1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
*DECK MCGABGR
SUBROUTINE MCGABGR(IPRINT,LFORW,PACA,N,NG,NFIRST,NGEFF,M,LC,NGIND,
1 NGINDV,NCONV,KPSYS,JPMACR,NZON,IPERM,IM,MCU,JU,
2 EPSM,MAXM,RHS,F,FAC,LC0,IM0,MCU0)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solve the ACA corrective system (in a rebalancing form) using
* BICGSTAB.
*
*Reference: (p382)
* MEURANT, G. 1999. "Computer Solution of Large Linear Systems".
* Studies in Mathematics and its Applications vol.28. North Holland.
* 776p.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* IPRINT print parameter.
* LFORW flag set to .false. to transpose the coefficient matrix.
* PACA type of preconditioner to solve the ACA corrective system.
* N number of unknowns per group.
* NG total number of groups.
* NFIRST first group to proceed.
* NGEFF number of unconverged groups.
* M number of material mixtures.
* LC dimension of profiled matrices MCU and CQ.
* NGIND index of the groups to process.
* NGINDV index to pass from "NGEFF format" to "NG format".
* NCONV logical array of convergence status for each group (.TRUE.:
* not converged).
* KPSYS pointer array for each group properties.
* JPMACR pointer to the macrolib LCM object ('GROUP' directory).
* NZON index-number of the mixture type assigned to each volume.
* IPERM permutation array for ACA.
* IM connection matrix.
* MCU connection matrix.
* JU used for ilu0 preconditioner.
* EPSM stopping criterion.
* MAXM maximum number of iterations allowed.
* RHS right hand-side of the corrective system (already
* preconditioned).
* FAC scaling factor for precision.
* LC0 used in ILU0-ACA acceleration.
* IM0 used in ILU0-ACA acceleration.
* MCU0 used in ILU0-ACA acceleration.
*
*Parameters: output
* F corrective fluxes and currents.
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IPRINT,PACA,N,NG,NFIRST,NGEFF,M,LC,NGIND(NGEFF),
1 NGINDV(NG),KPSYS(NGEFF),JPMACR,NZON(N),IPERM(N),IM(N+1),MCU(LC),
2 JU(N),MAXM,LC0,IM0(*),MCU0(*)
REAL EPSM,FAC
DOUBLE PRECISION RHS(N,NGEFF),F(N,NGEFF)
LOGICAL LFORW,NCONV(NGEFF)
*----
* LOCAL VARIABLE
*----
REAL EPSMAX,EPSINF,EPS2
PARAMETER (EPSMAX=1E-7)
INTEGER I,II,J,ITER
DOUBLE PRECISION R,BI,WI,RT1,ASIN,ASIN2,SQ2
DOUBLE PRECISION DDOT,AUX(2),EPS,FNORM,RHSN
LOGICAL DEBUG
INTRINSIC SQRT,ABS
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: PI,RI,SI,ROT,API,
1 ASI
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(PI(N,NGEFF),RI(N,NGEFF),SI(N,NGEFF),ROT(N,NGEFF),
1 API(N,NGEFF),ASI(N,NGEFF))
*
SQ2=1.D0/SQRT(2.D0)
*---
DEBUG=.FALSE.
EPSINF=EPSMAX*FAC
ITER=0
*
RHSN=0.0
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
DO I=1,N
RHSN=MAX(RHSN,ABS(RHS(I,II)))
ENDDO
ENDIF
ENDDO
IF (RHSN.LT.EPSINF) THEN
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
DO I=1,N
F(I,II)=0.0D0
ENDDO
ENDIF
ENDDO
IF (DEBUG) WRITE(6,200) RHSN,EPSINF
GO TO 40
ENDIF
EPS2=EPSMAX*REAL(RHSN)
EPS2=EPS2*EPS2
*---
* initial corrective flux is set to rhs
* calculate (P times (D times RHS)) -> RI
CALL MCGACA(LFORW,PACA,N,NG,NFIRST,NGEFF,M,LC,NGIND,NGINDV,NCONV,
1 KPSYS,JPMACR,NZON,IPERM,IM,MCU,JU,RHS(1,1),LC0,IM0,MCU0,RI)
R=0.0
FNORM=0.0
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
DO I=1,N
F(I,II)=RHS(I,II)
RI(I,II)=RHS(I,II)-RI(I,II)
PI(I,II)=RI(I,II)
ROT(I,II)=RI(I,II)
ENDDO
R=R+DDOT(N,RI(1,II),1,RI(1,II),1)
FNORM=FNORM+DDOT(N,F(1,II),1,F(1,II),1)
ENDIF
ENDDO
EPS=SQRT(R/FNORM)
IF (DEBUG) WRITE(6,100) ITER,EPS,EPSM
IF (EPS.LE.EPSM) GO TO 40
AUX(1)=R !!DDOT(N,RI,1,ROT,1)
*
DO WHILE (ITER.LT.MAXM)
* BiCGSTAB iterations
ITER=ITER+1
* calculate (P times (D times PI)) -> API
CALL MCGACA(LFORW,PACA,N,NG,NFIRST,NGEFF,M,LC,NGIND,NGINDV,
1 NCONV,KPSYS,JPMACR,NZON,IPERM,IM,MCU,JU,PI(1,1),LC0,IM0,
2 MCU0,API)
*
AUX(2)=0.0
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
AUX(2)=AUX(2)+DDOT(N,API(1,II),1,ROT(1,II),1)
ENDIF
ENDDO
AUX(2)=AUX(1)/AUX(2)
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
DO J=1,N
SI(J,II)=RI(J,II)-AUX(2)*API(J,II)
ENDDO
ENDIF
ENDDO
ITER=ITER+1
* calculate (P times (D times SI)) -> ASI
CALL MCGACA(LFORW,PACA,N,NG,NFIRST,NGEFF,M,LC,NGIND,NGINDV,
1 NCONV,KPSYS,JPMACR,NZON,IPERM,IM,MCU,JU,SI(1,1),LC0,IM0,
2 MCU0,ASI)
*
ASIN2=0.0
ASIN=0.0
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
ASIN2=ASIN2+DDOT(N,ASI(1,II),1,SI(1,II),1)
ASIN=ASIN+DDOT(N,ASI(1,II),1,ASI(1,II),1)
ENDIF
ENDDO
IF (ASIN.GT.EPSMAX*ASIN2) THEN
WI=ASIN2/ASIN
ELSE
* assuming lucky breakdown
WI=1.0
ENDIF
!!!!* Modification proposed by Sleijpen and Van der Vorst
!!!!* (Numerical Algorithms, 10:203-223, 1995)
!!!! ASIN2=0.0
!!!! ASIN=0.0
!!!! SIN=0.0
!!!! DO II=NFIRST,NGEFF
!!!! IF (NCONV(II)) THEN
!!!! ASIN2=ASIN2+DDOT(N,ASI(1,II),1,SI(1,II),1)
!!!! ASIN=ASIN+DDOT(N,ASI(1,II),1,ASI(1,II),1)
!!!! SIN=SIN+DDOT(N,SI(1,II),1,SI(1,II),1)
!!!! ENDIF
!!!! ENDDO
!!!! ASIN=SQRT(ASIN)
!!!! SIN=SQRT(SIN)
!!!! CN=ASIN*SIN
!!!! IF (CN.GT.EPSMAX*ASIN2) THEN
!!!! CN=ASIN2/CN
!!!! WI=MAX(ABS(CN),SQ2)*SIN/ASIN
!!!! WI=SIGN(WI,CN)
!!!! ELSE
!!!!* assuming lucky breakdown
!!!! WI=1.0
!!!! ENDIF
* calculate new iterate
R=0.0
FNORM=0.0
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
DO J=1,N
F(J,II)=F(J,II)+AUX(2)*PI(J,II)+WI*SI(J,II)
RI(J,II)=SI(J,II)-WI*ASI(J,II)
ENDDO
R=R+DDOT(N,RI(1,II),1,RI(1,II),1)
FNORM=FNORM+DDOT(N,F(1,II),1,F(1,II),1)
ENDIF
ENDDO
IF (FNORM.LT.EPS2) GOTO 30
EPS=SQRT(R/FNORM)
IF (DEBUG) WRITE(6,100) ITER,EPS,EPSM
IF (EPS.LE.EPSM) GO TO 20
RT1=AUX(1)
AUX(1)=0.0
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
AUX(1)=AUX(1)+DDOT(N,RI(1,II),1,ROT(1,II),1)
ENDIF
ENDDO
BI=AUX(1)/RT1*AUX(2)/WI
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
DO J=1,N
PI(J,II)=RI(J,II)+BI*(PI(J,II)-WI*API(J,II))
ENDDO
ENDIF
ENDDO
ENDDO
20 CONTINUE
* determine final residual norm
ITER=ITER+1
* calculate (P times (D times F)) -> RI
CALL MCGACA(LFORW,PACA,N,NG,NFIRST,NGEFF,M,LC,NGIND,NGINDV,NCONV,
1 KPSYS,JPMACR,NZON,IPERM,IM,MCU,JU,F(1,1),LC0,IM0,MCU0,RI)
*
R=0.0
FNORM=0.0
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
DO I=1,N
RI(I,II)=RHS(I,II)-RI(I,II)
ENDDO
R=R+DDOT(N,RI(1,II),1,RI(1,II),1)
FNORM=FNORM+DDOT(N,F(1,II),1,F(1,II),1)
ENDIF
ENDDO
IF (FNORM.LT.EPS2) GOTO 30
EPS=SQRT(R/FNORM)
IF (IPRINT.GT.0) WRITE(6,400) EPS,ITER
!!!! R=0.0
!!!! FNORM=0.0
!!!! EPS=0.0
!!!! DO II=NFIRST,NGEFF
!!!! IF (NCONV(II)) THEN
!!!! DO I=1,N
!!!! R=MAX(R,ABS(RI(I,II)))
!!!! FNORM=MAX(FNORM,ABS(F(I,II)))
!!!! ENDDO
!!!! EPS=MAX(EPS,R/FNORM)
!!!! ENDIF
!!!! ENDDO
!!!! WRITE(*,*) ' PRC=',EPS
GO TO 40
*
30 IF (DEBUG) WRITE(6,300) ITER,FNORM,EPS2
DO II=NFIRST,NGEFF
IF (NCONV(II)) THEN
DO I=1,N
F(I,II)=0.0
ENDDO
ENDIF
ENDDO
*----
* SCRATCH STORAGE DEALLOCATION
*----
40 DEALLOCATE(ASI,API,ROT,SI,RI,PI)
RETURN
*
100 FORMAT(9X,14H MCGABGR:ITER=,I3,5H EPS=,E9.2,5H TAR=,E9.2)
200 FORMAT(9X,27H MCGABGR:RHS INFINITE NORM=,E9.2,5H LIM=,E9.2/
1 9X,33H -> ACA CORRECTION IS SET TO ZERO)
300 FORMAT(9X,14H MCGABGR:ITER=,I3,7H FNORM=,E9.2,5H LIM=,E9.2)
400 FORMAT(10X,48HACA: UP-SCATTE. GROUPS: MULTIGROUP BICGSTAB: PRC:,
1 E9.2,2H (,I4,12H ITERATIONS))
END
|