1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
|
*DECK MCGASM
SUBROUTINE MCGASM(SUBPJJ,SUBDS2,SUBDSP,SUBDSC,IPTRK,KPSYS,IPRINT,
1 IFTRAK,NANI,NGEFF,NFI,NREG,NLONG,M,NMU,NANGL,
2 N2MAX,LC,NDIM,NGIND,CYCLIC,ISCR,CAZ0,CAZ1,CAZ2,
3 CPO,LC0,PACA,LPS,LTMT,NPJJM,LACA,LPJJ,LPJJAN,
4 SIGAL,LPRISM,N2REG,N2SOU,NZP,DELU,FACSYM,ISTRM)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Preconditioning matrices calculation based on the Algebraic Collapsing
* Acceleration developed by I. R. Suslov and R. Le Tellier
* or Self-Collision Probabilities acceleration developed by G.J. Wu
* and R. Roy.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): I. Suslov and R. Le Tellier
*
*Parameters: input/output
* SUBPJJ PJJ calculation subroutine.
* SUBDS2 ACA coefficients summation subroutine.
* SUBDSP ACA coefficients position subroutine.
* SUBDSC ACA coefficients calculation subroutine.
* IPTRK pointer to the tracking (L_TRACK signature).
* KPSYS pointer array for each group properties.
* IPRINT print parameter (equal to zero for no print).
* IFTRAK tracking file unit number if IOFSET=0.
* NANI number of Legendre orders.
* NGEFF number of groups to process.
* NFI total number of volumes and surfaces for which specific values
* of the neutron flux and reactions rates are required.
* NREG number of volumes for which specific values
* of the neutron flux and reactions rates are required.
* NLONG order of the corrective system.
* M number of material mixtures.
* NMU order of the polar quadrature in 2D / 1 in 3D.
* NANGL number of tracking angles in the plane.
* N2MAX maximum number of elements in a track.
* LC dimension of vector MCU.
* NDIM number of dimensions for the geometry.
* NGIND index of the groups to process.
* CYCLIC flag set to .true. for cyclic tracking.
* ISCR SCR preconditionning flag.
* CAZ0 cosines of the tracking polar angles in 3D.
* CAZ1 first cosines of the different tracking azimuthal angles.
* CAZ2 second cosines of the different tracking azimuthal angles.
* CPO cosines of the different tracking polar angles in 2D.
* PACA type of preconditioner to solve the ACA corrective system.
* LC0 used in ILU0-ACA acceleration.
* LPS dimension of JS.
* LTMT tracking merging flag.
* NPJJM number of pjj modes to store for STIS option.
* LACA ACA flag.
* LPJJ PJJ flag.
* LPJJAN anisotropic PJJ flag.
* SIGAL albedos and total cross sections array.
* LPRISM 3D prismatic extended tracking flag.
* N2REG number of regions in the 2D tracking if LPRISM.
* N2SOU number of external surfaces in the 2D tracking if LPRISM.
* NZP number of z-plans if LPRISM.
* DELU input track spacing for 3D track reconstruction if LPRISM.
* FACSYM tracking symmetry factor for maximum track length if LPRISM.
* ISTRM type of streaming effect:
* =1 no streaming effect;
* =2 isotropic streaming effect;
* =3 anisotropic streaming effect.
*
*Reference:
* Igor R. Suslov, "An Algebraic Collapsing Acceleration in Long
* Characteristics Transport Theory" Proc. of 11-th Symposium of
* AER, 178/9-188, Csopak, September 2001.
* \\\\
* Igor R. Suslov, "Solution of Transport Equation in 2- and 3-
* dimensional Irregular Geometry by the Method of Characteristics"
* Int. Conf. Mathematical. Methods and Supercomputing in Nuclear
* Applications, Karlsruhe, 1994.
* \\\\
* G.J. Wu and R. Roy, "Acceleration Techniques for Trajectory-based
* Deterministic 3D Transport Solvers",
* Ann. Nucl. Energy, 30, 567-583 (2003).
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,KPSYS(NGEFF)
INTEGER IPRINT,IFTRAK,NGEFF,NFI,NREG,NLONG,M,NMU,NANGL,N2MAX,LC,
1 NDIM,NGIND(NGEFF),LC0,PACA,LPS,NPJJM,N2REG,N2SOU,NZP,ISTRM
REAL CPO(NMU),SIGAL(-6:M,NGEFF),DELU,FACSYM
DOUBLE PRECISION CAZ0(NANGL),CAZ1(NANGL),CAZ2(NANGL)
LOGICAL LTMT,LACA,LPJJ,LPJJAN,LPRISM,LFORC,CYCLIC
EXTERNAL SUBPJJ,SUBDS2,SUBDSP,SUBDSC
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPSYS
INTEGER NCODE(6),SSYM
REAL T1,T2,T3,XMUANG(1)
DOUBLE PRECISION WEIGHT,WEIGHT0
CHARACTER TEXT4*4
INTEGER, TARGET, SAVE, DIMENSION(1) :: IDUMMY
INTEGER, TARGET, SAVE, DIMENSION(1,1) :: I2DUMMY
REAL, TARGET, SAVE, DIMENSION(1) :: DUMMY
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, POINTER, DIMENSION(:) :: NZON,KM,IM,MCU,NZONA,IPERM,
1 JU,IM0,MCU0,IS,JS
INTEGER, POINTER, DIMENSION(:,:) :: PJJIND
REAL, POINTER, DIMENSION(:) :: ZMU,WZMU,V,VA
TYPE(C_PTR) :: ZMU_PTR,WZMU_PTR,NZON_PTR,V_PTR,KM_PTR,IM_PTR,
1 MCU_PTR,NZONA_PTR,VA_PTR,IPERM_PTR,JU_PTR,IM0_PTR,MCU0_PTR,
2 PJJIND_PTR,IS_PTR,JS_PTR
INTEGER, ALLOCATABLE, DIMENSION(:) :: NOM,NOM0,PREV,NEXT,NOM3D,
1 NOM3D0,KANGL,KEYANI
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: ISGNR
REAL, ALLOCATABLE, DIMENSION(:) :: ZMUA,WZMUA,PJJ,PSJ,XSW,CQ,
1 DIAGQ,DIAGFR,CFR,WORK,LUDF,LUCF,PJJX,PJJY,PJJZ,PJJXI,PJJYI,
2 PJJZI,PSJX,PSJY,PSJZ
REAL, ALLOCATABLE, DIMENSION(:,:) :: RHARM
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: TRHAR
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: H,H0,HH,H3D,H3D0,
1 PJJD,PJJDX,PJJDY,PJJDZ,PJJDXI,PJJDYI,PJJDZI
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: DIAGF,CF
INTEGER, POINTER, DIMENSION(:) :: INDREG
REAL, POINTER, DIMENSION(:) :: ZZZ
DOUBLE PRECISION, POINTER, DIMENSION(:) :: VNORF,CMU,CMUI,SMU,
1 SMUI,TMU,TMUI
TYPE(C_PTR) :: INDREG_PTR,ZZZ_PTR,VNORF_PTR,CMU_PTR,CMUI_PTR,
1 SMU_PTR,SMUI_PTR,TMU_PTR,TMUI_PTR
*----
* INITIALIZE POINTERS
*----
KM=>IDUMMY
IM=>IDUMMY
MCU=>IDUMMY
NZONA=>IDUMMY
VA=>DUMMY
IPERM=>IDUMMY
JU=>IDUMMY
IM0=>IDUMMY
MCU0=>IDUMMY
IS=>IDUMMY
JS=>IDUMMY
PJJIND=>I2DUMMY
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(DIAGF(NLONG,NGEFF),CF(LC,NGEFF))
*----
* TRACKING INFORMATION PINNING AND MEMORY ALLOCATION
* NZON index-number of the mixture type assigned to each volume.
* NZONA index-number of the mixture type assigned to each volume for
* ACA.
* ISGNR array of the spherical harmonics signs for the different
* reflections.
* V volumes and surfaces.
* VA volumes and surfaces reordered for ACA.
* ZMU polar quadrature set in 2D.
* WZMU polar quadrature set in 2D.
* KM used in ACA acceleration.
* MCU used in ACA acceleration.
* IM used in ACA acceleration.
* JU used in ACA acceleration for ilu0.
* IPERM permutation array for the unknowns of the corrective system
* for ilu0.
* LC0 used in ILU0-ACA acceleration.
* IM0 used in ILU0-ACA acceleration.
* MCU0 used in ILU0-ACA acceleration.
* IS arrays for surfaces neighbors
* JS JS(IS(ISOUT)+1:IS(ISOUT+1)) give the neighboring regions to
* surface ISOUT.
* PJJIND index of the modes for STIS option.
*----
*---
* GENERATE ALL SIGNS FOR SPHERICAL HARMONICS
*---
IF(NDIM.EQ.1) THEN
NFUNL=NANI
NMOD=2
ELSE IF((.NOT.LPRISM).AND.(NDIM.EQ.2)) THEN
NFUNL=NANI*(NANI+1)/2
NMOD=4
ELSE ! NDIM.EQ.3
NFUNL=NANI*NANI
NMOD=8
ENDIF
ALLOCATE(ISGNR(NMOD,NFUNL),KEYANI(NFUNL))
CALL MOCIK3(NANI-1,NFUNL,NMOD,ISGNR,KEYANI)
DEALLOCATE(KEYANI)
*---
* ASSEMBLY OF SCR AND ACA MATRICES
*---
* recover polar quadrature
CALL LCMGPD(IPTRK,'ZMU$MCCG',ZMU_PTR)
CALL LCMGPD(IPTRK,'WZMU$MCCG',WZMU_PTR)
CALL C_F_POINTER(ZMU_PTR,ZMU,(/ NMU /))
CALL C_F_POINTER(WZMU_PTR,WZMU,(/ NMU /))
* recover MATALB and VOLSUR
CALL LCMGPD(IPTRK,'NZON$MCCG',NZON_PTR)
CALL LCMGPD(IPTRK,'V$MCCG',V_PTR)
CALL C_F_POINTER(NZON_PTR,NZON,(/ NFI /))
CALL C_F_POINTER(V_PTR,V,(/ NFI /))
IF(LACA) THEN
* recover connection matrices
CALL LCMGPD(IPTRK,'KM$MCCG',KM_PTR)
CALL LCMGPD(IPTRK,'IM$MCCG',IM_PTR)
CALL LCMGPD(IPTRK,'MCU$MCCG',MCU_PTR)
CALL C_F_POINTER(KM_PTR,KM,(/ NFI /))
CALL C_F_POINTER(IM_PTR,IM,(/ NLONG+1 /))
CALL C_F_POINTER(MCU_PTR,MCU,(/ LC /))
* recover modified MATALB and VOLSUR
CALL LCMGPD(IPTRK,'NZONA$MCCG',NZONA_PTR)
CALL LCMGPD(IPTRK,'VA$MCCG',VA_PTR)
CALL C_F_POINTER(NZONA_PTR,NZONA,(/ NFI /))
CALL C_F_POINTER(VA_PTR,VA,(/ NFI /))
* recover permutation array
CALL LCMGPD(IPTRK,'INVPI$MCCG',IPERM_PTR)
CALL C_F_POINTER(IPERM_PTR,IPERM,(/ NFI /))
IF(PACA.GE.2) THEN
CALL LCMGPD(IPTRK,'JU$MCCG',JU_PTR)
CALL C_F_POINTER(JU_PTR,JU,(/ NLONG /))
IF(PACA.EQ.3) THEN
CALL LCMLEN(IPTRK,'IM0$MCCG',ILONG1,ITYLCM)
CALL LCMLEN(IPTRK,'MCU0$MCCG',ILONG2,ITYLCM)
CALL LCMGPD(IPTRK,'IM0$MCCG',IM0_PTR)
CALL LCMGPD(IPTRK,'MCU0$MCCG',MCU0_PTR)
CALL C_F_POINTER(IM0_PTR,IM0,(/ ILONG1 /))
CALL C_F_POINTER(MCU0_PTR,MCU0,(/ ILONG2 /))
ENDIF
ENDIF
ENDIF
IF((.NOT.CYCLIC).AND.(ISCR.GT.0)) THEN
* recover (IS,JS) array for surfaces neighbors identification
CALL LCMGPD(IPTRK,'IS$MCCG',IS_PTR)
CALL LCMGPD(IPTRK,'JS$MCCG',JS_PTR)
CALL C_F_POINTER(IS_PTR,IS,(/ NFI-NREG+1 /))
CALL C_F_POINTER(JS_PTR,JS,(/ LPS /))
ENDIF
IF(LPJJAN) THEN
CALL LCMGPD(IPTRK,'PJJIND$MCCG',PJJIND_PTR)
CALL C_F_POINTER(PJJIND_PTR,PJJIND,(/ NPJJM,2 /))
ENDIF
IF(LPRISM) THEN
CALL LCMGET(IPTRK,'NCODE',NCODE)
IF(NCODE(6).EQ.30) THEN
IF(NCODE(5).EQ.30) THEN
* Z- and Z+ surfaces symmetry
SSYM=2
ELSE
* Z+ symmetry
SSYM=1
ENDIF
ELSE
SSYM=0
ENDIF
NMAX=(INT(FACSYM)+1)*N2MAX*(NZP+2)
ELSE
NMAX=N2MAX
ENDIF
ALLOCATE(NOM(N2MAX))
ALLOCATE(H(N2MAX),HH(N2MAX),ZMUA(NMU),WZMUA(NMU))
IF(LPJJ) THEN
* Self-Collision Probabilities
ALLOCATE(PJJ(NREG*NPJJM*NGEFF),PJJX(NREG*NPJJM*NGEFF),
> PJJXI(NREG*NPJJM*NGEFF),PJJY(NREG*NPJJM*NGEFF),
> PJJYI(NREG*NPJJM*NGEFF),PJJZ(NREG*NPJJM*NGEFF),
> PJJZI(NREG*NPJJM*NGEFF))
IF(LPS.GT.0) THEN
ALLOCATE(PSJ(LPS*NGEFF),PSJX(LPS*NGEFF),PSJY(LPS*NGEFF),
> PSJZ(LPS*NGEFF))
PSJ(:LPS*NGEFF)=0.0
PSJX(:LPS*NGEFF)=0.0
PSJY(:LPS*NGEFF)=0.0
PSJZ(:LPS*NGEFF)=0.0
ENDIF
ALLOCATE(PJJD(NREG*NPJJM*NGEFF),PJJDX(NREG*NPJJM*NGEFF),
> PJJDXI(NREG*NPJJM*NGEFF),PJJDY(NREG*NPJJM*NGEFF),
> PJJDYI(NREG*NPJJM*NGEFF),PJJDZ(NREG*NPJJM*NGEFF),
> PJJDZI(NREG*NPJJM*NGEFF))
PJJD(:NREG*NPJJM*NGEFF)=0.0D0
PJJDX(:NREG*NPJJM*NGEFF)=0.0D0
PJJDXI(:NREG*NPJJM*NGEFF)=0.0D0
PJJDY(:NREG*NPJJM*NGEFF)=0.0D0
PJJDYI(:NREG*NPJJM*NGEFF)=0.0D0
PJJDZ(:NREG*NPJJM*NGEFF)=0.0D0
PJJDZI(:NREG*NPJJM*NGEFF)=0.0D0
ENDIF
IF(LACA) THEN
* Algebraic Collapsing Acceleration
ALLOCATE(XSW((M+1)*NANI*NGEFF))
IF(LTMT) ALLOCATE(NOM0(N2MAX),H0(N2MAX))
ALLOCATE(PREV(NMAX),NEXT(NMAX))
ALLOCATE(CQ(LC*NGEFF),DIAGQ(NLONG*NGEFF),DIAGFR(NLONG),CFR(LC),
1 WORK(6*NMAX))
IF(PACA.GE.2) THEN
ALLOCATE(LUDF(NLONG))
IF(LC0.GT.0) ALLOCATE(LUCF(LC0))
ENDIF
DO II=1,NGEFF
JPSYS=KPSYS(II)
CALL LCMGET(JPSYS,'DRAGON-S0XSC',XSW((II-1)*(M+1)+1))
ENDDO
CQ(:LC*NGEFF)=0.0
DIAGQ(:NLONG*NGEFF)=0.0
DIAGF(:NLONG,:NGEFF)=0.0D0
CF(:LC,:NGEFF)=0.0D0
ENDIF
*
NMUA=NMU
DO IE=1,NMUA
ZMUA(IE)=ZMU(IE)
WZMUA(IE)=WZMU(IE)
ENDDO
IF((.NOT.LPRISM).AND.(NDIM.EQ.2).AND.LTMT) THEN
NMUA=1
ZMUI=ZMUA(1)
W=WZMUA(1)
TEMP=ZMUI*W
DO IE=2,NMU
ZMUI=ZMUA(IE)
WZMUI=WZMUA(IE)
W=W+WZMUI
TEMP=TEMP+ZMUI*WZMUI
ENDDO
ZMUA=TEMP/W
WZMUA=W
ENDIF
*---
* SUMMATION UPON THE TRACKING
*---
REWIND IFTRAK
READ(IFTRAK) TEXT4,NCOMNT,NBTR,IFMT
DO ICOM=1,NCOMNT
READ(IFTRAK)
ENDDO
READ(IFTRAK) (NITMA,II=1,7),MXSUB,NITMA
DO ICOM=1,6
READ(IFTRAK)
ENDDO
CALL KDRCPU(T1)
IANGL0=0
IPANG=1
NMERG=0
NTR=0
NTRTMT=0
NSE=0
NSETMT=0
LFORC=.FALSE.
NTPROC=1
*
ALLOCATE(KANGL(MXSUB))
IF(LPRISM) THEN
* 3D PRISMATIC GEOMETRY CONSTRUCTED FROM A 2D TRACKING
N3TR=0
N3TRTMT=0
N3SE=0
N3SETMT=0
ALLOCATE(NOM3D(NMAX),H3D(NMAX))
IF(LTMT) ALLOCATE(NOM3D0(2*NMAX),H3D0(2*NMAX))
CALL LCMSIX(IPTRK,'PROJECTION',1)
CALL LCMGPD(IPTRK,'IND2T3',INDREG_PTR)
CALL LCMGPD(IPTRK,'ZCOORD',ZZZ_PTR)
CALL LCMGPD(IPTRK,'VNORF',VNORF_PTR)
CALL LCMGPD(IPTRK,'CMU',CMU_PTR)
CALL LCMGPD(IPTRK,'CMUI',CMUI_PTR)
CALL LCMGPD(IPTRK,'SMU',SMU_PTR)
CALL LCMGPD(IPTRK,'SMUI',SMUI_PTR)
CALL LCMGPD(IPTRK,'TMU',TMU_PTR)
CALL LCMGPD(IPTRK,'TMUI',TMUI_PTR)
CALL C_F_POINTER(INDREG_PTR,INDREG,(/ (N2SOU+N2REG+1)*(NZP+1) /))
CALL C_F_POINTER(ZZZ_PTR,ZZZ,(/ NZP+1 /))
CALL C_F_POINTER(VNORF_PTR,VNORF,(/ NREG*NANGL*NMU*2 /))
CALL C_F_POINTER(CMU_PTR,CMU,(/ NMU /))
CALL C_F_POINTER(CMUI_PTR,CMUI,(/ NMU /))
CALL C_F_POINTER(SMU_PTR,SMU,(/ NMU /))
CALL C_F_POINTER(SMUI_PTR,SMUI,(/ NMU /))
CALL C_F_POINTER(TMU_PTR,TMU,(/ NMU /))
CALL C_F_POINTER(TMUI_PTR,TMUI,(/ NMU /))
CALL LCMSIX(IPTRK,'PROJECTION',2)
DO 10 ILINE=1,NBTR
READ(IFTRAK) NSUB,NSEG,WEIGHT,(KANGL(II),II=1,NSUB),
1 (NOM(II),II=1,NSEG),(H(II),II=1,NSEG)
IF(NSUB.GT.MXSUB) CALL XABORT('MCGASM: MXSUB OVERFLOW.')
IANGL=KANGL(1)
IF(LPJJ) THEN
* ----------------------------
* Self-Collision Probabilities
* ----------------------------
NR2SE=NSEG-2
HH=0.0
DO II=0,NR2SE
HH(II+2)=HH(II+1)+H(II+2)
ENDDO
CALL MCGPTS(SUBPJJ,NFI,NREG,M,NANI,NFUNL,NANGL,NMU,NMOD,
1 LPS,NPJJM,NGEFF,IANGL,NSEG,ISGNR,NZON,NOM,IS,JS,
2 PJJIND,WEIGHT,CPO,CAZ1,CAZ2,ZMU,WZMU,SIGAL,HH,PSJ,
3 PJJD,LPJJAN,NR2SE,NMAX,NZP,N2REG,N2SOU,DELU,INDREG,
4 ZZZ,VNORF,CMU,CMUI,SMU,SMUI,TMU,TMUI,SSYM)
ENDIF
IF(LTMT) THEN
* ----------------
* Tracking Merging (angle by angle) for ACA
* ----------------
NTR=NTR+1
NSE=NSE+NSEG
LFORC=(IPANG.NE.IANGL)
IF(LFORC) THEN
ITEMP=IANGL
IANGL=IPANG
IPANG=ITEMP
ENDIF
IF(ILINE.EQ.NBTR) LFORC=.TRUE.
CALL MCGTMT(NMERG,NTRTMT,NSETMT,NSEG,NSEG0,NOM,NOM0,WEIGHT,
1 WEIGHT0,H,H0,LFORC,NTPROC)
IF(NTPROC.EQ.0) GOTO 10
ENDIF
IF(LACA) THEN
* ---------------------------------
* Algebraic Collapsing Acceleration
* ---------------------------------
NR2SE=NSEG-2
HH=0.0
DO II=0,NR2SE
HH(II+2)=HH(II+1)+H(II+2)
ENDDO
CALL MCGPTA(NFI,NREG,NLONG,M,NANGL,NMU,LC,NGEFF,
1 IANGL,NSEG,NOM,NZONA,IPERM,KM,IM,MCU,PREV,NEXT,
2 WEIGHT,ZMU,WZMU,SIGAL,XSW,HH,DIAGQ,CQ,DIAGF,
3 CF,WORK,LTMT,SUBDS2,SUBDSP,SUBDSC,NR2SE,NMAX,
4 NZP,N2REG,N2SOU,DELU,INDREG,NOM3D,NOM3D0,H3D,
5 H3D0,ZZZ,VNORF,CMU,CMUI,SMU,SMUI,TMU,TMUI,N3TR,
6 N3TRTMT,N3SE,N3SETMT,NTPROC,SSYM)
ENDIF
10 CONTINUE
IF(LTMT) THEN
* process last integration line for ACA TMT
CALL MCGTMT(NMERG,NTRTMT,NSETMT,NSEG,NSEG0,NOM,NOM0,WEIGHT,
1 WEIGHT0,H,H0,LFORC,NTPROC)
NR2SE=NSEG-2
HH=0.0
DO II=0,NR2SE
HH(II+2)=HH(II+1)+H(II+2)
ENDDO
CALL MCGPTA(NFI,NREG,NLONG,M,NANGL,NMU,LC,NGEFF,IANGL,NSEG,
1 NOM,NZONA,IPERM,KM,IM,MCU,PREV,NEXT,WEIGHT,ZMU,WZMU,
2 SIGAL,XSW,HH,DIAGQ,CQ,DIAGF,CF,WORK,LTMT,SUBDS2,SUBDSP,
3 SUBDSC,NR2SE,NMAX,NZP,N2REG,N2SOU,DELU,INDREG,NOM3D,
4 NOM3D0,H3D,H3D0,ZZZ,VNORF,CMU,CMUI,SMU,SMUI,TMU,TMUI,
5 N3TR,N3TRTMT,N3SE,N3SETMT,NTPROC,SSYM)
DEALLOCATE(H3D0,NOM3D0)
ENDIF
DEALLOCATE(H3D,NOM3D)
ELSE
* REGULAR 2D OR 3D GEOMETRY
ALLOCATE(TRHAR(NMU,NFUNL,NANGL),RHARM(NMU,NFUNL))
DO IANGL=1,NANGL
IF(NDIM.EQ.2) THEN
CALL MOCCHR(NDIM,NANI-1,NFUNL,NMU,CPO(1),CAZ1(IANGL),
1 CAZ2(IANGL),RHARM)
ELSE
XMUANG(1)=REAL(CAZ0(IANGL))
CALL MOCCHR(NDIM,NANI-1,NFUNL,1,XMUANG(1),CAZ1(IANGL),
1 CAZ2(IANGL),RHARM)
ENDIF
DO JF=1,NFUNL
DO IE=1,NMU
TRHAR(IE,JF,IANGL)=ISGNR(1,JF)*RHARM(IE,JF)
ENDDO
ENDDO
ENDDO
DEALLOCATE(RHARM)
DO 20 ILINE=1,NBTR
READ(IFTRAK) NSUB,NSEG,WEIGHT,(KANGL(II),II=1,NSUB),
1 (NOM(II),II=1,NSEG),(H(II),II=1,NSEG)
IF(NSUB.GT.MXSUB) CALL XABORT('MCGASM: MXSUB OVERFLOW.')
IANGL=KANGL(1)
DO II=1,NSEG
IF(NOM(II).LT.0) THEN
NOM(II)=NREG-NOM(II)
ELSE IF(NOM(II).EQ.0) THEN
NOM(II)=NREG+1
ENDIF
ENDDO
IF(LPJJ) THEN
* ----------------------------
* Self-Collision Probabilities
* ----------------------------
IF(ISTRM.LE.2) THEN
CALL MCGDS4(SUBPJJ,NSEG,NSUB,NMU,LPS,NFUNL,NANGL,NGEFF,
1 WEIGHT,KANGL,TRHAR,H,ZMU,WZMU,NOM,NZON,NFI,NREG,NDIM,
2 M,IS,JS,PJJD,PSJ,LPJJAN,NPJJM,PJJIND,SIGAL,1)
ELSE IF(ISTRM.EQ.3) THEN
* TIBERE model
CALL MCGDSD(NSEG,NSUB,NMU,LPS,NFUNL,NANGL,NGEFF,WEIGHT,
1 TRHAR,H,ZMU,WZMU,KANGL,NOM,NZON,NFI,NREG,NDIM,M,IS,
2 JS,PJJD,PSJ,LPJJAN,NPJJM,PJJIND,SIGAL,1,CAZ1(IANGL),
3 CAZ2(IANGL),PJJDX,PJJDY,PJJDZ,PJJDXI,PJJDYI,PJJDZI,
4 CAZ0(IANGL),PSJX,PSJY,PSJZ)
ENDIF
ENDIF
IF(LTMT) THEN
* ----------------
* Tracking Merging (angle by angle) for ACA
* ----------------
NTR=NTR+1
NSE=NSE+NSEG
IF(ILINE.EQ.NBTR) LFORC=.TRUE.
CALL MCGTMT(NMERG,NTRTMT,NSETMT,NSEG,NSEG0,NOM,NOM0,WEIGHT,
1 WEIGHT0,H,H0,LFORC,NTPROC)
IF(NTPROC.EQ.0) GOTO 20
ENDIF
IF(LACA) THEN
* ---------------------------------
* Algebraic Collapsing Acceleration
* ---------------------------------
DO II=1,NSEG
NOM(II)=IPERM(NOM(II))
ENDDO
CALL MCGDS1(SUBDS2,SUBDSP,SUBDSC,NSEG,NMUA,NGEFF,WEIGHT,H,
1 ZMUA,WZMUA,NOM,NZONA,NLONG,NFI,NDIM,LC,M,KM,IM,MCU,
2 DIAGF,DIAGQ,CF,CQ,PREV,NEXT,SIGAL,XSW,WORK)
ENDIF
20 CONTINUE
DEALLOCATE(TRHAR)
IF(LTMT) THEN
* process last integration line
CALL MCGTMT(NMERG,NTRTMT,NSETMT,NSEG,NSEG0,NOM,NOM0,WEIGHT,
1 WEIGHT0,H,H0,LFORC,NTPROC)
DO II=1,NSEG
NOM(II)=IPERM(NOM(II))
ENDDO
CALL MCGDS1(SUBDS2,SUBDSP,SUBDSC,NSEG,NMUA,NGEFF,WEIGHT,H,
1 ZMUA,WZMUA,NOM,NZONA,NLONG,NFI,NDIM,LC,M,KM,IM,MCU,
2 DIAGF,DIAGQ,CF,CQ,PREV,NEXT,SIGAL,XSW,WORK)
ENDIF
ENDIF
*
IF((LTMT).AND.(IPRINT.GT.1)) THEN
WRITE(6,*) 'TRACKING MERGING: FROM TRACKING FILE'
WRITE(6,*) ' ',
1 NTR,' TRACKS ->',
2 NTRTMT,' EQUIVALENT TRACKS'
WRITE(6,*) ' ',
1 NSE,' SEGMENTS ->',
2 NSETMT, ' SEGMENTS'
IF((.NOT.LPRISM).AND.(NDIM.EQ.2))
1 WRITE(6,*) ' ',
2 NMU,' POLAR ANGLES ->',
3 ' 1 EQUIVALENT POLAR ANGLE'
IF(LPRISM) THEN
WRITE(6,*) 'TRACKING MERGING: 3D PRISMATIC EXTENSION'
WRITE(6,*) ' ',
1 N3TR,' TRACKS ->',
2 N3TRTMT,' EQUIVALENT TRACKS'
WRITE(6,*) ' ',
1 N3SE,' SEGMENTS ->',
2 N3SETMT, ' SEGMENTS'
ENDIF
ENDIF
CALL KDRCPU(T2)
IF(IPRINT.GT.0) THEN
WRITE(6,100) 'SUMMATION UPON THE TRACKING FOR ACA/SCR ',(T2-T1)
ENDIF
*---
* FOR ACA: (IF PACA.GE.2)
* CALCULATION OF ILU0 PRECONDITIONER FOR BICGSTAB ITERATIONS
*---
IF(LACA) THEN
DO II=1,NGEFF
IG=NGIND(II)
JPSYS=KPSYS(II)
IF(IPRINT.GT.2) WRITE(6,200) 'GROUP',IG
CALL MCGDS3(NLONG,PACA,M,SIGAL(0,II),
1 XSW((II-1)*(M+1)+1),VA,NZONA,LC,MCU,IM,JU,LC0,IM0,
2 MCU0,DIAGF(1,II),CF(1,II),DIAGQ((II-1)*NLONG+1),DIAGFR,
3 CFR,LUDF,LUCF)
*
IF(IPRINT.GT.3) THEN
CALL PRINAM('DIAGF ',DIAGFR(1),NLONG)
CALL PRINAM('CF ',CFR(1),LC)
ENDIF
CALL LCMPUT(JPSYS,'DIAGF$MCCG',NLONG,2,DIAGFR)
CALL LCMPUT(JPSYS,'CF$MCCG',LC,2,CFR)
IF(PACA.GE.2) THEN
CALL LCMPUT(JPSYS,'ILUDF$MCCG',NLONG,2,LUDF)
IF(LC0.GT.0) CALL LCMPUT(JPSYS,'ILUCF$MCCG',LC0,2,LUCF)
ENDIF
IF(IPRINT.GT.3) THEN
CALL PRINAM('DIAGQ ',DIAGQ((II-1)*NLONG+1),NLONG)
CALL PRINAM('CQ ',CQ((II-1)*LC+1),LC)
ENDIF
CALL LCMPUT(JPSYS,'CQ$MCCG',LC,2,CQ((II-1)*LC+1))
CALL LCMPUT(JPSYS,'DIAGQ$MCCG',NLONG,2,DIAGQ((II-1)*NLONG+1))
ENDDO
CALL KDRCPU(T3)
IF(IPRINT.GT.0) THEN
WRITE(6,100) 'CALCULATION OF ACA PRECONDITIONER ',
1 (T3-T2)
ENDIF
*
IF(PACA.GE.2) THEN
IF(LC0.GT.0) DEALLOCATE(LUCF)
DEALLOCATE(LUDF)
ENDIF
DEALLOCATE(WORK,CFR,DIAGFR,DIAGQ,CQ)
DEALLOCATE(NEXT,PREV)
IF(LTMT) DEALLOCATE(H0,NOM0)
DEALLOCATE(XSW)
ENDIF
*----
* FOR SCR/STIS:
* VECTORS NORMALIZATION
*----
IF(LPJJ) THEN
CALL MCGDS6(NGEFF,NPJJM,NREG,PJJD,V,PJJ)
CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDX,V,PJJX)
CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDY,V,PJJY)
CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDZ,V,PJJZ)
CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDXI,V,PJJXI)
CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDYI,V,PJJYI)
CALL MCGDS6(NGEFF,NPJJM,NREG,PJJDZI,V,PJJZI)
DEALLOCATE(PJJD,PJJDX,PJJDY,PJJDZ,PJJDXI,PJJDYI,PJJDZI)
*
DO II=1,NGEFF
JPSYS=KPSYS(II)
IF(IPRINT.GT.3) THEN
CALL PRINAM('PJJ ',PJJ((II-1)*NREG*NPJJM+1),NREG*NPJJM)
IF(LPS.GT.0) CALL PRINAM('PSJ ',PSJ((II-1)*LPS+1),LPS)
ENDIF
CALL LCMPUT(JPSYS,'PJJ$MCCG',NREG*NPJJM,2,
1 PJJ((II-1)*NREG*NPJJM+1))
CALL LCMPUT(JPSYS,'PJJX$MCCG',NREG*NPJJM,2,
1 PJJX((II-1)*NREG*NPJJM+1))
CALL LCMPUT(JPSYS,'PJJY$MCCG',NREG*NPJJM,2,
1 PJJY((II-1)*NREG*NPJJM+1))
CALL LCMPUT(JPSYS,'PJJZ$MCCG',NREG*NPJJM,2,
1 PJJZ((II-1)*NREG*NPJJM+1))
CALL LCMPUT(JPSYS,'PJJXI$MCCG',NREG*NPJJM,2,
1 PJJXI((II-1)*NREG*NPJJM+1))
CALL LCMPUT(JPSYS,'PJJYI$MCCG',NREG*NPJJM,2,
1 PJJYI((II-1)*NREG*NPJJM+1))
CALL LCMPUT(JPSYS,'PJJZI$MCCG',NREG*NPJJM,2,
1 PJJZI((II-1)*NREG*NPJJM+1))
IF(LPS.GT.0) THEN
CALL LCMPUT(JPSYS,'PSJ$MCCG',LPS,2,PSJ((II-1)*LPS+1))
CALL LCMPUT(JPSYS,'PSJX$MCCG',LPS,2,PSJX((II-1)*LPS+1))
CALL LCMPUT(JPSYS,'PSJY$MCCG',LPS,2,PSJY((II-1)*LPS+1))
CALL LCMPUT(JPSYS,'PSJZ$MCCG',LPS,2,PSJZ((II-1)*LPS+1))
ENDIF
ENDDO
*
IF(LPS.GT.0) DEALLOCATE(PSJ,PSJX,PSJY,PSJZ)
DEALLOCATE(PJJX,PJJXI,PJJY,PJJYI,PJJZ,PJJZI)
DEALLOCATE(PJJ)
ENDIF
*
DEALLOCATE(KANGL,WZMUA,ZMUA,HH,H,NOM)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(CF,DIAGF)
RETURN
*
100 FORMAT(' -->>TIME SPENT IN: ',A40,':',F13.3,' s.')
200 FORMAT(1X,A6,1X,I4)
END
|