summaryrefslogtreecommitdiff
path: root/Dragon/src/MCGCDD.f
blob: 97c21580785763592975c085f6ed7bf9e517dcf2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
*DECK MCGCDD
      SUBROUTINE MCGCDD(IPRINT,IPMACR,II,NG,NGEFF,NGIND,NCONV,M,NLONG,
     1                  NUN,NREG,LC,LFORW,PACA,NZON,KEYFLX,KEYCUR,IPERM,
     2                  IM,MCU,JU,EPSINT,MAXINT,FLUX,QFR,DIAGQ,CQ,DIAGF,
     3                  CF,ILUDF,ILUCF,LC0,IM0,MCU0)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of the CDD equations (ACA method) for a synthetic diffusion
* flux calculation.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): I. Suslov and R. Le Tellier
*
*Parameters: input
* IPRINT  print parameter.
* IPMACR  pointer to the macrolib LCM object ('GROUP' directory)
* II      group being processed (II <= NGEFF).
* NG      number of groups.
* NGEFF   number of groups to process.
* NGIND   index of the groups to process.
* NCONV   logical array of convergence status for each group (.TRUE.
*         not converged).
* M       number of material mixtures.
* NLONG   size of the corrective system.
* NUN     number of unknowns per group.
* NREG    number of volume regions.
* LC      dimension of profiled matrices MCU and CQ.
* LFORW   flag set to .false. to transpose the coefficient matrix.
* PACA    type of preconditioner to solve the ACA corrective system.
* NZON    index-number of the mixture type assigned to each volume.
* KEYFLX  position of flux elements in FLUX vector.
* KEYCUR  position of current elements in FLUX vector.
* IPERM   permutation array.
* IM      used in cdd acceleration.
* MCU     used in cdd acceleration.
* JU      used in ACA  acceleration for ilu0.
* EPSINT  stopping criterion for BICGSTAB in ACA resolution.
* MAXINT  maximum number of iterations allowed for BICGSTAB in ACA
*         resolution.
* QFR     source vector.
* DIAGQ   used in cdd acceleration.
* CQ      used in cdd acceleration.
* DIAGF   used in cdd acceleration.
* CF      used in cdd acceleration. 
* ILUDF   used in cdd acceleration.
* ILUCF   used in cdd acceleration.
* LC0     used in ILU0-ACA acceleration.
* IM0     used in ILU0-ACA acceleration.
* MCU0    used in ILU0-ACA acceleration.
*
*Parameters: output
* FLUX    zonal scalar flux.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPMACR
      INTEGER IPRINT,II,NG,NGEFF,NGIND(NGEFF),M,NLONG,NUN,NREG,LC,PACA,
     1 NZON(NLONG),KEYFLX(NREG),KEYCUR(*),IPERM(NLONG),IM(NLONG+1),
     2 MCU(LC),JU(NLONG),MAXINT,LC0,IM0(*),MCU0(*)
      REAL EPSINT,FLUX(NUN),QFR(NUN,NGEFF),DIAGQ(NLONG),CQ(LC),
     1 DIAGF(NLONG),CF(LC),ILUDF(NLONG),ILUCF(LC)
      LOGICAL LFORW,NCONV(NGEFF)
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) JPMACR,KPMACR
      DOUBLE PRECISION FF
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NJJ,IJJ,IPOS
      REAL, ALLOCATABLE, DIMENSION(:) :: XSCAT
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: AR,PHI
*----
*  SCRATCH STORAGE ALLOCATION
*----
      IF(C_ASSOCIATED(IPMACR)) THEN
         JPMACR=LCMGID(IPMACR,'GROUP')
         ALLOCATE(NJJ(0:M),IJJ(0:M),IPOS(0:M),XSCAT(0:M*NG))
      ELSE
         JPMACR=C_NULL_PTR
      ENDIF
      ALLOCATE(PHI(NLONG),AR(NLONG))
*----
* CONSTRUCT RHS OF THE CDD SYSTEM
*----
      DO I=1,NLONG
         J=IPERM(I)
         IF(NZON(J).GE.0) THEN
            FF=DIAGQ(I)*QFR(KEYFLX(J),II)
         ELSE
            FF=0.0
         ENDIF
         DO IL=IM(I)+1,IM(I+1)
         IF(MCU(IL).GT.0) THEN
            L=IPERM(MCU(IL))
            IF(NZON(L).GE.0) FF=FF+CQ(IL)*QFR(KEYFLX(L),II)
         ENDIF
         ENDDO
         PHI(I)=FF
      ENDDO
*----
* INVERSE THE SYSTEM BY THE ITERATIVE METHOD BICGSTAB
*----
*     apply preconditioner to RHS
      CALL MCGPRA(LFORW,2,PACA,.TRUE.,NLONG,LC,IM,MCU,JU,DIAGF,CF,
     1     ILUDF,ILUCF,DIAGF,AR,PHI,LC0,IM0,MCU0,CF)
*
      CALL MCGABG(IPRINT,LFORW,PACA,NLONG,LC,EPSINT,MAXINT,IM,MCU,JU,
     1     DIAGF,CF,ILUDF,ILUCF,AR,PHI,1.0,LC0,IM0,MCU0)
*
      IF(C_ASSOCIATED(JPMACR)) THEN
*---
* MODIFY THE CONTRIBUTION FORM THIS GROUP TO OTHER GROUP ISOTROPIC SOURCES
* (JACOBI -> GAUSS-SEIDEL) 
*---
         IG=NGIND(II)
         DO JJ=1,NGEFF
         IF(NCONV(JJ)) THEN
            JG=NGIND(JJ)
            IF(JG.GT.IG) THEN
              KPMACR=LCMGIL(JPMACR,JG)
              CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
              CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
              CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
              CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
              DO 10 I=1,NLONG
                J=IPERM(I)
                IBM=NZON(J)
                IF(IBM.GT.0) THEN
                  IND=KEYFLX(J)
                  IGG=IJJ(IBM)
                  DO 20 JND=1,NJJ(IBM)
                  IF(IG.EQ.IGG) THEN
                     QFR(IND,JJ)=QFR(IND,JJ)+
     1               XSCAT(IPOS(IBM)+JND-1)*(REAL(PHI(I))-FLUX(IND))
                     GOTO 10
                  ENDIF
                  IGG=IGG-1
 20               CONTINUE
                ENDIF
 10           CONTINUE
            ENDIF
         ENDIF
         ENDDO
      ENDIF
*---
* REORDER FLUX VECTOR
*---
      DO I=1,NLONG
         J=IPERM(I)
         IF(NZON(J).GE.0) THEN
            FLUX(KEYFLX(J))=REAL(PHI(I))
         ELSE
            FLUX(KEYCUR(J-NREG))=REAL(PHI(I))
         ENDIF
      ENDDO
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(AR,PHI)
      IF(C_ASSOCIATED(IPMACR)) DEALLOCATE(XSCAT,IPOS,IJJ,NJJ)
      RETURN
      END