1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
*DECK MCGABG
SUBROUTINE MCGABG(IPRINT,LFORW,PACA,N,LC,EPSM,MAXM,IM,MCU,JU,
1 DIAGF,CF,ILUDF,ILUCF,RHS,F,FAC,LC0,IM0,MCU0)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solve the ACA corrective system using BICGSTAB.
*
*Reference: (p382)
* MEURANT, G. 1999. "Computer Solution of Large Linear Systems".
* Studies in Mathematics and its Applications vol.28. North Holland.
* 776p.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* IPRINT print parameter.
* LFORW flag set to .false. to transpose the coefficient matrix.
* PACA type of preconditioner to solve the ACA corrective system.
* N dimension of the corrective system.
* LC dimension of profiled matrices MCU and CQ.
* IM connection matrix.
* MCU connection matrix.
* DIAGF diagonal elements of the matrix to inverse.
* CF non-diagonal elements of the matrix to inverse.
* RHS right hand-side of the corrective system (already
* preconditioned).
* FAC scaling factor for precision.
* LC0 used in ILU0-ACA acceleration.
* IM0 used in ILU0-ACA acceleration.
* MCU0 used in ILU0-ACA acceleration.
* EPSM stopping criterion.
* MAXM maximum number of iterations allowed.
*
*Parameters: output
* F corrective fluxes and currents.
*
*Parameters: scratch
* JU undefined.
* ILUDF undefined.
* ILUCF undefined.
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IPRINT,PACA,N,LC,IM(N+1),MCU(LC),JU(N),MAXM,LC0,IM0(*),
1 MCU0(*)
REAL DIAGF(N),CF(LC),ILUDF(N),ILUCF(LC),EPSM,FAC
DOUBLE PRECISION RHS(N),F(N)
LOGICAL LFORW
*----
* LOCAL VARIABLE
*----
REAL EPSMAX,EPSINF,EPS2
PARAMETER (EPSMAX=1E-7)
INTEGER I,J,ITER
DOUBLE PRECISION R,BI,WI,RT1
DOUBLE PRECISION DDOT,AUX(2),EPS,FNORM,RHSN,ASIN,ASIN2,SIN,CN,SQ2
LOGICAL DEBUG
INTRINSIC SQRT,ABS,SIGN
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: PI,RI,SI,ROT,API,
1 ASI
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(PI(N),RI(N),SI(N),ROT(N),API(N),ASI(N))
*
SQ2=1.D0/SQRT(2.D0)
*----
DEBUG=.FALSE.
EPSINF=EPSMAX*FAC
ITER=0
*
RHSN=0.0
DO I=1,N
RHSN=MAX(RHSN,ABS(RHS(I)))
ENDDO
IF(RHSN.LT.EPSINF) THEN
DO I=1,N
F(I)=0.0
ENDDO
IF(DEBUG) WRITE(6,200) RHSN,EPSINF
GO TO 40
ENDIF
EPS2=EPSMAX*REAL(RHSN)
EPS2=EPS2*EPS2
*---
* initial corrective flux is set to rhs
* calculate (P times (D times RHS)) -> RI
CALL MCGPRA(LFORW,3,PACA,.FALSE.,N,LC,IM,MCU,JU,DIAGF,CF,ILUDF,
1 ILUCF,DIAGF,RHS(1),RI,LC0,IM0,MCU0,CF)
DO I=1,N
F(I)=RHS(I)
RI(I)=RHS(I)-RI(I)
PI(I)=RI(I)
ROT(I)=RI(I)
ENDDO
R=DDOT(N,RI,1,RI,1)
FNORM=DDOT(N,F,1,F,1)
EPS=SQRT(R/FNORM)
IF(DEBUG) WRITE(6,100) ITER,EPS,EPSM
IF(EPS.LE.EPSM) THEN
IF(IPRINT.GT.2) WRITE(6,100) ITER,EPS,EPSM
GO TO 40
ENDIF
AUX(1)=R
*
DO WHILE (ITER.LT.MAXM)
* BiCGSTAB iterations
ITER=ITER+1
* calculate (P times (D times PI)) -> API
CALL MCGPRA(LFORW,3,PACA,.FALSE.,N,LC,IM,MCU,JU,DIAGF,CF,
1 ILUDF,ILUCF,DIAGF,PI(1),API,LC0,IM0,MCU0,CF)
*
AUX(2)=AUX(1)/DDOT(N,API,1,ROT,1)
DO J=1,N
SI(J)=RI(J)-AUX(2)*API(J)
ENDDO
ITER=ITER+1
* calculate (P times (D times SI)) -> ASI
CALL MCGPRA(LFORW,3,PACA,.FALSE.,N,LC,IM,MCU,JU,DIAGF,CF,
1 ILUDF,ILUCF,DIAGF,SI(1),ASI,LC0,IM0,MCU0,CF)
*
!!!! ASIN=DDOT(N,ASI,1,ASI,1)
!!!! ASIN2=DDOT(N,ASI,1,SI,1)
!!!! IF(ASIN.GT.EPSMAX*ASIN2) THEN
!!!! WI=ASIN2/ASIN
!!!! ELSE
!!!!* assuming lucky breakdown
!!!! WI=1.0
!!!! ENDIF
* Modification proposed by Sleijpen and Van der Vorst (Numerical Algorithms, 10:203-223, 1995)
ASIN2=DDOT(N,ASI,1,SI,1)
ASIN=SQRT(DDOT(N,ASI,1,ASI,1))
SIN=SQRT(DDOT(N,SI,1,SI,1))
CN=ASIN*SIN
IF(CN.GT.EPSMAX*ASIN2) THEN
CN=ASIN2/CN
WI=MAX(ABS(CN),SQ2)*SIN/ASIN
WI=SIGN(WI,CN)
ELSE
* assuming lucky breakdown
WI=1.0
ENDIF
* calculate new iterate
DO J=1,N
F(J)=F(J)+AUX(2)*PI(J)+WI*SI(J)
RI(J)=SI(J)-WI*ASI(J)
ENDDO
R=DDOT(N,RI,1,RI,1)
FNORM=DDOT(N,F,1,F,1)
IF(FNORM.LT.EPS2) GOTO 30
EPS=SQRT(R/FNORM)
IF(DEBUG) WRITE(6,100) ITER,EPS,EPSM
IF(EPS.LE.EPSM) GO TO 20
RT1=AUX(1)
AUX(1)=DDOT(N,RI,1,ROT,1)
BI=AUX(1)/RT1*AUX(2)/WI
DO J=1,N
PI(J)=RI(J)+BI*(PI(J)-WI*API(J))
ENDDO
ENDDO
20 CONTINUE
* determine final residual norm
ITER=ITER+1
* calculate (P times (D times F)) -> RI
CALL MCGPRA(LFORW,3,PACA,.FALSE.,N,LC,IM,MCU,JU,DIAGF,CF,ILUDF,
1 ILUCF,DIAGF,F(1),RI,LC0,IM0,MCU0,CF)
DO I=1,N
RI(I)=RHS(I)-RI(I)
ENDDO
*
R=DDOT(N,RI,1,RI,1)
FNORM=DDOT(N,F,1,F,1)
IF(FNORM.LT.EPS2) GOTO 30
EPS=SQRT(R/FNORM)
IF(IPRINT.GT.2) WRITE(6,100) ITER,EPS,EPSM
!!!! IF(EPS.GT.EPSM) THEN
!!!! DO I=1,N
!!!! PI(I)=RI(I)
!!!! ROT(I)=RI(I)
!!!! ENDDO
!!!! GO TO 10
!!!! ENDIF
GO TO 40
*
30 IF(DEBUG) WRITE(6,300) ITER,FNORM,EPS2
F(:N)=0.0
*----
* SCRATCH STORAGE DEALLOCATION
*----
40 DEALLOCATE(ASI,API,ROT,SI,RI,PI)
RETURN
*
100 FORMAT(12X,14H MCGABG: ITER=,I3,5H EPS=,E9.2,5H TAR=,E9.2)
200 FORMAT(12X,27H MCGABG: RHS INFINITE NORM=,E9.2,5H LIM=,E9.2/
1 12X,33H -> ACA CORRECTION IS SET TO ZERO)
300 FORMAT(12X,14H MCGABG: ITER=,I3,7H FNORM=,E9.2,5H LIM=,E9.2)
END
|