summaryrefslogtreecommitdiff
path: root/Dragon/src/MCGASM.f
blob: d58660d9bfa8acf530b54966c88c3dac934f3d29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
*DECK MCGASM
      SUBROUTINE MCGASM(SUBPJJ,SUBDS2,SUBDSP,SUBDSC,IPTRK,KPSYS,IPRINT,
     1                  IFTRAK,NANI,NGEFF,NFI,NREG,NLONG,M,NMU,NANGL,
     2                  N2MAX,LC,NDIM,NGIND,CYCLIC,ISCR,CAZ0,CAZ1,CAZ2,
     3                  CPO,LC0,PACA,LPS,LTMT,NPJJM,LACA,LPJJ,LPJJAN,
     4                  SIGAL,LPRISM,N2REG,N2SOU,NZP,DELU,FACSYM,ISTRM)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Preconditioning matrices calculation based on the Algebraic Collapsing
* Acceleration developed by I. R. Suslov and R. Le Tellier 
* or Self-Collision Probabilities acceleration developed by G.J. Wu 
* and R. Roy.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): I. Suslov and R. Le Tellier
*
*Parameters: input/output
* SUBPJJ  PJJ calculation subroutine.
* SUBDS2  ACA coefficients summation subroutine.
* SUBDSP  ACA coefficients position subroutine.
* SUBDSC  ACA coefficients calculation subroutine.
* IPTRK   pointer to the tracking (L_TRACK signature).
* KPSYS   pointer array for each group properties.
* IPRINT  print parameter (equal to zero for no print).
* IFTRAK  tracking file unit number if IOFSET=0.
* NANI    number of Legendre orders.
* NGEFF   number of groups to process.
* NFI     total number of volumes and surfaces for which specific values
*         of the neutron flux and reactions rates are required.
* NREG    number of volumes for which specific values
*         of the neutron flux and reactions rates are required.
* NLONG   order of the corrective system.
* M       number of material mixtures.
* NMU     order of the polar quadrature in 2D / 1 in 3D.
* NANGL   number of tracking angles in the plane.
* N2MAX   maximum number of elements in a track.
* LC      dimension of vector MCU.
* NDIM    number of dimensions for the geometry.
* NGIND   index of the groups to process.
* CYCLIC  flag set to .true. for cyclic tracking.
* ISCR    SCR preconditionning flag.
* CAZ0    cosines of the tracking polar angles in 3D.
* CAZ1    first cosines of the different tracking azimuthal angles.
* CAZ2    second cosines of the different tracking azimuthal angles.
* CPO     cosines of the different tracking polar angles in 2D.
* PACA    type of preconditioner to solve the ACA corrective system.
* LC0     used in ILU0-ACA acceleration.
* LPS     dimension of JS.
* LTMT    tracking merging flag.
* NPJJM   number of pjj modes to store for STIS option.
* LACA    ACA flag.
* LPJJ    PJJ flag.
* LPJJAN  anisotropic PJJ flag.
* SIGAL   albedos and total cross sections array.
* LPRISM  3D prismatic extended tracking flag.
* N2REG   number of regions in the 2D tracking if LPRISM.
* N2SOU   number of external surfaces in the 2D tracking if LPRISM.
* NZP     number of z-plans if LPRISM.
* DELU    input track spacing for 3D track reconstruction if LPRISM.
* FACSYM  tracking symmetry factor for maximum track length if LPRISM.
* ISTRM   type of streaming effect:
*         =1 no streaming effect;
*         =2 isotropic streaming effect;
*         =3 anisotropic streaming effect.
*
*Reference:
*  Igor R. Suslov, "An Algebraic Collapsing Acceleration in Long 
*  Characteristics Transport Theory" Proc. of 11-th Symposium of 
*  AER, 178/9-188, Csopak, September 2001.
*  \\\\
*  Igor R. Suslov, "Solution of Transport Equation in 2- and 3-
*  dimensional Irregular Geometry by the Method of Characteristics"
*  Int. Conf. Mathematical. Methods and Supercomputing in Nuclear
*  Applications, Karlsruhe, 1994.
*  \\\\
*  G.J. Wu and R. Roy, "Acceleration Techniques for Trajectory-based
*  Deterministic 3D Transport Solvers",
*  Ann. Nucl. Energy, 30, 567-583 (2003).
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,KPSYS(NGEFF)
      INTEGER IPRINT,IFTRAK,NGEFF,NFI,NREG,NLONG,M,NMU,NANGL,N2MAX,LC,
     1 NDIM,NGIND(NGEFF),LC0,PACA,LPS,NPJJM,N2REG,N2SOU,NZP,ISTRM
      REAL CPO(NMU),SIGAL(-6:M,NGEFF),DELU,FACSYM
      DOUBLE PRECISION CAZ0(NANGL),CAZ1(NANGL),CAZ2(NANGL)
      LOGICAL LTMT,LACA,LPJJ,LPJJAN,LPRISM,LFORC,CYCLIC
      EXTERNAL SUBPJJ,SUBDS2,SUBDSP,SUBDSC
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) JPSYS
      INTEGER NCODE(6),SSYM
      REAL T1,T2,T3,XMUANG(1)
      DOUBLE PRECISION WEIGHT,WEIGHT0
      CHARACTER TEXT4*4
      INTEGER, TARGET, SAVE, DIMENSION(1) :: IDUMMY
      INTEGER, TARGET, SAVE, DIMENSION(1,1) :: I2DUMMY
      REAL, TARGET, SAVE, DIMENSION(1) :: DUMMY
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, POINTER, DIMENSION(:) :: NZON,KM,IM,MCU,NZONA,IPERM,
     1 JU,IM0,MCU0,IS,JS
      INTEGER, POINTER, DIMENSION(:,:) :: PJJIND
      REAL, POINTER, DIMENSION(:) :: ZMU,WZMU,V,VA
      TYPE(C_PTR) :: ZMU_PTR,WZMU_PTR,NZON_PTR,V_PTR,KM_PTR,IM_PTR,
     1 MCU_PTR,NZONA_PTR,VA_PTR,IPERM_PTR,JU_PTR,IM0_PTR,MCU0_PTR,
     2 PJJIND_PTR,IS_PTR,JS_PTR
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NOM,NOM0,PREV,NEXT,NOM3D,
     1 NOM3D0,KANGL,KEYANI
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: ISGNR
      REAL, ALLOCATABLE, DIMENSION(:) :: ZMUA,WZMUA,PJJ,PSJ,XSW,CQ,
     1 DIAGQ,DIAGFR,CFR,WORK,LUDF,LUCF,PJJX,PJJY,PJJZ,PJJXI,PJJYI,
     2 PJJZI,PSJX,PSJY,PSJZ
      REAL, ALLOCATABLE, DIMENSION(:,:) :: RHARM
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: TRHAR
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: H,H0,HH,H3D,H3D0,
     1 PJJD,PJJDX,PJJDY,PJJDZ,PJJDXI,PJJDYI,PJJDZI
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: DIAGF,CF
      INTEGER, POINTER, DIMENSION(:) :: INDREG
      REAL, POINTER, DIMENSION(:) :: ZZZ
      DOUBLE PRECISION, POINTER, DIMENSION(:) :: VNORF,CMU,CMUI,SMU,
     1 SMUI,TMU,TMUI
      TYPE(C_PTR) :: INDREG_PTR,ZZZ_PTR,VNORF_PTR,CMU_PTR,CMUI_PTR,
     1 SMU_PTR,SMUI_PTR,TMU_PTR,TMUI_PTR
*----
*  INITIALIZE POINTERS
*----
      KM=>IDUMMY
      IM=>IDUMMY
      MCU=>IDUMMY
      NZONA=>IDUMMY
      VA=>DUMMY
      IPERM=>IDUMMY
      JU=>IDUMMY
      IM0=>IDUMMY
      MCU0=>IDUMMY
      IS=>IDUMMY
      JS=>IDUMMY
      PJJIND=>I2DUMMY
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(DIAGF(NLONG,NGEFF),CF(LC,NGEFF))
*----
*  TRACKING INFORMATION PINNING AND MEMORY ALLOCATION
*   NZON    index-number of the mixture type assigned to each volume.
*   NZONA   index-number of the mixture type assigned to each volume for
*           ACA.
*   ISGNR   array of the spherical harmonics signs for the different
*           reflections.
*   V       volumes and surfaces.
*   VA      volumes and surfaces reordered for ACA.
*   ZMU     polar quadrature set in 2D.
*   WZMU    polar quadrature set in 2D.
*   KM      used in ACA acceleration.
*   MCU     used in ACA acceleration.
*   IM      used in ACA acceleration.
*   JU      used in ACA  acceleration for ilu0.
*   IPERM   permutation array for the unknowns of the corrective system
*           for ilu0.
*   LC0     used in ILU0-ACA acceleration.
*   IM0     used in ILU0-ACA acceleration.
*   MCU0    used in ILU0-ACA acceleration.
*   IS      arrays for surfaces neighbors
*   JS      JS(IS(ISOUT)+1:IS(ISOUT+1)) give the neighboring regions to
*           surface ISOUT.
*   PJJIND  index of the modes for STIS option.
*---- 
*---
* GENERATE ALL SIGNS FOR SPHERICAL HARMONICS
*---
      IF(NDIM.EQ.1) THEN
         NFUNL=NANI
         NMOD=2
      ELSE IF((.NOT.LPRISM).AND.(NDIM.EQ.2)) THEN
         NFUNL=NANI*(NANI+1)/2
         NMOD=4
      ELSE ! NDIM.EQ.3
         NFUNL=NANI*NANI
         NMOD=8
      ENDIF
      ALLOCATE(ISGNR(NMOD,NFUNL),KEYANI(NFUNL))
      CALL MOCIK3(NANI-1,NFUNL,NMOD,ISGNR,KEYANI) 
      DEALLOCATE(KEYANI)
*---
* ASSEMBLY OF SCR AND ACA MATRICES
*---
*     recover polar quadrature
      CALL LCMGPD(IPTRK,'ZMU$MCCG',ZMU_PTR)
      CALL LCMGPD(IPTRK,'WZMU$MCCG',WZMU_PTR)
      CALL C_F_POINTER(ZMU_PTR,ZMU,(/ NMU /))
      CALL C_F_POINTER(WZMU_PTR,WZMU,(/ NMU /))
*     recover MATALB and VOLSUR
      CALL LCMGPD(IPTRK,'NZON$MCCG',NZON_PTR)
      CALL LCMGPD(IPTRK,'V$MCCG',V_PTR)
      CALL C_F_POINTER(NZON_PTR,NZON,(/ NFI /))
      CALL C_F_POINTER(V_PTR,V,(/ NFI /))
      IF(LACA) THEN
*        recover connection matrices
         CALL LCMGPD(IPTRK,'KM$MCCG',KM_PTR)
         CALL LCMGPD(IPTRK,'IM$MCCG',IM_PTR)
         CALL LCMGPD(IPTRK,'MCU$MCCG',MCU_PTR)
         CALL C_F_POINTER(KM_PTR,KM,(/ NFI /))
         CALL C_F_POINTER(IM_PTR,IM,(/ NLONG+1 /))
         CALL C_F_POINTER(MCU_PTR,MCU,(/ LC /))
*        recover modified MATALB and VOLSUR
         CALL LCMGPD(IPTRK,'NZONA$MCCG',NZONA_PTR)
         CALL LCMGPD(IPTRK,'VA$MCCG',VA_PTR)
         CALL C_F_POINTER(NZONA_PTR,NZONA,(/ NFI /))
         CALL C_F_POINTER(VA_PTR,VA,(/ NFI /))
*        recover permutation array
         CALL LCMGPD(IPTRK,'INVPI$MCCG',IPERM_PTR)
         CALL C_F_POINTER(IPERM_PTR,IPERM,(/ NFI /))
         IF(PACA.GE.2) THEN
            CALL LCMGPD(IPTRK,'JU$MCCG',JU_PTR)
            CALL C_F_POINTER(JU_PTR,JU,(/ NLONG /))
            IF(PACA.EQ.3) THEN
               CALL LCMLEN(IPTRK,'IM0$MCCG',ILONG1,ITYLCM)
               CALL LCMLEN(IPTRK,'MCU0$MCCG',ILONG2,ITYLCM)
               CALL LCMGPD(IPTRK,'IM0$MCCG',IM0_PTR)
               CALL LCMGPD(IPTRK,'MCU0$MCCG',MCU0_PTR)
               CALL C_F_POINTER(IM0_PTR,IM0,(/ ILONG1 /))
               CALL C_F_POINTER(MCU0_PTR,MCU0,(/ ILONG2 /))
            ENDIF
         ENDIF
      ENDIF
      IF((.NOT.CYCLIC).AND.(ISCR.GT.0)) THEN
*        recover (IS,JS) array for surfaces neighbors identification
         CALL LCMGPD(IPTRK,'IS$MCCG',IS_PTR)
         CALL LCMGPD(IPTRK,'JS$MCCG',JS_PTR)
         CALL C_F_POINTER(IS_PTR,IS,(/ NFI-NREG+1 /))
         CALL C_F_POINTER(JS_PTR,JS,(/ LPS /))
      ENDIF
      IF(LPJJAN) THEN
         CALL LCMGPD(IPTRK,'PJJIND$MCCG',PJJIND_PTR)
         CALL C_F_POINTER(PJJIND_PTR,PJJIND,(/ NPJJM,2 /))
      ENDIF
      IF(LPRISM) THEN
         CALL LCMGET(IPTRK,'NCODE',NCODE)
         IF(NCODE(6).EQ.30) THEN
            IF(NCODE(5).EQ.30) THEN
*           Z- and Z+ surfaces symmetry
               SSYM=2
            ELSE
*           Z+ symmetry
               SSYM=1
            ENDIF
         ELSE
            SSYM=0
         ENDIF
         NMAX=(INT(FACSYM)+1)*N2MAX*(NZP+2)
      ELSE
         NMAX=N2MAX
      ENDIF
      ALLOCATE(NOM(N2MAX))
      ALLOCATE(H(N2MAX),HH(N2MAX),ZMUA(NMU),WZMUA(NMU))
      IF(LPJJ) THEN
*     Self-Collision Probabilities
         ALLOCATE(PJJ(NREG*NPJJM*NGEFF),PJJX(NREG*NPJJM*NGEFF),
     >            PJJXI(NREG*NPJJM*NGEFF),PJJY(NREG*NPJJM*NGEFF),
     >            PJJYI(NREG*NPJJM*NGEFF),PJJZ(NREG*NPJJM*NGEFF),
     >            PJJZI(NREG*NPJJM*NGEFF))
         IF(LPS.GT.0) THEN
            ALLOCATE(PSJ(LPS*NGEFF),PSJX(LPS*NGEFF),PSJY(LPS*NGEFF),
     >               PSJZ(LPS*NGEFF))
            PSJ(:LPS*NGEFF)=0.0
            PSJX(:LPS*NGEFF)=0.0
            PSJY(:LPS*NGEFF)=0.0
            PSJZ(:LPS*NGEFF)=0.0
         ENDIF
         ALLOCATE(PJJD(NREG*NPJJM*NGEFF),PJJDX(NREG*NPJJM*NGEFF),
     >            PJJDXI(NREG*NPJJM*NGEFF),PJJDY(NREG*NPJJM*NGEFF),
     >            PJJDYI(NREG*NPJJM*NGEFF),PJJDZ(NREG*NPJJM*NGEFF),
     >            PJJDZI(NREG*NPJJM*NGEFF))
         PJJD(:NREG*NPJJM*NGEFF)=0.0D0
         PJJDX(:NREG*NPJJM*NGEFF)=0.0D0
         PJJDXI(:NREG*NPJJM*NGEFF)=0.0D0
         PJJDY(:NREG*NPJJM*NGEFF)=0.0D0
         PJJDYI(:NREG*NPJJM*NGEFF)=0.0D0
         PJJDZ(:NREG*NPJJM*NGEFF)=0.0D0
         PJJDZI(:NREG*NPJJM*NGEFF)=0.0D0
      ENDIF
      IF(LACA) THEN
*     Algebraic Collapsing Acceleration
         ALLOCATE(XSW((M+1)*NANI*NGEFF))
         IF(LTMT) ALLOCATE(NOM0(N2MAX),H0(N2MAX))
         ALLOCATE(PREV(NMAX),NEXT(NMAX))
         ALLOCATE(CQ(LC*NGEFF),DIAGQ(NLONG*NGEFF),DIAGFR(NLONG),CFR(LC),
     1   WORK(6*NMAX))
         IF(PACA.GE.2) THEN
            ALLOCATE(LUDF(NLONG))
            IF(LC0.GT.0) ALLOCATE(LUCF(LC0))
         ENDIF
         DO II=1,NGEFF
            JPSYS=KPSYS(II)
            CALL LCMGET(JPSYS,'DRAGON-S0XSC',XSW((II-1)*(M+1)+1))
         ENDDO
         CQ(:LC*NGEFF)=0.0
         DIAGQ(:NLONG*NGEFF)=0.0
         DIAGF(:NLONG,:NGEFF)=0.0D0
         CF(:LC,:NGEFF)=0.0D0
      ENDIF 
*
      NMUA=NMU
      DO IE=1,NMUA
         ZMUA(IE)=ZMU(IE)
         WZMUA(IE)=WZMU(IE)       
      ENDDO
      IF((.NOT.LPRISM).AND.(NDIM.EQ.2).AND.LTMT) THEN
         NMUA=1
         ZMUI=ZMUA(1)
         W=WZMUA(1)
         TEMP=ZMUI*W
         DO IE=2,NMU
            ZMUI=ZMUA(IE)
            WZMUI=WZMUA(IE)
            W=W+WZMUI
            TEMP=TEMP+ZMUI*WZMUI
         ENDDO               
         ZMUA=TEMP/W
         WZMUA=W
      ENDIF
*---
* SUMMATION UPON THE TRACKING
*---
      REWIND IFTRAK
      READ(IFTRAK) TEXT4,NCOMNT,NBTR,IFMT
      DO ICOM=1,NCOMNT
         READ(IFTRAK)
      ENDDO
      READ(IFTRAK) (NITMA,II=1,7),MXSUB,NITMA
      DO ICOM=1,6
         READ(IFTRAK)
      ENDDO
      CALL KDRCPU(T1)
      IANGL0=0
      IPANG=1
      NMERG=0
      NTR=0
      NTRTMT=0
      NSE=0
      NSETMT=0
      LFORC=.FALSE.
      NTPROC=1
*
      ALLOCATE(KANGL(MXSUB))
      IF(LPRISM) THEN
*     3D PRISMATIC GEOMETRY CONSTRUCTED FROM A 2D TRACKING
      N3TR=0
      N3TRTMT=0
      N3SE=0
      N3SETMT=0
      ALLOCATE(NOM3D(NMAX),H3D(NMAX))
      IF(LTMT) ALLOCATE(NOM3D0(2*NMAX),H3D0(2*NMAX))
      CALL LCMSIX(IPTRK,'PROJECTION',1)
      CALL LCMGPD(IPTRK,'IND2T3',INDREG_PTR)
      CALL LCMGPD(IPTRK,'ZCOORD',ZZZ_PTR)
      CALL LCMGPD(IPTRK,'VNORF',VNORF_PTR)
      CALL LCMGPD(IPTRK,'CMU',CMU_PTR)
      CALL LCMGPD(IPTRK,'CMUI',CMUI_PTR)
      CALL LCMGPD(IPTRK,'SMU',SMU_PTR)
      CALL LCMGPD(IPTRK,'SMUI',SMUI_PTR)
      CALL LCMGPD(IPTRK,'TMU',TMU_PTR)
      CALL LCMGPD(IPTRK,'TMUI',TMUI_PTR)
      CALL C_F_POINTER(INDREG_PTR,INDREG,(/ (N2SOU+N2REG+1)*(NZP+1) /))
      CALL C_F_POINTER(ZZZ_PTR,ZZZ,(/ NZP+1 /))
      CALL C_F_POINTER(VNORF_PTR,VNORF,(/ NREG*NANGL*NMU*2 /))
      CALL C_F_POINTER(CMU_PTR,CMU,(/ NMU /))
      CALL C_F_POINTER(CMUI_PTR,CMUI,(/ NMU /))
      CALL C_F_POINTER(SMU_PTR,SMU,(/ NMU /))
      CALL C_F_POINTER(SMUI_PTR,SMUI,(/ NMU /))
      CALL C_F_POINTER(TMU_PTR,TMU,(/ NMU /))
      CALL C_F_POINTER(TMUI_PTR,TMUI,(/ NMU /))
      CALL LCMSIX(IPTRK,'PROJECTION',2)
      DO 10 ILINE=1,NBTR
         READ(IFTRAK) NSUB,NSEG,WEIGHT,(KANGL(II),II=1,NSUB),
     1        (NOM(II),II=1,NSEG),(H(II),II=1,NSEG)
         IF(NSUB.GT.MXSUB) CALL XABORT('MCGASM: MXSUB OVERFLOW.')
         IANGL=KANGL(1)
         IF(LPJJ) THEN
*        ----------------------------
*        Self-Collision Probabilities
*        ----------------------------
            NR2SE=NSEG-2
            HH=0.0
            DO II=0,NR2SE
               HH(II+2)=HH(II+1)+H(II+2)
            ENDDO
            CALL MCGPTS(SUBPJJ,NFI,NREG,M,NANI,NFUNL,NANGL,NMU,NMOD,
     1           LPS,NPJJM,NGEFF,IANGL,NSEG,ISGNR,NZON,NOM,IS,JS,
     2           PJJIND,WEIGHT,CPO,CAZ1,CAZ2,ZMU,WZMU,SIGAL,HH,PSJ,
     3           PJJD,LPJJAN,NR2SE,NMAX,NZP,N2REG,N2SOU,DELU,INDREG,
     4           ZZZ,VNORF,CMU,CMUI,SMU,SMUI,TMU,TMUI,SSYM)
         ENDIF
         IF(LTMT) THEN
*        ----------------
*        Tracking Merging (angle by angle) for ACA
*        ----------------
            NTR=NTR+1
            NSE=NSE+NSEG
            LFORC=(IPANG.NE.IANGL)
            IF(LFORC) THEN
               ITEMP=IANGL
               IANGL=IPANG
               IPANG=ITEMP
            ENDIF
            IF(ILINE.EQ.NBTR) LFORC=.TRUE.
            CALL MCGTMT(NMERG,NTRTMT,NSETMT,NSEG,NSEG0,NOM,NOM0,WEIGHT,
     1           WEIGHT0,H,H0,LFORC,NTPROC)
            IF(NTPROC.EQ.0) GOTO 10
         ENDIF
         IF(LACA) THEN
*        ---------------------------------
*        Algebraic Collapsing Acceleration
*        ---------------------------------
            NR2SE=NSEG-2
            HH=0.0
            DO II=0,NR2SE
               HH(II+2)=HH(II+1)+H(II+2)
            ENDDO
            CALL MCGPTA(NFI,NREG,NLONG,M,NANGL,NMU,LC,NGEFF,
     1           IANGL,NSEG,NOM,NZONA,IPERM,KM,IM,MCU,PREV,NEXT,
     2           WEIGHT,ZMU,WZMU,SIGAL,XSW,HH,DIAGQ,CQ,DIAGF,
     3           CF,WORK,LTMT,SUBDS2,SUBDSP,SUBDSC,NR2SE,NMAX,
     4           NZP,N2REG,N2SOU,DELU,INDREG,NOM3D,NOM3D0,H3D,
     5           H3D0,ZZZ,VNORF,CMU,CMUI,SMU,SMUI,TMU,TMUI,N3TR,
     6           N3TRTMT,N3SE,N3SETMT,NTPROC,SSYM)
         ENDIF
 10   CONTINUE
      IF(LTMT) THEN
*     process last integration line for ACA TMT
         CALL MCGTMT(NMERG,NTRTMT,NSETMT,NSEG,NSEG0,NOM,NOM0,WEIGHT,
     1        WEIGHT0,H,H0,LFORC,NTPROC) 
         NR2SE=NSEG-2
         HH=0.0
         DO II=0,NR2SE
            HH(II+2)=HH(II+1)+H(II+2)
         ENDDO
         CALL MCGPTA(NFI,NREG,NLONG,M,NANGL,NMU,LC,NGEFF,IANGL,NSEG,
     1        NOM,NZONA,IPERM,KM,IM,MCU,PREV,NEXT,WEIGHT,ZMU,WZMU,
     2        SIGAL,XSW,HH,DIAGQ,CQ,DIAGF,CF,WORK,LTMT,SUBDS2,SUBDSP,
     3        SUBDSC,NR2SE,NMAX,NZP,N2REG,N2SOU,DELU,INDREG,NOM3D,
     4        NOM3D0,H3D,H3D0,ZZZ,VNORF,CMU,CMUI,SMU,SMUI,TMU,TMUI,
     5        N3TR,N3TRTMT,N3SE,N3SETMT,NTPROC,SSYM)
         DEALLOCATE(H3D0,NOM3D0)
      ENDIF
      DEALLOCATE(H3D,NOM3D)
      ELSE
*     REGULAR 2D OR 3D GEOMETRY
      ALLOCATE(TRHAR(NMU,NFUNL,NANGL),RHARM(NMU,NFUNL))
      DO IANGL=1,NANGL
        IF(NDIM.EQ.2) THEN
          CALL MOCCHR(NDIM,NANI-1,NFUNL,NMU,CPO(1),CAZ1(IANGL),
     1                CAZ2(IANGL),RHARM)
        ELSE
          XMUANG(1)=REAL(CAZ0(IANGL))
          CALL MOCCHR(NDIM,NANI-1,NFUNL,1,XMUANG(1),CAZ1(IANGL),
     1                CAZ2(IANGL),RHARM)
        ENDIF
        DO JF=1,NFUNL
          DO IE=1,NMU
            TRHAR(IE,JF,IANGL)=ISGNR(1,JF)*RHARM(IE,JF)
          ENDDO
        ENDDO
      ENDDO
      DEALLOCATE(RHARM)
      DO 20 ILINE=1,NBTR
         READ(IFTRAK) NSUB,NSEG,WEIGHT,(KANGL(II),II=1,NSUB),
     1        (NOM(II),II=1,NSEG),(H(II),II=1,NSEG)
         IF(NSUB.GT.MXSUB) CALL XABORT('MCGASM: MXSUB OVERFLOW.')
         IANGL=KANGL(1)
         DO II=1,NSEG
            IF(NOM(II).LT.0) THEN
               NOM(II)=NREG-NOM(II)
            ELSE IF(NOM(II).EQ.0) THEN
               NOM(II)=NREG+1
            ENDIF
         ENDDO
         IF(LPJJ) THEN
*        ----------------------------
*        Self-Collision Probabilities
*        ----------------------------
            IF(ISTRM.LE.2) THEN
              CALL MCGDS4(SUBPJJ,NSEG,NSUB,NMU,LPS,NFUNL,NANGL,NGEFF,
     1           WEIGHT,KANGL,TRHAR,H,ZMU,WZMU,NOM,NZON,NFI,NREG,NDIM,
     2           M,IS,JS,PJJD,PSJ,LPJJAN,NPJJM,PJJIND,SIGAL,1)
            ELSE IF(ISTRM.EQ.3) THEN
*             TIBERE model
              CALL MCGDSD(NSEG,NSUB,NMU,LPS,NFUNL,NANGL,NGEFF,WEIGHT,
     1           TRHAR,H,ZMU,WZMU,KANGL,NOM,NZON,NFI,NREG,NDIM,M,IS,
     2           JS,PJJD,PSJ,LPJJAN,NPJJM,PJJIND,SIGAL,1,CAZ1(IANGL),
     3           CAZ2(IANGL),PJJDX,PJJDY,PJJDZ,PJJDXI,PJJDYI,PJJDZI,
     4           CAZ0(IANGL),PSJX,PSJY,PSJZ)
            ENDIF
         ENDIF
         IF(LTMT) THEN
*        ----------------
*        Tracking Merging (angle by angle) for ACA
*        ----------------
            NTR=NTR+1
            NSE=NSE+NSEG
            IF(ILINE.EQ.NBTR) LFORC=.TRUE.
            CALL MCGTMT(NMERG,NTRTMT,NSETMT,NSEG,NSEG0,NOM,NOM0,WEIGHT,
     1           WEIGHT0,H,H0,LFORC,NTPROC)
            IF(NTPROC.EQ.0) GOTO 20
         ENDIF
         IF(LACA) THEN
*        ---------------------------------
*        Algebraic Collapsing Acceleration
*        ---------------------------------
            DO II=1,NSEG
               NOM(II)=IPERM(NOM(II))
            ENDDO
            CALL MCGDS1(SUBDS2,SUBDSP,SUBDSC,NSEG,NMUA,NGEFF,WEIGHT,H,
     1           ZMUA,WZMUA,NOM,NZONA,NLONG,NFI,NDIM,LC,M,KM,IM,MCU,
     2           DIAGF,DIAGQ,CF,CQ,PREV,NEXT,SIGAL,XSW,WORK)
         ENDIF
 20   CONTINUE
      DEALLOCATE(TRHAR)
      IF(LTMT) THEN
*     process last integration line
         CALL MCGTMT(NMERG,NTRTMT,NSETMT,NSEG,NSEG0,NOM,NOM0,WEIGHT,
     1        WEIGHT0,H,H0,LFORC,NTPROC)
         DO II=1,NSEG
            NOM(II)=IPERM(NOM(II))
         ENDDO
         CALL MCGDS1(SUBDS2,SUBDSP,SUBDSC,NSEG,NMUA,NGEFF,WEIGHT,H,
     1        ZMUA,WZMUA,NOM,NZONA,NLONG,NFI,NDIM,LC,M,KM,IM,MCU,
     2        DIAGF,DIAGQ,CF,CQ,PREV,NEXT,SIGAL,XSW,WORK)
      ENDIF
      ENDIF
*
      IF((LTMT).AND.(IPRINT.GT.1)) THEN
         WRITE(6,*) 'TRACKING MERGING: FROM TRACKING FILE'
         WRITE(6,*) '                 ',
     1              NTR,' TRACKS ->',
     2              NTRTMT,' EQUIVALENT TRACKS'
         WRITE(6,*) '                 ',
     1              NSE,' SEGMENTS ->',
     2              NSETMT, ' SEGMENTS'
         IF((.NOT.LPRISM).AND.(NDIM.EQ.2))
     1    WRITE(6,*) '                 ',
     2              NMU,' POLAR ANGLES ->',
     3              ' 1 EQUIVALENT POLAR ANGLE'
         IF(LPRISM) THEN
            WRITE(6,*) 'TRACKING MERGING: 3D PRISMATIC EXTENSION'
            WRITE(6,*) '                 ',
     1                 N3TR,' TRACKS ->',
     2                 N3TRTMT,' EQUIVALENT TRACKS'
            WRITE(6,*) '                 ',
     1                 N3SE,' SEGMENTS ->',
     2                 N3SETMT, ' SEGMENTS'
         ENDIF
      ENDIF
      CALL KDRCPU(T2)
      IF(IPRINT.GT.0) THEN
         WRITE(6,100) 'SUMMATION UPON THE TRACKING FOR ACA/SCR ',(T2-T1)
      ENDIF
*---
*  FOR ACA: (IF PACA.GE.2)
*  CALCULATION OF ILU0 PRECONDITIONER FOR BICGSTAB ITERATIONS
*---
      IF(LACA) THEN
         DO II=1,NGEFF
           IG=NGIND(II)
           JPSYS=KPSYS(II)
           IF(IPRINT.GT.2) WRITE(6,200) 'GROUP',IG
           CALL MCGDS3(NLONG,PACA,M,SIGAL(0,II),
     1          XSW((II-1)*(M+1)+1),VA,NZONA,LC,MCU,IM,JU,LC0,IM0,
     2          MCU0,DIAGF(1,II),CF(1,II),DIAGQ((II-1)*NLONG+1),DIAGFR,
     3          CFR,LUDF,LUCF)
*     
           IF(IPRINT.GT.3) THEN
              CALL PRINAM('DIAGF ',DIAGFR(1),NLONG)
              CALL PRINAM('CF    ',CFR(1),LC)
           ENDIF
           CALL LCMPUT(JPSYS,'DIAGF$MCCG',NLONG,2,DIAGFR)
           CALL LCMPUT(JPSYS,'CF$MCCG',LC,2,CFR)
           IF(PACA.GE.2) THEN
              CALL LCMPUT(JPSYS,'ILUDF$MCCG',NLONG,2,LUDF)
              IF(LC0.GT.0) CALL LCMPUT(JPSYS,'ILUCF$MCCG',LC0,2,LUCF)
           ENDIF
           IF(IPRINT.GT.3) THEN
              CALL PRINAM('DIAGQ ',DIAGQ((II-1)*NLONG+1),NLONG)
              CALL PRINAM('CQ    ',CQ((II-1)*LC+1),LC)
           ENDIF
           CALL LCMPUT(JPSYS,'CQ$MCCG',LC,2,CQ((II-1)*LC+1))
           CALL LCMPUT(JPSYS,'DIAGQ$MCCG',NLONG,2,DIAGQ((II-1)*NLONG+1))
         ENDDO
         CALL KDRCPU(T3)
         IF(IPRINT.GT.0) THEN
            WRITE(6,100) 'CALCULATION OF ACA PRECONDITIONER       ',
     1                   (T3-T2)
         ENDIF
*
         IF(PACA.GE.2) THEN
            IF(LC0.GT.0) DEALLOCATE(LUCF)
            DEALLOCATE(LUDF)
         ENDIF
         DEALLOCATE(WORK,CFR,DIAGFR,DIAGQ,CQ)
         DEALLOCATE(NEXT,PREV)
         IF(LTMT) DEALLOCATE(H0,NOM0)
         DEALLOCATE(XSW)
      ENDIF
*----
*  FOR SCR/STIS:
*  VECTORS NORMALIZATION
*----
      IF(LPJJ) THEN
         CALL MCGDS6(NGEFF,NPJJM,NREG,PJJD,V,PJJ)
         CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDX,V,PJJX)
         CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDY,V,PJJY)
         CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDZ,V,PJJZ)
         CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDXI,V,PJJXI)
         CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDYI,V,PJJYI)
         CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDZI,V,PJJZI)
         DEALLOCATE(PJJD,PJJDX,PJJDY,PJJDZ,PJJDXI,PJJDYI,PJJDZI)
*
         DO II=1,NGEFF
            JPSYS=KPSYS(II)
            IF(IPRINT.GT.3) THEN
               CALL PRINAM('PJJ   ',PJJ((II-1)*NREG*NPJJM+1),NREG*NPJJM)
               IF(LPS.GT.0) CALL PRINAM('PSJ   ',PSJ((II-1)*LPS+1),LPS)
            ENDIF
            CALL LCMPUT(JPSYS,'PJJ$MCCG',NREG*NPJJM,2,
     1                  PJJ((II-1)*NREG*NPJJM+1))
            CALL LCMPUT(JPSYS,'PJJX$MCCG',NREG*NPJJM,2,
     1                  PJJX((II-1)*NREG*NPJJM+1))
            CALL LCMPUT(JPSYS,'PJJY$MCCG',NREG*NPJJM,2,
     1                  PJJY((II-1)*NREG*NPJJM+1))
            CALL LCMPUT(JPSYS,'PJJZ$MCCG',NREG*NPJJM,2,
     1                  PJJZ((II-1)*NREG*NPJJM+1))
            CALL LCMPUT(JPSYS,'PJJXI$MCCG',NREG*NPJJM,2,
     1                  PJJXI((II-1)*NREG*NPJJM+1))
            CALL LCMPUT(JPSYS,'PJJYI$MCCG',NREG*NPJJM,2,
     1                  PJJYI((II-1)*NREG*NPJJM+1))
            CALL LCMPUT(JPSYS,'PJJZI$MCCG',NREG*NPJJM,2,
     1                  PJJZI((II-1)*NREG*NPJJM+1))
            IF(LPS.GT.0) THEN
               CALL LCMPUT(JPSYS,'PSJ$MCCG',LPS,2,PSJ((II-1)*LPS+1))
               CALL LCMPUT(JPSYS,'PSJX$MCCG',LPS,2,PSJX((II-1)*LPS+1))
               CALL LCMPUT(JPSYS,'PSJY$MCCG',LPS,2,PSJY((II-1)*LPS+1))
               CALL LCMPUT(JPSYS,'PSJZ$MCCG',LPS,2,PSJZ((II-1)*LPS+1))
            ENDIF
         ENDDO
*
         IF(LPS.GT.0) DEALLOCATE(PSJ,PSJX,PSJY,PSJZ)
         DEALLOCATE(PJJX,PJJXI,PJJY,PJJYI,PJJZ,PJJZI)
         DEALLOCATE(PJJ)
      ENDIF
*
      DEALLOCATE(KANGL,WZMUA,ZMUA,HH,H,NOM)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(CF,DIAGF)
      RETURN
*
 100  FORMAT('   -->>TIME SPENT IN: ',A40,':',F13.3,' s.')
 200  FORMAT(1X,A6,1X,I4)
      END