL MCGFCR(IPRINT,IG,II,NG,NGEFF,KPN,N1,NREG,NANI,NFUNL,
1 M,.TRUE.,KEYFLX,KEYCUR,NZON,NGINDV,MACFLG,PHIOUT,PHIIN,
2 XSW,IPERM(1),NJJ,IJJ,IPOS,XSCAT,AR(1,II))
ENDIF
ENDDO
*----
* COMPUTE RESIDUAL OF THE PREVIOUS FREE ITERATION FOR RHS WITH COMBFLG
* OPTION
*----
ELSE
ALLOCATE(PJJ(NREG,NPJJM))
CALL LCMGPD(IPTRK,'PJJIND$MCCG',PJJIND_PTR)
CALL C_F_POINTER(PJJIND_PTR,PJJIND,(/ NPJJM,2 /))
DO II=1,NGEFF
IF(NCONV(II)) THEN
IG=NGIND(II)
JPSYS=KPSYS(II)
CALL LCMGET(JPSYS,'DRAGON-S0XSC',XSW)
IF(MACFLG) THEN
KPMACR=LCMGIL(JPMACR,IG)
CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
ENDIF
* residual for ACA system
CALL MCGFCR(IPRINT,IG,II,NG,NGEFF,KPN,N1,NREG,NANI,NFUNL,
1 M,.TRUE.,KEYFLX,KEYCUR,NZON,NGINDV,MACFLG,PHIOUT,PHIIN,
2 XSW,IPERM(1),NJJ,IJJ,IPOS,XSCAT,AR(1,II))
* residual for SCR-combined scheme
CALL MCGFCR(IPRINT,IG,II,NG,NGEFF,KPN,N1,NREG,NANI,NFUNL,
1 M,.FALSE.,KEYFLX,KEYCUR,NZON,NGINDV,MACFLG,PHIOUT,
2 PHIIN,XSW,KEYANI(1),NJJ,IJJ,IPOS,XSCAT,ARSCR(1,II))
IF(NANI.GT.1) THEN
IF(IDIR.EQ.0) THEN
CALL LCMGET(JPSYS,'PJJ$MCCG',PJJ)
ELSEIF(IDIR.EQ.1) THEN
CALL LCMGET(JPSYS,'PJJX$MCCG',PJJ)
ELSEIF(IDIR.EQ.2) THEN
CALL LCMGET(JPSYS,'PJJY$MCCG',PJJ)
ELSEIF(IDIR.EQ.3) THEN
CALL LCMGET(JPSYS,'PJJZ$MCCG',PJJ)
ENDIF
DO I=1,N1
J=IPERM(I)
IBM=NZON(J)
IF(IBM.GE.0) THEN
DO IMOD=1,NPJJM
INU1=PJJIND(IMOD,1)
INU2=PJJIND(IMOD,2)
IF((INU1.EQ.1).AND.(INU2.NE.1)) THEN
IND2=KEYFLX(J,INU2)
AR(I,II)=AR(I,II)+PJJ(J,IMOD)*ARSCR(IND2,II)
ELSEIF((INU2.EQ.1).AND.(INU1.NE.1)) THEN
IND1=KEYFLX(J,INU1)
AR(I,II)=AR(I,II)+PJJ(J,IMOD)*ARSCR(IND1,II)
ENDIF
ENDDO
ENDIF
ENDDO
ENDIF
ENDIF
ENDDO
DEALLOCATE(PJJ)
ENDIF
*---
* ITERATIVE APPROACH TO SOLVE THE PRECONDITIONING SYSTEM
*---
* ---
* GROUP PER GROUP PROCEDURE
* ---
IF(MACFLG) THEN
* MULTIGROUP REBALANCING (GAUSS-SEIDEL SCHEME)
NGTYP='GAUSS-SEIDEL'
PSI(:N1,:NGEFF)=0.0D0
NGFAST=NGEFF
IF(REBFLG) THEN
* ONLY FOR FAST GROUPS (thermal group will be treated iteratively)
DO II=1,NGEFF
IF(NCONV(II)) THEN
IG=NGIND(II)
KPMACR=LCMGIL(JPMACR,IG)
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
DO IBM=1,M
IF(IJJ(IBM).GT.IG) THEN
NGFAST=II-1 ! last fast group index in NGEFF format
GOTO 5
ENDIF
ENDDO
ENDIF
ENDDO
ENDIF
ELSE
* INNER ITERATION ACCELERATION
NGTYP=' ONE-GROUP'
NGFAST=NGEFF
ENDIF
5 CONTINUE
DO II=1,NGFAST
IF(NCONV(II)) THEN
* infinite norm of group scalar flux
FLXN=0.0
DO I=1,NREG
IND=KEYFLX(I,1)
TEMP=REAL(ABS(PHIOUT(IND,II)))
FLXN=MAX(TEMP,FLXN)
ENDDO
IF(MACFLG) THEN
* contribution from other groups (Gauss-Seidel multigroup
* scheme without iterations)
IG=NGIND(II)
KPMACR=LCMGIL(JPMACR,IG)
CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
DO I=1,N1
J=IPERM(I)
IBM=NZON(J)
IF(IBM.GT.0) THEN
JG=IJJ(IBM)
DO 10 JND=1,NJJ(IBM)
IF(JG.NE.IG) THEN
JJ=NGINDV(JG)
IF(JJ.GT.0) THEN
AR(I,II)=AR(I,II)+XSCAT(IPOS(IBM)+JND-1)*
1 PSI(I,JJ)
ENDIF
ENDIF
JG=JG-1
10 CONTINUE
ENDIF
ENDDO
ENDIF
* apply preconditioner to RHS
IG=NGIND(II)
JPSYS=KPSYS(II)
CALL LCMGPD(JPSYS,'DIAGQ$MCCG',DIAGQ_PTR)
CALL LCMGPD(JPSYS,'CQ$MCCG',CQ_PTR)
CALL C_F_POINTER(DIAGQ_PTR,DIAGQ,(/ N1 /))
CALL C_F_POINTER(CQ_PTR,CQ,(/ LC /))
IF(PACA.GE.2) THEN
CALL LCMGPD(JPSYS,'ILUDF$MCCG',LUDF_PTR)
CALL C_F_POINTER(LUDF_PTR,LUDF,(/ N1 /))
IF(PACA.LT.4) THEN
CALL LCMGPD(JPSYS,'ILUCF$MCCG',LUCF_PTR)
CALL C_F_POINTER(LUCF_PTR,LUCF,(/ LC /))
ENDIF
IF(PACA.GE.3) THEN
CALL LCMGPD(JPSYS,'CF$MCCG',CF_PTR)
CALL C_F_POINTER(CF_PTR,CF,(/ N1 /))
ENDIF
ELSE IF(PACA.EQ.1) THEN
CALL LCMGPD(JPSYS,'DIAGF$MCCG',DIAGF_PTR)
CALL C_F_POINTER(DIAGF_PTR,DIAGF,(/ LC /))
ENDIF
CALL MCGPRA(LFORW,3,PACA,.TRUE.,N1,LC,IM,MCU,JU,DIAGQ,CQ,
1 LUDF,LUCF,DIAGF,AR(1,II),PSI(1,II),LC0,IM0,MCU0,CF)
* group per group BICGSTAB
JPSYS=KPSYS(II)
CALL LCMGPD(JPSYS,'DIAGF$MCCG',DIAGF_PTR)
CALL LCMGPD(JPSYS,'CF$MCCG',CF_PTR)
CALL C_F_POINTER(DIAGF_PTR,DIAGF,(/ N1 /))
CALL C_F_POINTER(CF_PTR,CF,(/ LC /))
IF(PACA.GE.2) THEN
CALL LCMGPD(JPSYS,'ILUDF$MCCG',LUDF_PTR)
CALL C_F_POINTER(LUDF_PTR,LUDF,(/ N1 /))
IF(PACA.LT.4) THEN
CALL LCMGPD(JPSYS,'ILUCF$MCCG',LUCF_PTR)
CALL C_F_POINTER(LUCF_PTR,LUCF,(/ LC /))
ENDIF
ENDIF
CALL MCGABG(IPRINT,LFORW,PACA,N1,LC,EPSACA,MXACA,IM,MCU,
1 JU,DIAGF,CF,LUDF,LUCF,AR(1,II),PSI(1,II),FLXN,LC0,
2 IM0,MCU0)
ENDIF
ENDDO
*
IF((REBFLG).AND.(IPRINT.GT.0)) THEN
IF(NGFAST.GT.0) WRITE(6,100) NGIND(1),NGIND(NGFAST),NGTYP
ELSE
IF(IPRINT.GT.1) WRITE(6,100) NGIND(1),NGIND(NGFAST),NGTYP
ENDIF
*
IF((REBFLG).AND.(NGFAST.LT.NGEFF)) THEN
* ---
* MULTIGROUP PROCEDURE
* ---
* THERMAL GROUPS REBALANCING
FLXN=0.0
NFIRST=NGFAST+1
DO II=NFIRST,NGEFF
IF(NCONV(II)) THEN
* infinite norm of multigroup (thermal groups) scalar flux
DO I=1,NREG
IND=KEYFLX(I,1)
TEMP=REAL(ABS(PHIOUT(IND,II)))
FLXN=MAX(TEMP,FLXN)
ENDDO
* contribution from fast groups to rhs
IG=NGIND(II)
KPMACR=LCMGIL(JPMACR,IG)
CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
DO I=1,N1
J=IPERM(I)
IBM=NZON(J)
IF(IBM.GT.0) THEN
JG=IJJ(IBM)
DO 20 JND=1,NJJ(IBM)
IF(JG.NE.IG) THEN
JJ=NGINDV(JG)
IF((JJ.GT.0).AND.(JJ.LE.NGFAST)) THEN
AR(I,II)=AR(I,II)+XSCAT(IPOS(IBM)+JND-1)*
1 PSI(I,JJ)
ENDIF
ENDIF
JG=JG-1
20 CONTINUE
ENDIF
ENDDO
ENDIF
ENDDO
* apply preconditioner to RHS
DO II=NFIRST,NGEFF
IF(NCONV(II)) THEN
JPSYS=KPSYS(II)
CALL LCMGPD(JPSYS,'DIAGQ$MCCG',DIAGQ_PTR)
CALL LCMGPD(JPSYS,'CQ$MCCG',CQ_PTR)
CALL C_F_POINTER(DIAGQ_PTR,DIAGQ,(/ 1 /))
CALL C_F_POINTER(CQ_PTR,CQ,(/ 1 /))
IF(PACA.GE.2) THEN
CALL LCMGPD(JPSYS,'ILUDF$MCCG',LUDF_PTR)
CALL C_F_POINTER(LUDF_PTR,LUDF,(/ 1 /))
IF(PACA.LT.4) THEN
CALL LCMGPD(JPSYS,'ILUCF$MCCG',LUCF_PTR)
CALL C_F_POINTER(LUCF_PTR,LUCF,(/ 1 /))
ENDIF
IF(PACA.GE.3) THEN
CALL LCMGPD(JPSYS,'CF$MCCG',CF_PTR)
CALL C_F_POINTER(CF_PTR,CF,(/ 1 /))
ENDIF
ELSEIF(PACA.EQ.1) THEN
CALL LCMGPD(JPSYS,'DIAGF$MCCG',DIAGF_PTR)
CALL C_F_POINTER(DIAGF_PTR,DIAGF,(/ 1 /))
ENDIF
CALL MCGPRA(LFORW,3,PACA,.TRUE.,N1,LC,IM,MCU,JU,DIAGQ,CQ,
1 LUDF,LUCF,DIAGF,AR(1,II),PSI(1,II),LC0,IM0,MCU0,CF)
ENDIF
ENDDO
* multigroup BICGSTAB
CALL MCGABGR(IPRINT,LFORW,PACA,N1,NG,NFIRST,NGEFF,M,LC,NGIND,
1 NGINDV,NCONV,KPSYS,JPMACR,NZON,IPERM,IM,MCU,JU,EPSACA,
2 MXACA,AR,PSI,FLXN,LC0,IM0,MCU0)
ENDIF
*----
* PERFORM THE CORRECTION
*----
IF(COMBFLG) THEN
* -----------------------------------------------
* ACA is combined in a three-step scheme with SCR
* -----------------------------------------------
ALLOCATE(PJJ(NREG,NPJJM))
CALL LCMGPD(IPTRK,'PJJIND$MCCG',PJJIND_PTR)
CALL C_F_POINTER(PJJIND_PTR,PJJIND,(/ NPJJM,2 /))
DO II=1,NGEFF
IF(NCONV(II)) THEN
IG=NGIND(II)
JPSYS=KPSYS(II)
CALL LCMGET(JPSYS,'DRAGON-S0XSC',XSW)
IF(MACFLG) THEN
KPMACR=LCMGIL(JPMACR,IG)
CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
ENDIF
IF(IDIR.EQ.0) THEN
CALL LCMGET(JPSYS,'PJJ$MCCG',PJJ)
ELSEIF(IDIR.EQ.1) THEN
CALL LCMGET(JPSYS,'PJJX$MCCG',PJJ)
ELSEIF(IDIR.EQ.2) THEN
CALL LCMGET(JPSYS,'PJJY$MCCG',PJJ)
ELSEIF(IDIR.EQ.3) THEN
CALL LCMGET(JPSYS,'PJJZ$MCCG',PJJ)
ENDIF
DO I=1,N1
J=IPERM(I)
IBM=NZON(J)
IF(IBM.GE.0) THEN
* Flux Correction
IND=KEYFLX(J,1)
PHIOUT(IND,II)=PHIOUT(IND,II)
1 +(1.0-PJJ(J,1)*XSW(IBM,1))*PSI(I,II)
DO IMOD=1,NPJJM
INU1=PJJIND(IMOD,1)
INU2=PJJIND(IMOD,2)
IF(INU1.EQ.1) THEN
IND2=KEYFLX(J,INU2)
PHIOUT(IND,II)=PHIOUT(IND,II)
1 -PJJ(J,IMOD)*ARSCR(IND2,II)
ELSEIF(INU2.EQ.1) THEN
IND1=KEYFLX(J,INU1)
PHIOUT(IND,II)=PHIOUT(IND,II)
1 -PJJ(J,IMOD)*ARSCR(IND1,II)
ENDIF
ENDDO
IF(MACFLG) THEN
JG=IJJ(IBM)
DO 30 JND=1,NJJ(IBM)
IF(JG.NE.IG) THEN
JJ=NGINDV(JG)
IF(JJ.GT.0) THEN
PHIOUT(IND,II)=PHIOUT(IND,II)-PJJ(J,1)*
1 XSCAT(IPOS(IBM)+JND-1)*PSI(I,JJ)
ENDIF
ENDIF
JG=JG-1
30 CONTINUE
ENDIF
ELSE
* Current Correction
IND=KEYCUR(J-NREG)
PHIOUT(IND,II)=PHIOUT(IND,II)+PSI(I,II)
ENDIF
ENDDO
ENDIF
ENDDO
DEALLOCATE(PJJ)
ELSE
* -----------------
* ACA is used alone
* -----------------
DO II=1,NGEFF
IF(NCONV(II)) THEN
DO I=1,N1
J=IPERM(I)
IF(NZON(J).GE.0) THEN
* Flux Correction
IND=KEYFLX(J,1)
PHIOUT(IND,II)=PHIOUT(IND,II)+PSI(I,II)
ELSE
* Current Correction
IND=KEYCUR(J-NREG)
PHIOUT(IND,II)=PHIOUT(IND,II)+PSI(I,II)
ENDIF
ENDDO
ENDIF
ENDDO
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
IF(MACFLG) DEALLOCATE(XSCAT,IPOS,IJJ,NJJ)
DEALLOCATE(ARSCR,XSW,PSI,AR,NGINDV)
RETURN
*
100 FORMAT(10X,11HACA: GROUPS,I4,3H TO,I4,2H: ,A12,7H SCHEME)
END
|