summaryrefslogtreecommitdiff
path: root/Dragon/src/MCGACA.f
blob: a69b1698f83b4f63f2bd6fb18a5de80e6644305c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
*DECK MCGACA
      SUBROUTINE MCGACA(LFORW,PACA,N,NG,NFIRST,NGEFF,M,LC,NGIND,NGINDV,
     1                  NCONV,KPSYS,JPMACR,NZON,IPERM,IM,MCU,JU,XIN,
     2                  LC0,IM0,MCU0,XOUT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the product of the left-hand side ACA matrix in its multigroup
* form with a vector and apply group per group left preconditioner.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* LFORW   flag set to .false. to transpose the coefficient matrix.
* PACA    type of preconditioner to solve the ACA corrective system.
* N       number of unknowns per group.
* NG      total number of groups.
* NFIRST  first group to proceed.
* NGEFF   number of  unconverged groups.
* M       number of material mixtures.
* LC      dimension of profiled matrices MCU and CQ.
* NGIND   index of the groups to process.
* NGINDV  index to pass from "NGEFF format" to "NG format".
* NCONV   logical array of convergence status for each group (.TRUE.
*         not converged).
* KPSYS   pointer array for each group properties.
* JPMACR  pointer to the macrolib LCM object ('GROUP' directory).
* NZON    index-number of the mixture type assigned to each volume.
* IPERM   permutation array for ACA.
* IM      connection matrix.
* MCU     connection matrix.
* JU      used for ilu0 preconditioner.
* XIN     undefined.
* LC0     used in ILU0-ACA acceleration.
* IM0     used in ILU0-ACA acceleration.
* MCU0    used in ILU0-ACA acceleration.
*
*Parameters: output
* XOUT    product.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
      IMPLICIT NONE
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) KPSYS(NGEFF),JPMACR
      INTEGER PACA,N,NFIRST,NGEFF,NG,M,LC,NGIND(NGEFF),NGINDV(NG),
     1 NZON(N),IPERM(N),IM(N+1),MCU(LC),JU(N),LC0,IM0(*),MCU0(*)
      DOUBLE PRECISION XIN(N,NGEFF),XOUT(N,NGEFF)
      LOGICAL LFORW,NCONV(NGEFF)
*----
* LOCAL VARIABLES
*----
      TYPE(C_PTR) JPSYS,KPMACR
      INTEGER I,J,II,IG,JG,JJ,JND,IBM
      REAL, TARGET, SAVE, DIMENSION(1) :: DUMMY
*----
* ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NJJ,IJJ,IPOS
      REAL, ALLOCATABLE, DIMENSION(:) :: XSCAT
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: TEMP
*
      TYPE(C_PTR) DIAGF_PTR,CF_PTR,LUDF_PTR,LUCF_PTR,DIAGQ_PTR,CQ_PTR
      REAL, POINTER, DIMENSION(:) :: DIAGF,CF,LUDF,LUCF,DIAGQ,CQ
*----
*  INITIALIZE POINTERS
*----
      LUDF=>DUMMY
      LUCF=>DUMMY
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(NJJ(0:M),IJJ(0:M),IPOS(0:M),XSCAT(0:M*NG),TEMP(N))
*
      DO II=NFIRST,NGEFF
         IF(NCONV(II)) THEN
*           compute temp=sum_{g' ne g} Sigma_s^{g<-g'} XIN^{g'}
            IG=NGIND(II)
            JPSYS=KPSYS(II)
            CALL LCMGPD(JPSYS,'DIAGF$MCCG',DIAGF_PTR)
            CALL LCMGPD(JPSYS,'CF$MCCG',CF_PTR)
            CALL C_F_POINTER(DIAGF_PTR,DIAGF,(/ N /))
            CALL C_F_POINTER(CF_PTR,CF,(/ LC /))
            IF(PACA.GE.2) THEN
               CALL LCMGPD(JPSYS,'ILUDF$MCCG',LUDF_PTR)
               CALL C_F_POINTER(LUDF_PTR,LUDF,(/ N /))
               IF(PACA.LT.4) THEN
                  CALL LCMGPD(JPSYS,'ILUCF$MCCG',LUCF_PTR)
                  CALL C_F_POINTER(LUCF_PTR,LUCF,(/ LC /))
               ENDIF
            ENDIF
            KPMACR=LCMGIL(JPMACR,IG)
            CALL LCMGPD(JPSYS,'DIAGQ$MCCG',DIAGQ_PTR)
            CALL LCMGPD(JPSYS,'CQ$MCCG',CQ_PTR)
            CALL C_F_POINTER(DIAGQ_PTR,DIAGQ,(/ N /))
            CALL C_F_POINTER(CQ_PTR,CQ,(/ LC /))
            CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
            CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
            CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
            CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
            DO I=1,N
               TEMP(I)=0.0D0
               J=IPERM(I)
               IBM=NZON(J)
               IF(IBM.GT.0) THEN
                  JG=IJJ(IBM)
                  DO 10 JND=1,NJJ(IBM)
                  IF(JG.NE.IG) THEN
                     JJ=NGINDV(JG)
                     IF(JJ.GE.NFIRST) THEN
                        TEMP(I)=TEMP(I)+XSCAT(IPOS(IBM)+JND-1)*XIN(I,JJ)
                     ENDIF
                  ENDIF
                  JG=JG-1
 10               CONTINUE
               ENDIF
            ENDDO
*           compute E^{g}*temp
            CALL MCGPRA(LFORW,1,PACA,.FALSE.,N,LC,IM,MCU,JU,DIAGQ,CQ,
     1           LUDF,LUCF,DIAGF,TEMP(1),XOUT(1,II),LC0,IM0,MCU0,CF)
*           compute D^{g}*XIN^{g}
            CALL MCGPRA(LFORW,1,PACA,.FALSE.,N,LC,IM,MCU,JU,DIAGF,CF,
     1           LUDF,LUCF,DIAGF,XIN(1,II),TEMP(1),LC0,IM0,MCU0,CF)
*           temp=D^{g}*XIN^{g}-E^{g}*sum_{g' ne g} Sigma_s^{g<-g'} XIN^{g'}
            DO I=1,N
               TEMP(I)=TEMP(I)-XOUT(I,II)
            ENDDO
*           apply single-group preconditioner XOUT^{g}=P^{g}*temp
            CALL MCGPRA(LFORW,2,PACA,.TRUE.,N,LC,IM,MCU,JU,DIAGF,CF,
     1           LUDF,LUCF,DIAGF,XOUT(1,II),TEMP(1),LC0,IM0,MCU0,CF)
         ENDIF
      ENDDO
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(TEMP,XSCAT,IPOS,IJJ,NJJ)
      RETURN
      END