1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
*DECK MCGDSCB
SUBROUTINE MCGDSCB(M,NSEG,NSUB,LPS,IS,JS,H,KANGL,NOM,NZON,TR,W,
1 NFI,NREG,PJJ,PSJ,IMU,NMU,NFUNL,NANGL,NPJJM,
2 TRHAR,LPJJAN,PJJIND,OMEGA2,PJJX,PJJY,PJJZ,
3 PJJXI,PJJYI,PJJZI,PSJX,PSJY,PSJZ)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of contribution in PJJ and PSJ coefficients on one track,
* as well as directional values for TIBERE.
* Step-Characteristics scheme with tabulated exponential calls.
*
*Copyright:
* Copyright (C) 2019 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): S. Musongela
*
*Parameters: input
* LPS dimension of PSJX, PSJY and PSJZ.
* M number of material mixtures.
* NSEG number of elements for this track.
* NSUB number of subtracks for this track.
* IS arrays for surfaces neighbors.
* JS JS(IS(ISOUT)+1:IS(ISOUT+1)) give the neighboring regions to
* surface ISOUT.
* H real tracking elements.
* KANGL track direction indices.
* NOM integer tracking elements.
* NZON index-number of the mixture type assigned to each volume.
* TR macroscopic total cross section.
* W weight associated with this track.
* NFI total number of volumes and surfaces for which specific values
* of the neutron flux and reactions rates are required.
* NREG number of volumes for which specific values
* of the neutron flux and reactions rates are required.
* IMU polar angle index.
* NMU order of the polar quadrature set.
* NFUNL number of moments of the flux (in 2D : NFUNL=NANI*(NANI+1)/2).
* NANGL number of tracking angles in the plane.
* NPJJM number of pjj modes to store for LPJJAN option.
* TRHAR spherical harmonics components for each azimuthal angle in
* the plane.
* LPJJAN flag for the calculation of anisotropic moments of the pjj.
* PJJIND index of the modes for LPJJAN option.
* OMEGA2 square x, y and z-component of the direction Omega for 2D
* geometry.
*
*Parameters: input/output
* PJJ collision probabilities.
* PJJX collision probabilities for TIBERE.
* PJJY collision probabilities for TIBERE.
* PJJZ collision probabilities for TIBERE.
* PJJXI collision probabilities for TIBERE.
* PJJYI collision probabilities for TIBERE.
* PJJZI collision probabilities for TIBERE.
* PSJ escape probabilities.
* PSJX escape probabilities for TIBERE.
* PSJY escape probabilities for TIBERE.
* PSJZ escape probabilities for TIBERE.
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*---
* SUBROUTINE ARGUMENTS
*---
INTEGER M,NSEG,NSUB,NFI,NREG,LPS,IS(NFI-NREG+1),JS(LPS),NZON(NFI),
1 KANGL(NSUB),NOM(NSEG),IMU,NMU,NFUNL,NANGL,NPJJM,PJJIND(NPJJM,2)
REAL TR(0:M),PSJ(LPS),TRHAR(NMU,NFUNL,NANGL)
REAL PSJX(LPS),PSJY(LPS),PSJZ(LPS)
DOUBLE PRECISION W,H(NSUB),PJJ(NREG,NPJJM),OMEGA2(3)
DOUBLE PRECISION PJJX(NREG,NPJJM),PJJY(NREG,NPJJM),
1 PJJZ(NREG,NPJJM),PJJXI(NREG,NPJJM),PJJYI(NREG,NPJJM),
2 PJJZI(NREG,NPJJM)
LOGICAL LPJJAN
*---
* LOCAL VARIABLES
*---
DOUBLE PRECISION TAUDMIN
PARAMETER(TAUDMIN=2.D-2)
INTEGER I,J,NOMI,IC,IC0,NZI,NOMJ,IMOD,INU,INUP,IANG,ISUB
DOUBLE PRECISION TRI,TRJ,TAU,EXPT,HJD,HID,TAUD,TAUD3,TAUD4,TAUD5,
1 EXPTD,TEMPD
LOGICAL LNEW
* tabulated exponential common block
REAL E0, E1, PAS1, DX1, XLIM1
INTEGER MEX1, LAU
PARAMETER ( MEX1=7936 )
COMMON /EXP1/ E0(0:MEX1),E1(0:MEX1),PAS1,DX1,XLIM1
*
ISUB=0
LNEW=.TRUE.
IANG=KANGL(1)
DO I=1,NSEG
NOMI=NOM(I)
NZI=NZON(NOMI)
IF(NZI.LT.0) THEN
* Boundary Condition
LNEW=.TRUE.
IF(LPS.GT.0) THEN
* SCR for a non-cyclic tracking
IF(I.EQ.1) THEN
J=I+1
ELSE !! I.EQ.NSEG
J=I-1
ENDIF
NOMJ=NOM(J)
IC=0
DO IC0=IS(NOMI-NREG)+1,IS(NOMI-NREG+1)
IC=IC0
IF(JS(IC0).EQ.NOMJ) GOTO 10
ENDDO
CALL XABORT('MCGDSCB: UNABLE TO SET IC.')
10 HJD=H(J)
TRJ=TR(NZON(NOMJ))
TAU=HJD*TRJ
IF(TAU.GE.XLIM1) THEN
EXPT=1.0D0/TRJ
ELSE
LAU=INT(TAU*PAS1)
EXPT=HJD*(E0(LAU)+E1(LAU)*TAU)
ENDIF
PSJ(IC)=PSJ(IC)+REAL(W*EXPT)
PSJX(IC)=PSJX(IC)+REAL(W*EXPT*3.0*OMEGA2(1))
PSJY(IC)=PSJY(IC)+REAL(W*EXPT*3.0*OMEGA2(2))
PSJZ(IC)=PSJZ(IC)+REAL(W*EXPT*3.0*OMEGA2(3))
ENDIF
ELSE
* this cell is a volume
IF(LNEW) THEN
ISUB=ISUB+1
IF(ISUB.GT.NSUB) CALL XABORT('MCGDSCB: NSUB OVERFLOW.')
LNEW=.FALSE.
IANG=KANGL(ISUB)
IF(IANG.GT.NANGL) CALL XABORT('MCGDSCB: NANGL OVERFLOW.')
ENDIF
TRI=TR(NZI)
HID=H(I)
TAUD=HID*TRI
TAU=REAL(TAUD)
IF(TAUD.LE.TAUDMIN) THEN
* expansion in Taylor serie in O(TAUD^3)
TAUD3=TAUD/3.D0
TAUD4=0.125D0*TAUD
TAUD5=0.2D0*TAUD
EXPTD=HID*(0.5D0-TAUD3*(0.5D0-TAUD4*(1.D0-TAUD5)))
ELSE
IF(TAU.GE.XLIM1) THEN
* Out of the table range
EXPTD=(1.D0-1.D0/TAUD)/DBLE(TRI)
ELSE
* Linear interpolation in table of (1-exp(-x))/x
LAU=INT(TAU*PAS1)
EXPTD=(1.D0-DBLE(E0(LAU)+E1(LAU)*TAU))/DBLE(TRI)
ENDIF
ENDIF
EXPTD=EXPTD*W*HID
IF(LPJJAN) THEN
DO IMOD=1,NPJJM
INU=PJJIND(IMOD,1)
INUP=PJJIND(IMOD,2)
TEMPD=DBLE(TRHAR(IMU,INU,IANG))*
1 DBLE(TRHAR(IMU,INUP,IANG))
PJJ(NOMI,IMOD)=PJJ(NOMI,IMOD)+EXPTD*TEMPD
ENDDO
ELSE
PJJ(NOMI,1)=PJJ(NOMI,1)+EXPTD
PJJX(NOMI,1)=PJJX(NOMI,1)+EXPTD*3.0*OMEGA2(1)
PJJY(NOMI,1)=PJJY(NOMI,1)+EXPTD*3.0*OMEGA2(2)
PJJZ(NOMI,1)=PJJZ(NOMI,1)+EXPTD*3.0*OMEGA2(3)
PJJXI(NOMI,1)=PJJXI(NOMI,1)+EXPTD*9.0*
1 OMEGA2(1)*OMEGA2(1)
PJJYI(NOMI,1)=PJJYI(NOMI,1)+EXPTD*9.0*
1 OMEGA2(2)*OMEGA2(2)
PJJZI(NOMI,1)=PJJZI(NOMI,1)+EXPTD*9.0*
1 OMEGA2(3)*OMEGA2(3)
ENDIF
ENDIF
ENDDO
*
RETURN
END
|