1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
*DECK MCGCDD
SUBROUTINE MCGCDD(IPRINT,IPMACR,II,NG,NGEFF,NGIND,NCONV,M,NLONG,
1 NUN,NREG,LC,LFORW,PACA,NZON,KEYFLX,KEYCUR,IPERM,
2 IM,MCU,JU,EPSINT,MAXINT,FLUX,QFR,DIAGQ,CQ,DIAGF,
3 CF,ILUDF,ILUCF,LC0,IM0,MCU0)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of the CDD equations (ACA method) for a synthetic diffusion
* flux calculation.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): I. Suslov and R. Le Tellier
*
*Parameters: input
* IPRINT print parameter.
* IPMACR pointer to the macrolib LCM object ('GROUP' directory)
* II group being processed (II <= NGEFF).
* NG number of groups.
* NGEFF number of groups to process.
* NGIND index of the groups to process.
* NCONV logical array of convergence status for each group (.TRUE.
* not converged).
* M number of material mixtures.
* NLONG size of the corrective system.
* NUN number of unknowns per group.
* NREG number of volume regions.
* LC dimension of profiled matrices MCU and CQ.
* LFORW flag set to .false. to transpose the coefficient matrix.
* PACA type of preconditioner to solve the ACA corrective system.
* NZON index-number of the mixture type assigned to each volume.
* KEYFLX position of flux elements in FLUX vector.
* KEYCUR position of current elements in FLUX vector.
* IPERM permutation array.
* IM used in cdd acceleration.
* MCU used in cdd acceleration.
* JU used in ACA acceleration for ilu0.
* EPSINT stopping criterion for BICGSTAB in ACA resolution.
* MAXINT maximum number of iterations allowed for BICGSTAB in ACA
* resolution.
* QFR source vector.
* DIAGQ used in cdd acceleration.
* CQ used in cdd acceleration.
* DIAGF used in cdd acceleration.
* CF used in cdd acceleration.
* ILUDF used in cdd acceleration.
* ILUCF used in cdd acceleration.
* LC0 used in ILU0-ACA acceleration.
* IM0 used in ILU0-ACA acceleration.
* MCU0 used in ILU0-ACA acceleration.
*
*Parameters: output
* FLUX zonal scalar flux.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPMACR
INTEGER IPRINT,II,NG,NGEFF,NGIND(NGEFF),M,NLONG,NUN,NREG,LC,PACA,
1 NZON(NLONG),KEYFLX(NREG),KEYCUR(*),IPERM(NLONG),IM(NLONG+1),
2 MCU(LC),JU(NLONG),MAXINT,LC0,IM0(*),MCU0(*)
REAL EPSINT,FLUX(NUN),QFR(NUN,NGEFF),DIAGQ(NLONG),CQ(LC),
1 DIAGF(NLONG),CF(LC),ILUDF(NLONG),ILUCF(LC)
LOGICAL LFORW,NCONV(NGEFF)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPMACR,KPMACR
DOUBLE PRECISION FF
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: NJJ,IJJ,IPOS
REAL, ALLOCATABLE, DIMENSION(:) :: XSCAT
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: AR,PHI
*----
* SCRATCH STORAGE ALLOCATION
*----
IF(C_ASSOCIATED(IPMACR)) THEN
JPMACR=LCMGID(IPMACR,'GROUP')
ALLOCATE(NJJ(0:M),IJJ(0:M),IPOS(0:M),XSCAT(0:M*NG))
ELSE
JPMACR=C_NULL_PTR
ENDIF
ALLOCATE(PHI(NLONG),AR(NLONG))
*----
* CONSTRUCT RHS OF THE CDD SYSTEM
*----
DO I=1,NLONG
J=IPERM(I)
IF(NZON(J).GE.0) THEN
FF=DIAGQ(I)*QFR(KEYFLX(J),II)
ELSE
FF=0.0
ENDIF
DO IL=IM(I)+1,IM(I+1)
IF(MCU(IL).GT.0) THEN
L=IPERM(MCU(IL))
IF(NZON(L).GE.0) FF=FF+CQ(IL)*QFR(KEYFLX(L),II)
ENDIF
ENDDO
PHI(I)=FF
ENDDO
*----
* INVERSE THE SYSTEM BY THE ITERATIVE METHOD BICGSTAB
*----
* apply preconditioner to RHS
CALL MCGPRA(LFORW,2,PACA,.TRUE.,NLONG,LC,IM,MCU,JU,DIAGF,CF,
1 ILUDF,ILUCF,DIAGF,AR,PHI,LC0,IM0,MCU0,CF)
*
CALL MCGABG(IPRINT,LFORW,PACA,NLONG,LC,EPSINT,MAXINT,IM,MCU,JU,
1 DIAGF,CF,ILUDF,ILUCF,AR,PHI,1.0,LC0,IM0,MCU0)
*
IF(C_ASSOCIATED(JPMACR)) THEN
*---
* MODIFY THE CONTRIBUTION FORM THIS GROUP TO OTHER GROUP ISOTROPIC SOURCES
* (JACOBI -> GAUSS-SEIDEL)
*---
IG=NGIND(II)
DO JJ=1,NGEFF
IF(NCONV(JJ)) THEN
JG=NGIND(JJ)
IF(JG.GT.IG) THEN
KPMACR=LCMGIL(JPMACR,JG)
CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
DO 10 I=1,NLONG
J=IPERM(I)
IBM=NZON(J)
IF(IBM.GT.0) THEN
IND=KEYFLX(J)
IGG=IJJ(IBM)
DO 20 JND=1,NJJ(IBM)
IF(IG.EQ.IGG) THEN
QFR(IND,JJ)=QFR(IND,JJ)+
1 XSCAT(IPOS(IBM)+JND-1)*(REAL(PHI(I))-FLUX(IND))
GOTO 10
ENDIF
IGG=IGG-1
20 CONTINUE
ENDIF
10 CONTINUE
ENDIF
ENDIF
ENDDO
ENDIF
*---
* REORDER FLUX VECTOR
*---
DO I=1,NLONG
J=IPERM(I)
IF(NZON(J).GE.0) THEN
FLUX(KEYFLX(J))=REAL(PHI(I))
ELSE
FLUX(KEYCUR(J-NREG))=REAL(PHI(I))
ENDIF
ENDDO
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(AR,PHI)
IF(C_ASSOCIATED(IPMACR)) DEALLOCATE(XSCAT,IPOS,IJJ,NJJ)
RETURN
END
|