1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
*DECK MCGBIC
SUBROUTINE MCGBIC(SUBFFI,SUBFFA,SUBDLC,SUBSCH,CYCLIC,KPSYS,
1 IPRINT,IPTRK,IFTRAK,IPMACR,NDIM,K,N,NLONG,PHIOUT,
2 NZON,MATALB,M,NANI,NMU,NMAX,NANGL,NREG,NSOUT,SOUR,
3 IAAC,ISCR,LC,LFORW,PACA,ITST,MAXI,QFR,PHIIN,CAZ0,
4 CAZ1,CAZ2,CPO,ZMU,WZMU,V,EPS,EPSI,REPSI,SIGAL,LPS,
5 NG,NGEFF,NGIND,NCONV,LNCONV,NLIN,NFUNL,KEYFLX,KEYCUR,
6 STIS,NPJJM,REBFLG,LPRISM,N2REG,N2SOU,NZP,DELU,FACSYM,
7 IDIR,NBATCH)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solve the linear system obtained by the characteristics formalism
* with BiCGSTAB iterative approach.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters:
* SUBFFI flux integration subroutine with isotropic source.
* SUBFFA flux integration subroutine with anisotropic source.
* SUBDLC flux integration subroutine with linear-discontinuous source.
* SUBSCH track coefficients calculation subroutine.
* CYCLIC cyclic tracking flag.
* KPSYS pointer array for each group properties.
* IPRINT print parameter (equal to zero for no print).
* IPTRK pointer to the tracking (L_TRACK signature).
* IFTRAK tracking file unit number.
* IPMACR pointer to the macrolib LCM object.
* NDIM number of dimensions for the geometry.
* K total number of volumes for which specific values
* of the neutron flux and reactions rates are required.
* N total number of unknowns in vectors SUNKNO and FUNKNO.
* NLONG number of spatial unknowns.
* PHIOUT output flux vector.
* NZON mixture-albedo index array in MCCG format.
* MATALB albedo-mixture index array in MOCC format.
* M number of material mixtures.
* NANI scattering anisotropy (=1 for isotropic scattering).
* NMU order of the polar quadrature set.
* NMAX maximum number of elements in a track.
* NANGL number of tracking angles in the plan.
* NREG number of regions (volumes).
* NSOUT number of outer surfaces.
* SOUR scratch.
* IAAC no acceleration / CDD acceleration of inner iterations (0/1).
* ISCR no acceleration / SCR acceleration of inner iterations (0/1).
* LC dimension of profiled matrices MCU and CQ.
* LFORW flag set to .false. to transpose the coefficient matrix.
* PACA type of preconditioner to solve the ACA corrective system.
* ITST output: number of inner iterations.
* MAXI maximum number of inner iterations allowed.
* QFR input source vector.
* PHIIN input flux vector.
* CAZ0 cosines of the tracking polar angles in 3D.
* CAZ1 first cosines of the different tracking azimuthal angles.
* CAZ2 second cosines of the different tracking azimuthal angles.
* CPO cosines of the different tracking polar angles in 2D.
* ZMU polar quadrature set.
* WZMU polar quadrature set.
* V volumes.
* EPS precision reached after min(MAXI,ITST) iterations.
* EPSI tolerance for stopping criterion. Process is stopped
* as soon as: ||Phi(n+1)-Phi(n)||/||Phi(n)|| <= eps
* with ||.|| the euclidean norm.
* REPSI array containing precision of each iteration.
* SIGAL total cross-section and albedo array.
* LPS used in scr acceleration.
* NG number of groups.
* NGEFF number of groups to process.
* NGIND index of the groups to process.
* NCONV array of convergence flag for each group.
* LNCONV number of unconverged groups.
* NLIN number of polynomial components in flux spatial expansion.
* NFUNL number of moments of the flux (in 2D: NFUNL=NANI*(NANI+1)/2).
* KEYFLX position of flux elements in FUNKNO vector.
* KEYCUR position of current elements in FUNKNO vector.
* STIS 'Source term isolation' option for flux integration.
* NPJJM number of pjj modes to store for STIS option.
* REBFLG ACA or SCR rebalancing flag.
* LPRISM 3D prismatic extended tracking flag.
* N2REG number of regions in the 2D tracking if LPRISM.
* N2SOU number of external surfaces in the 2D tracking if LPRISM.
* NZP number of z-plans if LPRISM.
* DELU input track spacing for 3D track reconstruction if LPRISM.
* FACSYM tracking symmetry factor for maximum track length if LPRISM.
* IDIR direction of fundamental current for TIBERE with MoC
* (=0,1,2,3).
* NBATCH number of tracks processed in each OpenMP core (default: =1).
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) KPSYS(NGEFF),IPTRK,IPMACR
INTEGER NGEFF,IPRINT,IFTRAK,NDIM,K,N,NLONG,NG,NZON(NLONG),M,
1 NANI,NMU,NMAX,IAAC,LC,PACA,ITST(NGEFF),MAXI,NANGL,NREG,NSOUT,
2 ISCR,LPS,NGIND(NGEFF),LNCONV,NLIN,NFUNL,KEYFLX(NREG,NLIN,NFUNL),
3 KEYCUR(NLONG-NREG),STIS,NPJJM,MATALB(-NSOUT:NREG),N2REG,N2SOU,
4 NZP,IDIR,NBATCH
REAL QFR(N,NGEFF),PHIIN(N,NGEFF),CPO(NMU),ZMU(NMU),WZMU(NMU),
1 V(NLONG),EPS(NGEFF),EPSI,REPSI(MAXI,NGEFF),SIGAL(-6:M,NGEFF),
2 DELU,FACSYM
DOUBLE PRECISION CAZ0(NANGL),CAZ1(NANGL),CAZ2(NANGL),
1 PHIOUT(N,NGEFF),SOUR(N,NGEFF)
LOGICAL LFORW,CYCLIC,NCONV(NGEFF),REBFLG,LPRISM
EXTERNAL SUBFFI,SUBFFA,SUBDLC,SUBSCH
*---
* LOCAL VARIABLES
*---
INTEGER J,II,ITER,MAXINT
REAL R,BI,WI,RT1,EPSINT,REPSMAX
REAL SDOT
DOUBLE PRECISION DDOT
LOGICAL RHSFLG
INTRINSIC SQRT,ABS
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:,:) :: RHS,PI,RI,SI,ROT,API,AUX
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(RHS(N,NGEFF),PI(N,NGEFF),RI(N,NGEFF),SI(N,NGEFF),
1 ROT(N,NGEFF),API(N,NGEFF),AUX(2,NGEFF))
*---
IF(MAXI.LT.4) CALL XABORT('MCGBIC: MAXI MUST BE >= 4.')
MAXINT=MAXI-1
EPSINT=0.01*EPSI
RHSFLG=.TRUE.
*---
ITER=1
* a first iteration
CALL MCGFL1(SUBFFI,SUBFFA,SUBDLC,SUBSCH,CYCLIC,KPSYS,IPRINT,IPTRK,
1 IFTRAK,IPMACR,NDIM,K,N,NLONG,PHIOUT,NZON,MATALB,M,NANI,NMU,
2 NMAX,NANGL,NREG,NSOUT,NG,NGEFF,NGIND,SOUR,IAAC,ISCR,LC,LFORW,
3 PACA,EPSINT,MAXINT,NLIN,NFUNL,KEYFLX,KEYCUR,QFR,PHIIN(1,1),
4 CAZ0,CAZ1,CAZ2,CPO,ZMU,WZMU,V,SIGAL,LPS,NCONV,.FALSE.,STIS,
5 NPJJM,REBFLG,LPRISM,N2REG,N2SOU,NZP,DELU,FACSYM,IDIR,NBATCH)
DO II=1,NGEFF
IF (NCONV(II)) THEN
DO J=1,N
RI(J,II)=REAL(PHIOUT(J,II))-PHIIN(J,II)
PHIIN(J,II)=REAL(PHIOUT(J,II))
ENDDO
R=SDOT(N,RI(1,II),1,RI(1,II),1)
REPSI(ITER,II)=REAL(SQRT(R/DDOT(N,PHIOUT(1,II),1,
1 PHIOUT(1,II),1)))
IF (REPSI(ITER,II).LE.EPSI) THEN
NCONV(II)=.FALSE.
ITST(II)=ITER
EPS(II)=REPSI(ITER,II)
LNCONV=LNCONV-1
ENDIF
IF (LNCONV.EQ.0) RETURN
ENDIF
ENDDO
*---
10 ITER=ITER+1
* compute initial residual vector
CALL MCGFL1(SUBFFI,SUBFFA,SUBDLC,SUBSCH,CYCLIC,KPSYS,IPRINT,IPTRK,
1 IFTRAK,IPMACR,NDIM,K,N,NLONG,PHIOUT,NZON,MATALB,M,NANI,NMU,
2 NMAX,NANGL,NREG,NSOUT,NG,NGEFF,NGIND,SOUR,IAAC,ISCR,LC,LFORW,
3 PACA,EPSINT,MAXINT,NLIN,NFUNL,KEYFLX,KEYCUR,QFR,PHIIN(1,1),
4 CAZ0,CAZ1,CAZ2,CPO,ZMU,WZMU,V,SIGAL,LPS,NCONV,.FALSE.,STIS,
5 NPJJM,REBFLG,LPRISM,N2REG,N2SOU,NZP,DELU,FACSYM,IDIR,NBATCH)
DO II=1,NGEFF
IF (NCONV(II)) THEN
DO J=1,N
RI(J,II)=REAL(PHIOUT(J,II))-PHIIN(J,II)
ENDDO
R=SDOT(N,RI(1,II),1,RI(1,II),1)
REPSI(ITER,II)=REAL(SQRT(R/DDOT(N,PHIOUT(1,II),1,
1 PHIOUT(1,II),1)))
IF (REPSI(ITER,II).LE.EPSI) THEN
NCONV(II)=.FALSE.
ITST(II)=ITER
EPS(II)=REPSI(ITER,II)
LNCONV=LNCONV-1
DO J=1,N
PHIIN(J,II)=REAL(PHIOUT(J,II))
ENDDO
ENDIF
IF (LNCONV.EQ.0) RETURN
DO J=1,N
PI(J,II)=RI(J,II)
ROT(J,II)=RI(J,II)
ENDDO
* RT2=R !!SDOT(N,RI,1,ROT,1)
AUX(1,II)=R !!SDOT(N,RI(1,II),1,ROT(1,II),1)
ENDIF
ENDDO
*---
IF (RHSFLG) THEN
* evaluate RHS of the linear system
IF (IPRINT.GT.3) THEN
WRITE(6,100) IAAC,ISCR
ENDIF
RHS(:N,:NGEFF)=0.0
CALL MCGFL1(SUBFFI,SUBFFA,SUBDLC,SUBSCH,CYCLIC,KPSYS,IPRINT,
1 IPTRK,IFTRAK,IPMACR,NDIM,K,N,NLONG,PHIOUT,NZON,MATALB,
2 M,NANI,NMU,NMAX,NANGL,NREG,NSOUT,NG,NGEFF,NGIND,SOUR,IAAC,
2 ISCR,LC,LFORW,PACA,EPSINT,MAXINT,NLIN,NFUNL,KEYFLX,KEYCUR,
3 QFR,RHS(1,1),CAZ0,CAZ1,CAZ2,CPO,ZMU,WZMU,V,SIGAL,LPS,
4 NCONV,.FALSE.,STIS,NPJJM,REBFLG,LPRISM,N2REG,N2SOU,NZP,
5 DELU,FACSYM,IDIR,NBATCH)
DO II=1,NGEFF
IF (NCONV(II)) THEN
DO J=1,N
RHS(J,II)=REAL(PHIOUT(J,II))
ENDDO
ENDIF
ENDDO
RHSFLG=.FALSE.
ENDIF
*
CALL MCGFL1(SUBFFI,SUBFFA,SUBDLC,SUBSCH,CYCLIC,KPSYS,IPRINT,IPTRK,
1 IFTRAK,IPMACR,NDIM,K,N,NLONG,PHIOUT,NZON,MATALB,M,NANI,NMU,
2 NMAX,NANGL,NREG,NSOUT,NG,NGEFF,NGIND,SOUR,IAAC,ISCR,LC,LFORW,
3 PACA,EPSINT,MAXINT,NLIN,NFUNL,KEYFLX,KEYCUR,QFR,PI(1,1),CAZ0,
4 CAZ1,CAZ2,CPO,ZMU,WZMU,V,SIGAL,LPS,NCONV,.FALSE.,STIS,NPJJM,
5 REBFLG,LPRISM,N2REG,N2SOU,NZP,DELU,FACSYM,IDIR,NBATCH)
ITER=ITER+1
DO II=1,NGEFF
IF (NCONV(II)) THEN
DO J=1,N
API(J,II)=PI(J,II)-REAL(PHIOUT(J,II))+RHS(J,II)
ENDDO
REPSI(ITER,II)=REPSI((ITER-1),II)
ENDIF
ENDDO
*
DO WHILE (ITER.LT.(MAXI-1))
* BiCGSTAB iterations
ITER=ITER+1
*
DO II=1,NGEFF
IF (NCONV(II)) THEN
AUX(2,II)=AUX(1,II)/SDOT(N,API(1,II),1,ROT(1,II),1)
DO J=1,N
SI(J,II)=RI(J,II)-AUX(2,II)*API(J,II)
ENDDO
ENDIF
ENDDO
*
CALL MCGFL1(SUBFFI,SUBFFA,SUBDLC,SUBSCH,CYCLIC,KPSYS,IPRINT,
1 IPTRK,IFTRAK,IPMACR,NDIM,K,N,NLONG,PHIOUT,NZON,MATALB,
2 M,NANI,NMU,NMAX,NANGL,NREG,NSOUT,NG,NGEFF,NGIND,SOUR,IAAC,
3 ISCR,LC,LFORW,PACA,EPSINT,MAXINT,NLIN,NFUNL,KEYFLX,KEYCUR,
4 QFR,SI(1,1),CAZ0,CAZ1,CAZ2,CPO,ZMU,WZMU,V,SIGAL,LPS,NCONV,
5 .FALSE.,STIS,NPJJM,REBFLG,LPRISM,N2REG,N2SOU,NZP,DELU,
6 FACSYM,IDIR,NBATCH)
REPSMAX=0.0
DO II=1,NGEFF
IF (NCONV(II)) THEN
DO J=1,N
RI(J,II)=SI(J,II)-REAL(PHIOUT(J,II))+RHS(J,II)
ENDDO
WI=SDOT(N,RI(1,II),1,SI(1,II),1)/
1 SDOT(N,RI(1,II),1,RI(1,II),1)
DO J=1,N
PHIIN(J,II)=PHIIN(J,II)+AUX(2,II)*PI(J,II)+WI*SI(J,II)
RI(J,II)=SI(J,II)-WI*RI(J,II)
ENDDO
R=SDOT(N,RI(1,II),1,RI(1,II),1)
REPSI(ITER,II)=SQRT(R/SDOT(N,PHIIN(1,II),1,
1 PHIIN(1,II),1))
REPSMAX=MAX(REPSMAX,REPSI(ITER,II))
IF (REPSI(ITER,II).LE.EPSI) THEN
NCONV(II)=.FALSE.
ITST(II)=ITER
EPS(II)=REPSI(ITER,II)
LNCONV=LNCONV-1
ENDIF
IF (LNCONV.EQ.0) GO TO 20
RT1=AUX(1,II)
AUX(1,II)=SDOT(N,RI(1,II),1,ROT(1,II),1)
BI=AUX(1,II)/RT1*AUX(2,II)/WI
DO J=1,N
PI(J,II)=RI(J,II)+BI*(PI(J,II)-WI*API(J,II))
ENDDO
ENDIF
ENDDO
*
CALL MCGFL1(SUBFFI,SUBFFA,SUBDLC,SUBSCH,CYCLIC,KPSYS,IPRINT,
1 IPTRK,IFTRAK,IPMACR,NDIM,K,N,NLONG,PHIOUT,NZON,MATALB,
2 M,NANI,NMU,NMAX,NANGL,NREG,NSOUT,NG,NGEFF,NGIND,SOUR,IAAC,
3 ISCR,LC,LFORW,PACA,EPSINT,MAXINT,NLIN,NFUNL,KEYFLX,KEYCUR,
4 QFR,PI(1,1),CAZ0,CAZ1,CAZ2,CPO,ZMU,WZMU,V,SIGAL,LPS,NCONV,
5 .FALSE.,STIS,NPJJM,REBFLG,LPRISM,N2REG,N2SOU,NZP,DELU,
6 FACSYM,IDIR,NBATCH)
ITER=ITER+1
DO II=1,NGEFF
IF (NCONV(II)) THEN
DO J=1,N
API(J,II)=PI(J,II)-REAL(PHIOUT(J,II))+RHS(J,II)
ENDDO
REPSI(ITER,II)=REPSI((ITER-1),II)
ENDIF
ENDDO
ENDDO
*
20 CONTINUE
* determine final residual norm
ITER=ITER+1
DO II=1,NGEFF
IF (NCONV(II)) THEN
ITST(II)=ITER
ELSE
IF (ITST(II).NE.1) THEN
NCONV(II)=.TRUE.
ITST(II)=ITST(II)+1
ENDIF
ENDIF
ENDDO
CALL MCGFL1(SUBFFI,SUBFFA,SUBDLC,SUBSCH,CYCLIC,KPSYS,IPRINT,IPTRK,
1 IFTRAK,IPMACR,NDIM,K,N,NLONG,PHIOUT,NZON,MATALB,M,NANI,NMU,
2 NMAX,NANGL,NREG,NSOUT,NG,NGEFF,NGIND,SOUR,0,0,LC,LFORW,PACA,
3 EPSINT,MAXINT,NLIN,NFUNL,KEYFLX,KEYCUR,QFR,PHIIN(1,1),CAZ0,
4 CAZ1,CAZ2,CPO,ZMU,WZMU,V,SIGAL,LPS,NCONV,.FALSE.,STIS,NPJJM,
5 REBFLG,LPRISM,N2REG,N2SOU,NZP,DELU,FACSYM,IDIR,NBATCH)
DO II=1,NGEFF
IF (NCONV(II)) THEN
DO J=1,N
RI(J,II)=REAL(PHIOUT(J,II))-PHIIN(J,II)
ENDDO
R=SDOT(N,RI(1,II),1,RI(1,II),1)
REPSI(ITST(II),II)=SQRT(R/SDOT(N,PHIIN(1,II),1,
1 PHIIN(1,II),1))
DO J=1,N
PHIIN(J,II)=REAL(PHIOUT(J,II))
ENDDO
EPS(II)=REPSI(ITST(II),II)
ENDIF
ENDDO
LNCONV=0
IF (ITER.LT.MAXI) THEN
DO II=1,NGEFF
IF (EPS(II).GT.EPSI) THEN
IF ((IAAC.GT.0).OR.(ISCR.GT.0)) THEN
IAAC=0
ISCR=0
RHSFLG=.TRUE.
ENDIF
IF (IPRINT.GT.2) WRITE(6,200) ITER
NCONV(II)=.TRUE.
LNCONV=LNCONV+1
ELSE
NCONV(II)=.FALSE.
ENDIF
ENDDO
IF (LNCONV.GT.0) GO TO 10
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(AUX,API,ROT,SI,RI,PI,RHS)
RETURN
*
100 FORMAT(31H RHS CALCULATED WITH AAC-SCR : ,I1,1H-,I1)
200 FORMAT(37H WARNING : BAD PREVISION, RESTART AT ,I4,10H ITERATION)
END
|