summaryrefslogtreecommitdiff
path: root/Dragon/src/MCGFCA.f
blob: 892bbbdd10ef2775fe497cf3e7a5fdb84a1e3ae3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
*DECK MCGFCA
      SUBROUTINE MCGFCA(IPTRK,KPSYS,IPMACR,IPRINT,N1,NG,NGEFF,KPN,NREG,
     1                  NANI,NFUNL,M,LC,LFORW,PACA,KEYFLX,KEYCUR,NZON,
     2                  NGIND,NCONV,MXACA,EPSACA,MACFLG,REBFLG,PHIOUT,
     3                  PHIIN,COMBFLG,NPJJM,KEYANI,IDIR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Acceleration of iterations (ACA method).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* IPTRK   pointer to the tracking LCM object.
* KPSYS   pointer array for each group properties.
* IPMACR  pointer to the macrolib LCM object.
* IPRINT  print parameter (equal to zero for no print).
* N1      number of unknowns per group of the corrective system.
* NG      number of groups.
* NGEFF   number of groups to process.
* KPN     total number of unknowns in vectors SUNKNO and FUNKNO.
* NREG    number of volumes.
* NANI    scattering anisotropy (=1 for isotropic scattering).
* NFUNL   number of moments of the flux (in 2D: NFUNL=NANI*(NANI+1)/2).
* M       number of material mixtures.
* LC      dimension of profiled matrices MCU and CQ.
* LFORW   flag set to .false. to transpose the coefficient matrix.
* PACA    type of preconditioner to solve the ACA corrective system.
* KEYFLX  position of flux elements in FI vector.
* KEYCUR  position of current elements in FI vector.
* NZON    index-number of the mixture type assigned to each volume.
* NGIND   index of the groups to process.
* NCONV   logical array of convergence status for each group (.TRUE.
*         not converged).
* MXACA   maximum number of iterations.
* EPSACA  convergence criterion.
* MACFLG  multigroup cross section flag.
* REBFLG  rebalancing form flag for ACA.
* PHIIN   initial guess (for this iteration) of zonal scalar flux.
* COMBFLG flag for three-step scheme in combination wih SCR.
* NPJJM   second dimension of PJJ.
* KEYANI 'mode to l' index: l=KEYANI(nu).
* IDIR    direction of fundamental current for TIBERE with MoC 
*         (=0,1,2,3). 
*
*Parameters: input/output
* PHIOUT  zonal scalar flux.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,KPSYS(NGEFF),IPMACR
      INTEGER N1,N2,NGEFF,NG,IPRINT,KPN,NREG,NANI,NFUNL,M,LC,PACA,
     1 KEYFLX(NREG,NFUNL),KEYCUR(*),NZON(N1),NGIND(NGEFF),MXACA,NPJJM,
     2 KEYANI(NFUNL),IDIR
      REAL EPSACA,PHIIN(KPN,NGEFF)
      DOUBLE PRECISION PHIOUT(KPN,NGEFF)
      LOGICAL LFORW,NCONV(NGEFF),MACFLG,REBFLG,COMBFLG
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) JPMACR,KPMACR,JPSYS
      INTEGER LC0
      REAL FLXN
      CHARACTER*12 NGTYP
      INTEGER, TARGET, SAVE, DIMENSION(1) :: IDUMMY
      REAL, TARGET, SAVE, DIMENSION(1) :: DUMMY
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NGINDV,NJJ,IJJ,IPOS
      REAL, ALLOCATABLE, DIMENSION(:) :: XSCAT
      REAL, ALLOCATABLE, DIMENSION(:,:) :: XSW,PJJ
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: AR,PSI,ARSCR
*
      TYPE(C_PTR) PJJIND_PTR,IM_PTR,MCU_PTR,IPERM_PTR,JU_PTR,IM0_PTR,
     1 MCU0_PTR
      TYPE(C_PTR) DIAGQ_PTR,CQ_PTR,LUDF_PTR,LUCF_PTR,CF_PTR,DIAGF_PTR
      INTEGER, POINTER, DIMENSION(:) :: IM,MCU,IPERM,JU,IM0,MCU0
      INTEGER, POINTER, DIMENSION(:,:) :: PJJIND
      REAL, POINTER, DIMENSION(:) :: DIAGQ,CQ,LUDF,LUCF,CF,DIAGF
*----
*  INITIALIZE POINTERS
*----
      JU=>IDUMMY
      IM0=>IDUMMY
      MCU0=>IDUMMY
      LUDF=>DUMMY
      LUCF=>DUMMY
      CF=>DUMMY
      DIAGF=>DUMMY
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(NGINDV(NG),AR(N1,NGEFF),PSI(N1,NGEFF),XSW(0:M,NANI),
     1 ARSCR(KPN,NGEFF))
      AR(:N1,:NGEFF)=0.0D0
      XSW(0:M,:NANI)=0.0
      ARSCR(:KPN,:NGEFF)=0.0D0
*     recover connection matrices
      CALL LCMGPD(IPTRK,'IM$MCCG',IM_PTR)
      CALL LCMGPD(IPTRK,'MCU$MCCG',MCU_PTR)
      CALL C_F_POINTER(IM_PTR,IM,(/ N1+1 /))
      CALL C_F_POINTER(MCU_PTR,MCU,(/ LC /))
*     recover permutation array
      CALL LCMGPD(IPTRK,'PI$MCCG',IPERM_PTR)
      CALL C_F_POINTER(IPERM_PTR,IPERM,(/ N1 /))
      IF(PACA.GE.2) THEN
         CALL LCMGPD(IPTRK,'JU$MCCG',JU_PTR)
         CALL C_F_POINTER(JU_PTR,JU,(/ N1 /))
      ENDIF
      IF(PACA.EQ.3) THEN
         CALL LCMLEN(IPTRK,'IM0$MCCG',LIM0,ITYLCM)
         CALL LCMLEN(IPTRK,'MCU0$MCCG',LC0,ITYLCM)
         CALL LCMGPD(IPTRK,'IM0$MCCG',IM0_PTR)
         CALL LCMGPD(IPTRK,'MCU0$MCCG',MCU0_PTR)
         CALL C_F_POINTER(IM0_PTR,IM0,(/ LIM0 /))
         CALL C_F_POINTER(MCU0_PTR,MCU0,(/ LC0 /))
      ELSE
         LIM0=0
         LC0=0
      ENDIF
      IF(MACFLG) THEN
         JPMACR=LCMGID(IPMACR,'GROUP')
         ALLOCATE(NJJ(0:M),IJJ(0:M),IPOS(0:M),XSCAT(0:M*NG))
      ENDIF
      IF(REBFLG) THEN
*     N2: number of groups to treat at the same time.
*     rebalancing
         N2=NGEFF      
      ELSE
*     inner iterations acceleration
         N2=1
      ENDIF
*----
*  CONSTRUCT NGINDV (index to pass from "NGEFF format" to "NG format").
*----
      NGINDV(:NG)=0
      DO II=1,NGEFF
         IF(NCONV(II)) THEN
            IG=NGIND(II)
            NGINDV(IG)=II
         ENDIF
      ENDDO
*----
*  COMPUTE RESIDUAL OF THE PREVIOUS FREE ITERATION FOR RHS WITHOUT
*  COMBFLG OPTION
*----
      IF(IPRINT.GT.10) WRITE(6,*) 'Direction',IDIR
      IF(.NOT.COMBFLG) THEN
         DO II=1,NGEFF
            IF(NCONV(II)) THEN
               IG=NGIND(II)
               JPSYS=KPSYS(II)
               CALL LCMGET(JPSYS,'DRAGON-S0XSC',XSW)
               IF(MACFLG) THEN
                  KPMACR=LCMGIL(JPMACR,IG)
                  CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
                  CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
                  CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
                  CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
               ENDIF
*              residual for ACA system
               CALL MCGFCR(IPRINT,IG,II,NG,NGEFF,KPN,N1,NREG,NANI,NFUNL,
     1           M,.TRUE.,KEYFLX,KEYCUR,NZON,NGINDV,MACFLG,PHIOUT,PHIIN,
     2           XSW,IPERM(1),NJJ,IJJ,IPOS,XSCAT,AR(1,II))
            ENDIF
         ENDDO
*----
*  COMPUTE RESIDUAL OF THE PREVIOUS FREE ITERATION FOR RHS WITH COMBFLG
*  OPTION
*----
      ELSE
         ALLOCATE(PJJ(NREG,NPJJM))
         CALL LCMGPD(IPTRK,'PJJIND$MCCG',PJJIND_PTR)
         CALL C_F_POINTER(PJJIND_PTR,PJJIND,(/ NPJJM,2 /))
         DO II=1,NGEFF
            IF(NCONV(II)) THEN
               IG=NGIND(II)
               JPSYS=KPSYS(II)
               CALL LCMGET(JPSYS,'DRAGON-S0XSC',XSW)
               IF(MACFLG) THEN
                  KPMACR=LCMGIL(JPMACR,IG)
                  CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
                  CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
                  CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
                  CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
               ENDIF
*              residual for ACA system
               CALL MCGFCR(IPRINT,IG,II,NG,NGEFF,KPN,N1,NREG,NANI,NFUNL,
     1           M,.TRUE.,KEYFLX,KEYCUR,NZON,NGINDV,MACFLG,PHIOUT,PHIIN,
     2           XSW,IPERM(1),NJJ,IJJ,IPOS,XSCAT,AR(1,II))
*              residual for SCR-combined scheme
               CALL MCGFCR(IPRINT,IG,II,NG,NGEFF,KPN,N1,NREG,NANI,NFUNL,
     1           M,.FALSE.,KEYFLX,KEYCUR,NZON,NGINDV,MACFLG,PHIOUT,
     2           PHIIN,XSW,KEYANI(1),NJJ,IJJ,IPOS,XSCAT,ARSCR(1,II))
               IF(NANI.GT.1) THEN
               IF(IDIR.EQ.0) THEN
                 CALL LCMGET(JPSYS,'PJJ$MCCG',PJJ)
               ELSEIF(IDIR.EQ.1) THEN
                 CALL LCMGET(JPSYS,'PJJX$MCCG',PJJ)
               ELSEIF(IDIR.EQ.2) THEN
                 CALL LCMGET(JPSYS,'PJJY$MCCG',PJJ)
               ELSEIF(IDIR.EQ.3) THEN
                 CALL LCMGET(JPSYS,'PJJZ$MCCG',PJJ)
               ENDIF
               DO I=1,N1
                  J=IPERM(I)
                  IBM=NZON(J)
                  IF(IBM.GE.0) THEN
                     DO IMOD=1,NPJJM
                        INU1=PJJIND(IMOD,1)
                        INU2=PJJIND(IMOD,2)
                        IF((INU1.EQ.1).AND.(INU2.NE.1)) THEN
                           IND2=KEYFLX(J,INU2)
                           AR(I,II)=AR(I,II)+PJJ(J,IMOD)*ARSCR(IND2,II)
                        ELSEIF((INU2.EQ.1).AND.(INU1.NE.1)) THEN
                           IND1=KEYFLX(J,INU1)
                           AR(I,II)=AR(I,II)+PJJ(J,IMOD)*ARSCR(IND1,II)
                        ENDIF
                     ENDDO
                  ENDIF
               ENDDO
               ENDIF
            ENDIF
         ENDDO
         DEALLOCATE(PJJ)
      ENDIF
*---
*  ITERATIVE APPROACH TO SOLVE THE PRECONDITIONING SYSTEM
*---
*     ---
*     GROUP PER GROUP PROCEDURE
*     ---
      IF(MACFLG) THEN
*     MULTIGROUP REBALANCING (GAUSS-SEIDEL SCHEME)
         NGTYP='GAUSS-SEIDEL'
         PSI(:N1,:NGEFF)=0.0D0
         NGFAST=NGEFF
         IF(REBFLG) THEN
*        ONLY FOR FAST GROUPS (thermal group will be treated iteratively)
         DO II=1,NGEFF
            IF(NCONV(II)) THEN
               IG=NGIND(II)
               KPMACR=LCMGIL(JPMACR,IG)
               CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
               DO IBM=1,M
                  IF(IJJ(IBM).GT.IG) THEN
                     NGFAST=II-1 ! last fast group index in NGEFF format
                     GOTO 5
                  ENDIF
               ENDDO
            ENDIF
         ENDDO
         ENDIF
      ELSE
*     INNER ITERATION ACCELERATION
         NGTYP='   ONE-GROUP'
         NGFAST=NGEFF
      ENDIF
 5    CONTINUE
      DO II=1,NGFAST
         IF(NCONV(II)) THEN
*        infinite norm of group scalar flux
            FLXN=0.0
            DO I=1,NREG
               IND=KEYFLX(I,1)
               TEMP=REAL(ABS(PHIOUT(IND,II)))
               FLXN=MAX(TEMP,FLXN)
            ENDDO
            IF(MACFLG) THEN
*           contribution from other groups (Gauss-Seidel multigroup
*           scheme without iterations)
               IG=NGIND(II)
               KPMACR=LCMGIL(JPMACR,IG)
               CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
               CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
               CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
               CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
               DO I=1,N1
                  J=IPERM(I)
                  IBM=NZON(J)
                  IF(IBM.GT.0) THEN
                     JG=IJJ(IBM)
                     DO 10 JND=1,NJJ(IBM)
                     IF(JG.NE.IG) THEN
                        JJ=NGINDV(JG)
                        IF(JJ.GT.0) THEN
                           AR(I,II)=AR(I,II)+XSCAT(IPOS(IBM)+JND-1)*
     1                              PSI(I,JJ)
                        ENDIF
                     ENDIF
                     JG=JG-1
 10                  CONTINUE
                  ENDIF
               ENDDO
            ENDIF
*           apply preconditioner to RHS            
            IG=NGIND(II)
            JPSYS=KPSYS(II)
            CALL LCMGPD(JPSYS,'DIAGQ$MCCG',DIAGQ_PTR)
            CALL LCMGPD(JPSYS,'CQ$MCCG',CQ_PTR)
            CALL C_F_POINTER(DIAGQ_PTR,DIAGQ,(/ N1 /))
            CALL C_F_POINTER(CQ_PTR,CQ,(/ LC /))
            IF(PACA.GE.2) THEN
               CALL LCMGPD(JPSYS,'ILUDF$MCCG',LUDF_PTR)
               CALL C_F_POINTER(LUDF_PTR,LUDF,(/ N1 /))
               IF(PACA.LT.4) THEN
                  CALL LCMGPD(JPSYS,'ILUCF$MCCG',LUCF_PTR)
                  CALL C_F_POINTER(LUCF_PTR,LUCF,(/ LC /))
               ENDIF
               IF(PACA.GE.3) THEN
                  CALL LCMGPD(JPSYS,'CF$MCCG',CF_PTR)
                  CALL C_F_POINTER(CF_PTR,CF,(/ N1 /))
               ENDIF
            ELSE IF(PACA.EQ.1) THEN
               CALL LCMGPD(JPSYS,'DIAGF$MCCG',DIAGF_PTR)
               CALL C_F_POINTER(DIAGF_PTR,DIAGF,(/ LC /))
            ENDIF
            CALL MCGPRA(LFORW,3,PACA,.TRUE.,N1,LC,IM,MCU,JU,DIAGQ,CQ,
     1           LUDF,LUCF,DIAGF,AR(1,II),PSI(1,II),LC0,IM0,MCU0,CF)
*           group per group BICGSTAB
            JPSYS=KPSYS(II)
            CALL LCMGPD(JPSYS,'DIAGF$MCCG',DIAGF_PTR)
            CALL LCMGPD(JPSYS,'CF$MCCG',CF_PTR)
            CALL C_F_POINTER(DIAGF_PTR,DIAGF,(/ N1 /))
            CALL C_F_POINTER(CF_PTR,CF,(/ LC /))
            IF(PACA.GE.2) THEN
               CALL LCMGPD(JPSYS,'ILUDF$MCCG',LUDF_PTR)
               CALL C_F_POINTER(LUDF_PTR,LUDF,(/ N1 /))
               IF(PACA.LT.4) THEN
                  CALL LCMGPD(JPSYS,'ILUCF$MCCG',LUCF_PTR)
                  CALL C_F_POINTER(LUCF_PTR,LUCF,(/ LC /))
               ENDIF
            ENDIF        
            CALL MCGABG(IPRINT,LFORW,PACA,N1,LC,EPSACA,MXACA,IM,MCU,
     1           JU,DIAGF,CF,LUDF,LUCF,AR(1,II),PSI(1,II),FLXN,LC0,
     2           IM0,MCU0)
         ENDIF
      ENDDO
*
      IF((REBFLG).AND.(IPRINT.GT.0)) THEN
         IF(NGFAST.GT.0) WRITE(6,100) NGIND(1),NGIND(NGFAST),NGTYP
      ELSE
         IF(IPRINT.GT.1) WRITE(6,100) NGIND(1),NGIND(NGFAST),NGTYP
      ENDIF
*
      IF((REBFLG).AND.(NGFAST.LT.NGEFF)) THEN
*     ---
*     MULTIGROUP PROCEDURE
*     ---
*     THERMAL GROUPS REBALANCING
         FLXN=0.0
         NFIRST=NGFAST+1
         DO II=NFIRST,NGEFF
            IF(NCONV(II)) THEN
*              infinite norm of multigroup (thermal groups) scalar flux
               DO I=1,NREG
                  IND=KEYFLX(I,1)
                  TEMP=REAL(ABS(PHIOUT(IND,II)))
                  FLXN=MAX(TEMP,FLXN)
               ENDDO
*              contribution from fast groups to rhs
               IG=NGIND(II)
               KPMACR=LCMGIL(JPMACR,IG)
               CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
               CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
               CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
               CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
               DO I=1,N1
                  J=IPERM(I)
                  IBM=NZON(J)
                  IF(IBM.GT.0) THEN
                     JG=IJJ(IBM)
                     DO 20 JND=1,NJJ(IBM)
                        IF(JG.NE.IG) THEN
                        JJ=NGINDV(JG)
                        IF((JJ.GT.0).AND.(JJ.LE.NGFAST)) THEN
                           AR(I,II)=AR(I,II)+XSCAT(IPOS(IBM)+JND-1)*
     1                          PSI(I,JJ)
                        ENDIF
                        ENDIF
                        JG=JG-1
 20                  CONTINUE
                  ENDIF
               ENDDO
            ENDIF
         ENDDO
*        apply preconditioner to RHS
         DO II=NFIRST,NGEFF
         IF(NCONV(II)) THEN
            JPSYS=KPSYS(II)
            CALL LCMGPD(JPSYS,'DIAGQ$MCCG',DIAGQ_PTR)
            CALL LCMGPD(JPSYS,'CQ$MCCG',CQ_PTR)
            CALL C_F_POINTER(DIAGQ_PTR,DIAGQ,(/ 1 /))
            CALL C_F_POINTER(CQ_PTR,CQ,(/ 1 /))
            IF(PACA.GE.2) THEN
               CALL LCMGPD(JPSYS,'ILUDF$MCCG',LUDF_PTR)
               CALL C_F_POINTER(LUDF_PTR,LUDF,(/ 1 /))
               IF(PACA.LT.4) THEN
                  CALL LCMGPD(JPSYS,'ILUCF$MCCG',LUCF_PTR)
                  CALL C_F_POINTER(LUCF_PTR,LUCF,(/ 1 /))
               ENDIF
               IF(PACA.GE.3) THEN
                  CALL LCMGPD(JPSYS,'CF$MCCG',CF_PTR)
                  CALL C_F_POINTER(CF_PTR,CF,(/ 1 /))
               ENDIF
            ELSEIF(PACA.EQ.1) THEN
               CALL LCMGPD(JPSYS,'DIAGF$MCCG',DIAGF_PTR)
               CALL C_F_POINTER(DIAGF_PTR,DIAGF,(/ 1 /))
            ENDIF
            CALL MCGPRA(LFORW,3,PACA,.TRUE.,N1,LC,IM,MCU,JU,DIAGQ,CQ,
     1           LUDF,LUCF,DIAGF,AR(1,II),PSI(1,II),LC0,IM0,MCU0,CF)
         ENDIF
         ENDDO
*        multigroup BICGSTAB
         CALL MCGABGR(IPRINT,LFORW,PACA,N1,NG,NFIRST,NGEFF,M,LC,NGIND,
     1        NGINDV,NCONV,KPSYS,JPMACR,NZON,IPERM,IM,MCU,JU,EPSACA,
     2        MXACA,AR,PSI,FLXN,LC0,IM0,MCU0)
      ENDIF
*----
* PERFORM THE CORRECTION
*----
      IF(COMBFLG) THEN
*     -----------------------------------------------
*     ACA is combined in a three-step scheme with SCR
*     -----------------------------------------------
         ALLOCATE(PJJ(NREG,NPJJM))
         CALL LCMGPD(IPTRK,'PJJIND$MCCG',PJJIND_PTR)
         CALL C_F_POINTER(PJJIND_PTR,PJJIND,(/ NPJJM,2 /))
         DO II=1,NGEFF
         IF(NCONV(II)) THEN
            IG=NGIND(II)
            JPSYS=KPSYS(II)
            CALL LCMGET(JPSYS,'DRAGON-S0XSC',XSW)
            IF(MACFLG) THEN
               KPMACR=LCMGIL(JPMACR,IG)
               CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
               CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
               CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
               CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
            ENDIF
            IF(IDIR.EQ.0) THEN
              CALL LCMGET(JPSYS,'PJJ$MCCG',PJJ)
            ELSEIF(IDIR.EQ.1) THEN
              CALL LCMGET(JPSYS,'PJJX$MCCG',PJJ)
            ELSEIF(IDIR.EQ.2) THEN
              CALL LCMGET(JPSYS,'PJJY$MCCG',PJJ)
            ELSEIF(IDIR.EQ.3) THEN
              CALL LCMGET(JPSYS,'PJJZ$MCCG',PJJ)
            ENDIF
            DO I=1,N1
            J=IPERM(I)
            IBM=NZON(J)
            IF(IBM.GE.0) THEN
*           Flux Correction
               IND=KEYFLX(J,1)
               PHIOUT(IND,II)=PHIOUT(IND,II)
     1                       +(1.0-PJJ(J,1)*XSW(IBM,1))*PSI(I,II)
               DO IMOD=1,NPJJM
                  INU1=PJJIND(IMOD,1)
                  INU2=PJJIND(IMOD,2)
                  IF(INU1.EQ.1) THEN
                     IND2=KEYFLX(J,INU2)
                     PHIOUT(IND,II)=PHIOUT(IND,II)
     1                    -PJJ(J,IMOD)*ARSCR(IND2,II)
                  ELSEIF(INU2.EQ.1) THEN
                     IND1=KEYFLX(J,INU1)
                     PHIOUT(IND,II)=PHIOUT(IND,II)
     1                    -PJJ(J,IMOD)*ARSCR(IND1,II)
                  ENDIF
               ENDDO
               IF(MACFLG) THEN
                  JG=IJJ(IBM)
                  DO 30 JND=1,NJJ(IBM)
                  IF(JG.NE.IG) THEN
                     JJ=NGINDV(JG)
                     IF(JJ.GT.0) THEN
                        PHIOUT(IND,II)=PHIOUT(IND,II)-PJJ(J,1)*
     1                       XSCAT(IPOS(IBM)+JND-1)*PSI(I,JJ)
                     ENDIF
                  ENDIF
                  JG=JG-1
 30               CONTINUE
               ENDIF
            ELSE
*           Current Correction
               IND=KEYCUR(J-NREG)
               PHIOUT(IND,II)=PHIOUT(IND,II)+PSI(I,II)
            ENDIF
            ENDDO
         ENDIF
         ENDDO
         DEALLOCATE(PJJ)
      ELSE
*     -----------------
*     ACA is used alone
*     -----------------
         DO II=1,NGEFF
         IF(NCONV(II)) THEN
            DO I=1,N1
               J=IPERM(I)
               IF(NZON(J).GE.0) THEN
*              Flux Correction
                  IND=KEYFLX(J,1)
                  PHIOUT(IND,II)=PHIOUT(IND,II)+PSI(I,II)
               ELSE
*              Current Correction
                  IND=KEYCUR(J-NREG)
                  PHIOUT(IND,II)=PHIOUT(IND,II)+PSI(I,II)
               ENDIF
            ENDDO
         ENDIF
         ENDDO
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      IF(MACFLG) DEALLOCATE(XSCAT,IPOS,IJJ,NJJ)
      DEALLOCATE(ARSCR,XSW,PSI,AR,NGINDV)
      RETURN
*
 100  FORMAT(10X,11HACA: GROUPS,I4,3H TO,I4,2H: ,A12,7H SCHEME)
      END