1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
*DECK MCGDDDF
SUBROUTINE MCGDDDF(M,NSEG,NSUB,LPS,IS,JS,H,KANGL,NOM,NZON,TR,W,
1 NFI,NREG,PJJ,PSJ,IMU,NMU,NFUNL,NANGL,NPJJM,
2 TRHAR,LPJJAN,PJJIND)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of contribution in PJJ and PSJ coefficients on one track.
* Diamond-Differencing scheme.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* LPS dimension of PSJ.
* M number of material mixtures.
* NSEG number of elements for this track.
* NSUB number of subtracks for this track.
* IS arrays for surfaces neighbors.
* JS JS(IS(ISOUT)+1:IS(ISOUT+1)) give the neighboring regions to
* surface ISOUT.
* H real tracking elements.
* KANGL track direction indices.
* NOM integer tracking elements.
* NZON index-number of the mixture type assigned to each volume.
* TR macroscopic total cross section.
* W weight associated with this track.
* NFI total number of volumes and surfaces for which specific values
* of the neutron flux and reactions rates are required.
* NREG number of volumes for which specific values
* of the neutron flux and reactions rates are required.
* IMU polar angle index.
* NMU order of the polar quadrature set.
* NFUNL number of moments of the flux (in 2D : NFUNL=NANI*(NANI+1)/2).
* NANGL number of tracking angles in the plane.
* NPJJM number of pjj modes to store for LPJJAN option.
* TRHAR spherical harmonics components for each azimuthal angle in
* the plane.
* LPJJAN flag for the calculation of anisotropic moments of the pjj.
* PJJIND index of the modes for LPJJAN option.
*
*Parameters: input/output
* PJJ collision probabilities.
* PSJ escape probabilities.
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*---
* SUBROUTINE ARGUMENTS
*---
INTEGER M,NSEG,NSUB,NFI,NREG,LPS,IS(NFI-NREG+1),JS(LPS),NZON(NFI),
1 KANGL(NSUB),NOM(NSEG),IMU,NMU,NFUNL,NANGL,NPJJM,PJJIND(NPJJM,2)
REAL TR(0:M),PSJ(LPS),TRHAR(NMU,NFUNL,NANGL)
DOUBLE PRECISION W,H(NSEG),PJJ(NREG,NPJJM)
LOGICAL LPJJAN
*---
* LOCAL VARIABLES
*---
INTEGER I,J,NOMI,IC,IC0,NZI,NOMJ,IMOD,INU,INUP,IANG,ISUB
DOUBLE PRECISION TRI,TRJ,TAU,EXPT,HJD,HID,TAUD,EXPTD,TEMPD
LOGICAL LNEW
*
ISUB=0
LNEW=.TRUE.
IANG=KANGL(1)
DO I=1,NSEG
NOMI=NOM(I)
NZI=NZON(NOMI)
IF(NZI.LT.0) THEN
* Boundary Condition
LNEW=.TRUE.
IF(LPS.GT.0) THEN
* SCR for a non-cyclic tracking
IF(I.EQ.1) THEN
J=I+1
ELSE !! I.EQ.NSEG
J=I-1
ENDIF
NOMJ=NOM(J)
IC=0
DO IC0=IS(NOMI-NREG)+1,IS(NOMI-NREG+1)
IC=IC0
IF(JS(IC0).EQ.NOMJ) GOTO 10
ENDDO
CALL XABORT('MCGDDDF: UNABLE TO SET IC.')
10 HJD=H(J)
TRJ=TR(NZON(NOMJ))
TAU=HJD*TRJ
EXPT=2.0D0*HJD/(2.0D0+TAU)
PSJ(IC)=PSJ(IC)+REAL(W*EXPT)
ENDIF
ELSE
* this cell is a volume
IF(LNEW) THEN
ISUB=ISUB+1
IF(ISUB.GT.NSUB) CALL XABORT('MCGDDDF: NSUB OVERFLOW.')
LNEW=.FALSE.
IANG=KANGL(ISUB)
IF(IANG.GT.NANGL) CALL XABORT('MCGDDDF: NANGL OVERFLOW.')
ENDIF
TRI=TR(NZI)
HID=H(I)
TAUD=HID*TRI
EXPTD=HID/(2.D0+TAUD)
EXPTD=EXPTD*W*HID
IF(LPJJAN) THEN
DO IMOD=1,NPJJM
INU=PJJIND(IMOD,1)
INUP=PJJIND(IMOD,2)
TEMPD=DBLE(TRHAR(IMU,INU,IANG))*
1 DBLE(TRHAR(IMU,INUP,IANG))
PJJ(NOMI,IMOD)=PJJ(NOMI,IMOD)+EXPTD*TEMPD
ENDDO
ELSE
PJJ(NOMI,1)=PJJ(NOMI,1)+EXPTD
ENDIF
ENDIF
ENDDO
*
RETURN
END
|